По картинам

Кто такие генетики. Основные центры генетических исследований и органы печати. Генетика и здоровье

Содержание статьи

ГЕНЕТИКА, наука, изучающая наследственность и изменчивость – свойства, присущие всем живым организмам. Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу. При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ – быть похожими на своих родителей и отличаться от них – и составляют суть понятий «наследственность» и «изменчивость».

Истоки генетики

Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 19 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности – это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения «полукровка», «чистокровный» и др. сохранились до наших дней.

Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха. Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то «странных» количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки – генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки.

Законы генетики

Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену. Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина – другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм.

Гены – это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом. У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой – от отца. Имеются и внеядерные гены (в митохондриях, а у растений – еще и в хлоропластах).

Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз – это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития. Мейоз – это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток). В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине – другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом – образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.

Методические подходы.

Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.). Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал. Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков – гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила – Drosophila melanogaster . На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген – сложная структура и имеется много форм (аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации – включение ДНК, принадлежащей клетке донора, в клетку реципиента – и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. (см . КЛЕТКА; НАСЛЕДСТВЕННОСТЬ; МОЛЕКУЛЯРНАЯ БИОЛОГИЯ) . Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов – от вирусов до человека.

Достижения и проблемы современной генетики.

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина (см . ГЕННАЯ ИНЖЕНЕРИЯ) . Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930–1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» – трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы (см . ПОПУЛЯЦИОННАЯ ГЕНЕТИКА) , изучать наследственные болезни (см . ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ) , проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.

1. Генетика как наука, ее предмет, задачи и методы. Основные этапы развития .

Генетика - дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами.

Предмет генетики – наследственность и изменчивость организмов.

Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования:

1) механизмов хранения и передачи генетической информации от родительских форм к дочерним;

2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды;

3) типов, причин и механизмов изменчивости всех живых существ;

4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

Генетика является также основой для решения ряда важнейших практических задач. К ним относятся:

1) выбор наиболее эффективных типов гибридизации и способов отбора;

2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов;

3) искусственное получение наследственно измененных форм живых организмов;

4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных;

5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек.

Методы генетики:

Основные этапы развития генетики.

До начала ХХ в. попытки ученых объяснить явления, связанные с наследственностью и изменчивостью, имели в основном умозрительный характер. Постепенно было накоплено множество сведений относительно передачи различных признаков от родителей потомкам. Однако четких представлений о закономерностях наследования у биологов того времени не было. Исключением стали работы австрийского естествоиспытателя Г. Менделя.

Г. Мендель в своих опытах с различными сортами гороха установил важнейшие закономерности наследования признаков, которые легли в основу современной генетики. Результаты своих исследований Г. Мендель изложил в статье, опубликованной в 1865 г. в «Трудах Общества естествоиспытателей» в г. Брно. Однако опыты Г. Менделя опережали уровень исследований того времени, поэтому данная статья не привлекла внимания современников и оставалась невостребованной в течение 35 лет, вплоть до 1900 г. В этом году три ботаника – Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии, независимо проводившие опыты по гибридизации растений, натолкнулись на забытую статью Г. Менделя и обнаружили сходство результатов своих исследований с результатами, полученными Г. Менделем. 1900 год считается годом рождения генетики.

Первый этап развития генетики (с 1900 примерно до 1912 г.) характеризуется утверждением законов наследственности в гибридологических опытах, проведенных на разных видах растений и животных. В 1906 г. английский ученый В. Ватсон предложил важные генетические термины «ген», «генетика». В 1909 г. датский генетик В. Иоганнсен ввел в науку понятия «генотип», «фенотип».

Второй этап развития генетики (приблизительно с 1912 до 1925 г.) связан с созданием и утверждением хромосомной теории наследственности, в создании которой ведущая роль принадлежит американскому ученому Т. Моргану и его ученикам.

Третий этап развития генетики (1925 – 1940) связан с искусственным получением мутаций – наследуемых изменений генов или хромосом. В 1925 г. русские ученые Г. А. Надсон и Г. С. Филиппов впервые открыли, что проникающее излучение вызывает мутации генов и хромосом. В это же время были заложены генетико-математические методы изучения процессов, происходящих в популяциях. Фундаментальный вклад в генетику популяций внес С. С. Четвериков.

Для современного этапа развития генетики, начавшегося с середины 50-х годов XX в., характерны исследования генетических явлений на молекулярном уровне. Этот этап ознаменован выдающимися открытиями: созданием модели ДНК, определением сущности гена, расшифровкой генетического кода. В 1969 г. химическим путем вне организма был синтезирован первый относительно небольшой и простой ген. Спустя некоторое время ученым удалось осуществить введение в клетку нужного гена и тем самым изменить в желаемую сторону ее наследственность.

