Сочинения

Классическая механика (механика Ньютона). Законы ньютона

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Классическая (ньютоновская) механика изучает движение материальных объектов при скоростях, которые значительно меньше скорости света в вакууме.

Начало формирования классической механики связывают с именем итал. ученого Галилео Галилея (1564-1642). Он впервые перешел от натурфилософского рассмотрения природных явлений к научно-теоретическому.

Трудами Галилея, Кеплера, Декарта был заложен фундамент классической физики, а трудами Ньютона было построено здание этой науки.

Галилей

1. установил основополагающий принцип классической механики – принцип инерции

Движение - собственное и основное, естественное состояние тел, тогда как трение и действие других внешних сил может изменить и даже прекратить движение тела.

2. сформулировал еще один основополагающий принцип классической механики – принцип относительности – Равноправие всех ИСО.

Согласно этому принципу внутри движущейся равномерно системы все механические процессы происходят так, как если бы система покоилась.

3. принцип относительности движения задает правила перехода от одной ИСО к другой.

Эти правила получили название галилеевых преобразований и состоят они в проецирование одной ИСО на другую.

Галилеевы преобразования предъявляют определенное требование к формулировке законов механического движения: эти законы должны быть сформулированы так, чтобы остались инвариантными в любой ИСО.

Пусть некоторое тело А отнесено к декартовой системе, координаты которой обозначены х,y,z , а нам нужно определить параметры тела в параллельной координатной системе со штрихами (xl,yl,zl). Для простоты будем определять параметры одной точки тела, и совместим координатную ось x1 с осью x. Примем также, что координатная система со штрихами покоится, а без штрихов – движется равномерно и прямолинейно. Тогда правила галилеевых преобразований имеют вид

4. формулировка закона свободного падения (путь свободного падающего тела пропорционален ускорению, равному 9,81 м/с2.

Развивая и углубляя исследования Галилея, Ньютон сформулировал три закона механики .

1. Всякое тело находится в состоянии покоя или равномерного и прямолинейного движения. Пока воздействие со стороны других тел не заставит его изменить это состояние.

Смысл первого закона состоит в том, что если на тело не действуют внешние силы, то существует система отсчета, в которой оно покоится. Но если в одной системе тело покоится, то существует множество других систем отсчета, в которых тело движется с постоянной скоростью. Эти системы называются инерциальными (ИСО).

Любая система отсчета, движущаяся равномерно и прямолинейно относительно ИСО также является ИСО.

2. Второй закон рассматривает результаты действия на тело других тел. Для этого вводится физическая величина, называемая силой.

Сила – это векторная количественная мера механического действия одного тела на другое.

Масса – мера инертности (инертность – способность тела оказывать сопротивление изменению его состояния).

Чем больше масса, тем меньше ускорение получит тело при прочих равных условиях.

Существует и более общая формулировка второго закона Ньютона для другой физической величины – импульса тела. Импульс – это произведение массы тела на его скорость:

При отсутствии внешних сил импульс тела остается неизменным, иначе говоря, сохраняется. Такая ситуация достигается, если на тело не действуют другие тела, или их действие скомпенсировано.

3. Действия двух материальных тел друг на друга численно равны по величине силы и направлены в противоположные стороны.

Действие сил осуществляется независимо. Сила, с которой несколько тел действуют на какое-либо другое тело, есть векторная сумма сил, с которыми они бы действовали отдельно.

Это утверждение представляет собой принцип суперпозиции .

На законах Ньютона основана динамика материальных точек, в частности, закон сохранения импульса системы.

Сумма импульсов частиц, образующих механическую систему, называется импульсом системы. Внутренние силы, т.е. взаимодействия тел системы друг с другом на изменения полного импульса системы не влияют. Из этого вытекает закон сохранения импульса : при отсутствии внешних сил импульс системы материальных точек остается постоянным.

Другой сохраняющейся величиной является энергия – общая количественная мера движения и взаимодействия всех видов материи. Энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую.

Мерой изменения энергии является работа. В классической механике работа определяется как мера действия силы, которая зависит от величины и направления силы, а также от перемещения точки ее приложения.

Закон сохранения энергии: полная механическая энергия остается неизменной (или сохраняется), если работа внешних сил в системе равна нулю.

В классической механике считается, что все механические процессы подчиняются принципу строгого детерминизма (детерминизм - это учение о всеобщей причинной обусловленности и закономерности явлений) который состоит в признании возможности точного определения будущего состояния механической системы ее предыдущим состоянием.

Ньютон ввел два абстрактных понятия – «абсолютное пространство» и «абсолютное время».

По Ньютону, пространство – это абсолютное неподвижное однородное изотропное бесконечное вместилище всех тел (то есть пустота). А время- это чистая однородная равномерная и прерывная длительность процессов.

В классической физике считалось, что мир можно разложить на множество независимых элементов экспериментальными методами. Этот метод в принципе неограничен, так как весь мир - это совокупность огромного числа неделимых частиц. Основа мира - атомы, т.е. мельчайшие, неделимые, бесструктурные частицы. Атомы перемещаются в абсолютном пространстве и времени. Время рассматривается как самостоятельная субстанция, свойства которой определяются ею самой. Пространство – это тоже самостоятельная субстанция.

Напомним, что субстанция - это сущность, нечто, лежащее в основе. В истории философии субстанция интерпретировалась по-разному: как субстрат, т.е. основа чего–то; что-то, что способно к самостоятельному существованию; как основание и центр изменения предмета; как логический субъект. Когда говорят, что время - субстанция, то имеют в виду, что оно способно самостоятельно существовать.

Пространство в классической физике абсолютно, что означает, что оно не зависит от материи и времени. Можно убрать из пространства все материальные объекты, а абсолютное пространство остается. Пространство однородно, т.е. все его точки эквивалентны. Пространство - изотропно, т.е. эквивалентны все его направления. Время тоже однородно, т.е. эквивалентны все его моменты.

Пространство описывается геометрией Евклида, согласно которой кратчайшим расстоянием между двумя точками является прямая.

Пространство и время бесконечны. Понимание их бесконечности было позаимствовано из математического анализа.

Бесконечность пространства означает, что какую бы большую систему мы не взяли, всегда можно указать на такую, которая еще больше. Бесконечность времени означает, что как бы долго ни длился данный процесс, всегда в мире можно указать на такой, который будет длиться дольше.

Из разрозненности и абсолютности пространства и времени вытекают правила галилеевых преобразований.

Из оторванности движущихся тел от пространства и времени вытекает правило сложения скоростей в классической механике: оно состоит в простом сложении или вычитании скоростей двух тел, движущихся относительно друг друга.

ux = u"x + υ, uy = u"y, uz = u"z.

Законы классической механики позволили сформулировать первую научную картину мира – механистическую.

Прежде всего, классическая механика выработала научное понятие движения материи. Теперь движение трактуется как вечное и естественное состояние тел, как основное их состояние, что прямо противоположно догалилеевой механике, в которой движение рассматривалось как привнесенное извне. Но вместе с тем в классической физике абсолютизируется механическое движение.

Деле классическая физика выработала своеобразное понимание материи, сведя ее к вещественной, или весовой, массе. При этом масса тел остается неизменной при любых условиях движения и при любых скоростях. Позже в механике утвердилось правило замещения тел идеализированным образом материальных точек.

Развитие механики привело к изменению представлений о физических свойствах объектов.

Классическая физика считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Напомним, что