2. Основные понятия генетики

Наследственность - это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития.

Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма.

Изменчивость - способность организмов в процессе онтогенеза приобретать новые признаки и терять старые.

Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей.

Ген – это участок молекулы ДНК, отвечающий за определенный признак.

Генотип - это совокупность всех генов организма, являющихся его наследственной основой.

Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.

Аллельные гены - различные формы того же гена, занимающие одно и то же место (локус) гомологичных хромосом и определяющие альтернативные состояния одного и того же признака.

Доминантность - форма взаимоотношений междуаллелямиодногогена, при которой один из них подавляет проявление другого.

Рецессивность – отсутствие (непроявление) у гетерозиготного организма одного из пары противоположных (альтернативных) признаков.

Гомозиготность – состояние диплоидного организма, при котором в гомологичных хромосомах находятся идентичные аллели генов.

Гетерозиготность – состояние диплоидного организма, при котором в гомологичных хромосомах находятся разные аллели генов.

Гемизиготность - состояние гена, при котором в гомологичной хромосоме полностью отсутствует его аллель.

3. Основные типы наследования признаков.

    Моногенное (такой тип наследования, когда наследственный признак контролируется одним геном)

    1. Аутосомное

      1. Доминантное (прослеживается в каждом поколении; у больных родителей больной ребенок; болеют и мужчины и женщины; вероятность наследования – 50-100%)

        Рецессивное (не в каждом поколении; проявляется в потомстве у здоровых родителей; встречается и у мужчин и у женщин; вероятность наследования – 25-50-100%)

    2. Геносомное

      1. Х-сцепленное доминантное (сходен с аутосомным доминантным, но мужчины передают признак только дочерям)

        Х-сцепленное рецессивное (не в каждом поколении; болеют преимущественно мужчины; у здоровых родителей с вероятностью 25% - больные сыновья; больные девочки, если отец болен, а мать носительница)

        Y-сцепленное (голандрическое) (в каждом поколении; болеют мужчины; у больного отца все сыновья больные; вероятность наследования – 100% у всех мужчин)

    Полигенное

4. Моногибридное скрещивание. Первый и второй законы Менделя, их цитологические основы.

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Первый закон Менделя (Закон единообразия гибридов первого поколения):

«При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу»

Второй закон Менделя (Закон расщепления признаков):

«При скрещивании гибридов первого поколения, анализируемых по одной паре альтернативных признаков, наблюдается расщепление по фенотипу 3:1, по генотипу 1:2:1»

В опытах Менделя первое поколение гибридов получено от скрещивания чистолинейных (гомозиготных) родительских растений гороха с альтернативными признаками (АА х аа). Они образуют гаплоидные гаметы А и а. Следовательно, после оплодотворения гибридное растение первого поколения будет гетерозиготным (Аа) с проявлением только доминантного (желтая окраска семени) признака, т. е. будет единообразным, одинаковым по фенотипу.

Второе поколение гибридов получено при скрещивании между собой гибридных растений первого поколения (Аа), каждое из которых образует по два типа гамет: А и а. Равновероятное сочетание гамет при оплодотворении особей первого поколения дает расщепление у гибридов второго поколения в соотношении: по фенотипу 3 части растений с доминантным признаком (желтозерные) к 1 части растений с рецессивным признаком (зеленозерным), по генотипу - 1 АА: 2 Аа: 1 аа.

, экологическую генетику и другие.

Определение

Определение генетики как науки о закономерностях наследственности и изменчивости не разделяют многие современные учёные. По мнению ведущих североамериканских генетиков, таких, как Энтони Грифитс , Джеффри Миллер , Девид Судзуки , Ричард Левонтин и др., генетику следует определить как науку о генах :

....Некоторые определяют её [генетику] как науку о наследственности, хотя наследственные явления представляли интерес для людей задолго до того, как биология и генетика оформились в качестве научных дисциплин. Древние народы улучшали растительные культуры и одомашненных животных, выбирая для разведения экземпляры, обладающие желательными признаками. Большой интерес вызывали у них и такие вопросы, как: «Почему дети напоминают своих родителей?» или «Какие семейные особенности могут влиять на течение различных заболеваний?»

Но этих людей нельзя было назвать генетиками. Генетика как набор принципов и аналитических процедур не существовала до 60-х годов XIX века, когда монах Августинского монастыря Грегор Мендель выполнил ряд экспериментов, указывающих на существование биологических структур, которые мы теперь называем генами.

Генетика происходит от слова «ген», и именно гены находятся в центре внимания исследователей. Это не зависит от того, изучают ли генетики молекулярный, клеточный, организменный, семейный, популяционный или эволюционный уровни. Проще говоря, генетика - это наука о генах. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000) .

Введение

Первоначально генетика изучала общие закономерности наследственности и изменчивости только на основании фенотипических данных.

Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии , молекулярной биологии и других смежных дисциплин.

Сегодня известно, что гены действительно существуют и являются специальным образом отмеченными участками ДНК или РНК - молекулы , в которой закодирована вся генетическая информация . У эукариотических организмов ДНК свёрнута в хромосомы и находится в ядре клетки . Кроме того, собственная ДНК имеется внутри митохондрий и хлоропластов (у растений). У прокариот ДНК, как правило, замкнута в кольцо (бактериальная хромосома, или генофор) и находится в цитоплазме . Часто в клетках прокариот присутствует молекулы ДНК меньшего размера - плазмиды .

История

Работы Грегора Менделя

Важным вкладом в развитие генетики стала хромосомная теория наследственности , разработанная, прежде всего, благодаря усилиям американского генетика Томаса Ханта Моргана и его учеников и сотрудников, избравших объектом своих исследований плодовую мушку Drosophila melanogaster . Изучение закономерностей сцепленного наследования позволило путём анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910-1913 гг.).

Молекулярная генетика

Эпоха молекулярной генетики начинается с появившихся в 1940-1950-х гг. работ, доказавших ведущую роль ДНК в передаче наследственной информации. Важнейшими шагами стали расшифровка структуры ДНК, триплетного кода, описание механизмов биосинтеза белка, обнаружение рестриктаз и секвенирование ДНК.

Разделы генетики

Методы генетики

Есть три основных метода генетики:

1. Метод генетического анализа.

2. Комбинационный метод.

3. Мутационный метод.

И несколько вспомогательных методов:

1.Популяционно-статистический.

2.Метод селекционных сред.

3.Метод молекулярного анализа.

4.Онтогенетический.

5.Биохимический.

С помощью данных методов изучают наследственность и изменчивость на разных условиях организации наследственного материала. [ ]

Модельные организмы

Изначально наследование изучалось у широкого диапазона организмов, однако учёные стали специализироваться на генетике конкретных видов. Модельными становятся те организмы, по которым уже накоплено много научных данных, которые уже исследовались и легко содержатся в лабораторных условиях. Модельные организмы выбирались отчасти благодаря удобству - короткому времени генерации (быстрой смены поколений) и возможности генетических манипуляций. В результате, в генетических исследованиях некоторые виды стали основными .

К широко используемым в генетических исследованиях модельным организмам относят бактерию Escherichia coli , растение Arabidopsis thaliana , дрожжи Saccharomyces cerevisiae , нематоду Caenorhabditis elegans , плодовую муху Drosophila melanogaster и обыкновенную домовую мышь (Mus musculus ).

См. также

Примечания

  1. Genetikos (γενετ-ικός) (неопр.) .
  2. Genesis (γένεσις) (неопр.) . Henry George Liddell, Robert Scott, A Greek-English Lexicon . Perseus Digital Library, Tufts University.
  3. Genetic (неопр.) . Online Etymology Dictionary.

В сегодняшний век интеграции очень сложно определить границы практически любой науки. Это касается в том числе и генетики. Мы, конечно, можем использовать заштампованное «наука о наследственности и изменчивости » но это не передает всей сути и масштаба этой дисциплины. При том, что генетика присутствует везде – медицине, истории, криминалистике и даже спорте. А что уж говорить о современной биологии.

Однако еще относительно недавно эта молодая наука была чуть ли не самой обособленной областью биологической науки. И лишь в последней трети прошлого века начался её бурный прогресс.

Как генетика стала всеобъемлющей

Особенностью генетики всегда являлась её синтетическая методология, отличающая её от аналитической методологии остальных направлений биологии. Так, исследуя объект своего изучения, она не делила его на части, а косвенно, наблюдая за целым (соотношение признаков при скрещиваниях) и основываясь на математике, изучала его. Подтверждением же верности её выводов были живые организмы с предсказанными признаками. И как же обособленная наука заняла, возможно, центральное место в современной биологии?

Начиная с 50-х годов ХХ века бурно развивалась другая новая наука - молекулярная биология. Аналитическая наука изначально совершено противоположна генетике. Однако предметы этих двух дисциплин во многом пересекались: они обе занимались изучением передачи и реализации наследственной информации, однако двигались они с противоположных сторон. Генетика, если можно так сказать, «снаружи», молекулярная биология - «изнутри».

И наконец в конце ХХ века генетика и молекулярная биология «встретились», и умозрительные объекты генетических исследований обрели конкретную физико-химическую форму, а молекулярная биология стала синтетической наукой. И именно с этого момента до неразличимости стерлись границы генетики как науки – было невозможно определить, где кончается молекулярная биология или начинается генетика. А для обозначения новой зародившейся синтетической науки появилось название «молекулярная генетика».

А где же классическая генетика?

Титулом «классическая генетика» стали называть генетику домолекулярного периода вместе со всеми её подходами, основанными на теории вероятности и скрещиваниях. Но вместе с этим титулом её отправили в «почетную отставку». Классическая генетика – это наука, в которой не совершается больше открытий, но крайне необходимая для понимания основных закономерностей наследственности и изменчивости, без понимания которых многие области научного знания не достигли бы тех высот, которые им уже покорились.

Когда зародилась генетика?

Принято говорить, что генетика зародилась, когда чешский монах-августинец Грегор Мендель провел свои опыты на горохе. Стоит отметить что научное сообщество того периода не придало значения работам Менделя, и признание они получили спустя не один десяток лет. Но вопросами наследственности и изменчивости ученые занимались и до него, но о их работах вспоминают очень редко.

Так еще в XVIII веке ботаники начали заниматься экспериментальным изучением наследования признаков растений. Стоит упомянуть Йозефа Готлиба Кельрейтера, с 1756 по 1761 г.г., работавшего в Академии наук в Санкт-Петербурге. Именно там он провел первые опыты по искусственной гибридизации растений, результаты 136 были опубликованы.

В опытах с дурманом, табаком и гвоздиками Кельрейтор установил равноправие "матери"и "отца" при передаче признаков потомкам, а также доказал существование пола у растений. Но самым важным вкладом его в науку стал новый метод изучения наследственности - метод искусственной гибридизации. Используя его, французы Огюстен Сажрэ и Шарль Виктор Ноден в середине XIX в., открыли явление доминантности. Все накопленные факты требовали своего осмысления. Именно в осмысление этих фактов и заключается главная залуга Грегора Менделя.

Современная генетика

Современная генетика уже очень далеко шагнула от классического учения Менделя и приобретает все большее значение в сферах медицины, биологии, сельского хозяйства и животноводства. Современная генетика - это прежде всего молекулярная генетика. На ее основе производится селекция полезных микроорганизмов, растений и животных. Генетически модифицированные организмы обладают полезными свойствами, не характерными для их родственников из "дикой" природы. Например, листья генетически модифицированного картофеля являются несъедобными для колорадского жука - злейшего врага картошки и тех, кто ее выращивает. Количество генетически модифицированных продуктов, потребляемых человечеством, растет с каждым годом.

Учитывая тот факт, что огромное количество заболеваний человека являются генетически обусловленными, невозможно переоценить значение генетики для медицины. После того, как в начале 21 века был расшифрован геном человека, методы профилактики наследственных патологий и борьбы с негативным воздействием генов становятся все эффективнее. Например, вероятность и риск развития хронических заболеваний может быть предсказан задолго до рождения ребенка, также появляются методы, позволяющие свести этот риск к минимуму.

Если Вам нужно разобраться с решением задач или по генетике в короткий срок - не стесняйтесь обращаться к нашим авторам. Мы поможем решить любой вопрос с учебой, даже если ситуация кажется безнадежной!

(греч. γεννώ - порождать) - это наука о генах, наследственность и вариативность организмов.

Генетика - наука о наследственности и изменчивости организмов и организацию наследственного материала. Через универсальность генетического кода генетика лежит в основе изучения всех форм жизни от вирусов до человека.

Происхождение термина

Слово «генетика» был впервые предложен для того, чтобы описать знания о наследственности и изменчивости выдающимся Британским ученым Уильямом Батесон (William Bateson) в личном письме Адама Седжвика Adam Sedgwick (18 апреля 1905). Впервые Батесон употребил слово «генетика» публично на Третьей международной конференции по гибридизации растений (Лондон, Англия) в 1906.

Задача генетики

Основной задачей генетики является разработка методов управления наследственностью и изменчивостью в целях получения необходимых человечеству форм организмов, регуляции формирования их естественных и искусственных популяций, изучение природы генетических болезней, решение проблем устойчивости природных и искусственных популяций видов.

Генетика представляет теоретический фундамент современной биологической науки.

Направления исследований

Основные направления исследований:

Генетика человека.
Генетика растений.
Генетика животных.
Генетика микроорганизмов.
Генетика индивидуального развития.
Молекулярно-генетические механизмы.
Цитогенетические механизмы.
Генетика адаптационных процессов.
Генетика популяций.
Эволюционная генетика.
Генетика соматических клеток и клеточных популяций.
Разработка новых методов генетики.
Генетическая инженерия.
Наследственность и изменчивость - основы генетики

Начальные знания по генетике связанные с такими процессами, как одомашнивание и скрещивание животных и растений еще в древние времена. Сегодня методы генетики позволяют изучать свойства конкретных генов и анализировать связи между различными генами. Обычно в организме генетическая информация хранится в виде хромосом, которые, в свою очередь состоят из белков и носителей генетической информации - молекул ДНК.

В генах закодирована информация, необходимая для синтеза аминокислотной последовательности белков. Белки же играют важнейшую роль в формировании фенотипа, или, другими словами, белки определяют, каким будет физическое состояние, общий вид организма. В диплоидных организмах доминантные аллели на одной хромосоме будут маскировать экспрессию рецессивных генов на другой (гомологичные) хромосоме. Единственная возможность проявиться рецессивной аллели - гомозиготное состояние (когда обе копии гена рецессивные и доминантного гена нет в конкретно взятой личности. Кодоминантнисть - это такое свойство генов, когда обе черты доминантные одновременно, и оба качества в этом случае будут присутствовать в фенотипе.

Фраза «закодировать» довольно часто употребляется, чтобы обозначить информацию, содержащуюся в генах, и необходима для определенной структуры белка: «гены кодируют белки». Простейшая концепция - «один ген - один полипептид (один белок)». Но один ген может кодировать и большое количество различных полипептидов в зависимости от регуляции его транскрипции (альтернативный сплайсинг). Гены кодируют нуклеотидную последовательность мессенджер-РНК, или мРНК, транспортных РНК (тРНК) и рибосомальных РНК (рРНК). Все эти виды РНК необходимые для синтеза белков.

Гены влияют на внешность всех организмов, в том числе и людей, а также и на поведение. На эти характеристики также влияют условия внешней среды и другие разные факторы. Идентичные генетически близнецы, которые по сути являются «клонами» вследствие раннего разделения эмбриона, имеют одинаковую ДНК, но разные черты характера, различные отпечатки пальцев и т.д. Генетически идентичные растения накапливают различные по размеру и насичнистю жирные кислоты в зависимости от температуры внешней среды.

История

Зарождение генетики можно проследить еще в доисторические времена. Уже на Вавилонских глиняных плитках указывались возможные черты при скрещивании лошадей. Но основы современных представлений о механизмах наследственности были заложены только в середине 19 века.

Работы Грегора Менделя

В 1865 году монах Грегор Мендель изучал горох гибридизицию растений в августинский монастырь в Брюнне (Брно, теперь на территории Чехии). Исследователь обнародовал свои результаты на заседании местного общества ученых. Работа "Опыты над растительными гибридами» была опубликована в 1866 году. Сформулированы закономерности наследования позже получили название Законы Менделя. При жизни автора эти работы были малоизвестны, воспринимались весьма критически. Результаты исследований другого растения, «Ночной красавицы», противоречили на первый взгляд выводам Менделя, и этим весьма охотно пользовались критики.

Классическая генетика

В начале 20 века работы Менделя обратили на себя внимание в связи с исследованиями Карла Корреса, Эриха фон Чермака и Гуго де Фриза в сфере гибридизиции растений. Они подтвердили основные выводы о независимом наследования признаков и о численных соотношение о расщеплении признаков у потомков.

Вскоре английский натуралист Уильям Бэтсон предложил название новой научной дисциплины - Генетика. В 1909 году ботаник из Дании предложил слово ген.

Важным достижением является также Хромосомная теория наследственности Томаса Ганта Моргана и его учеников. Эти авторы работали с дрозофилы (Drosophila melanogaster). Изучение закономерностей стиснутые наследования позволило путем анализа результатов скрещивания составить карты расположения генов в «группах сцепления», а также сопоставить группы сцепления с хромосомами (одна тысяча девятьсот десять-+1913 года).

Молекулярная генетика

Эпоха молекулярной генетики начинается в +1940 - 1950 годах. В то время была доказана роль ДНК в передаче наследственной информации. Важнейшими шагами стали расшифровка структуры ДНК, создание теории о триплетнисть генетического кода, описание механизма биосинтеза белков, открытие рестриктаз и сиквенса (установление последовательности нуклеотидов) ДНК.

В СССР с 1930-х до 1960-х генетика считалась запретной наукой.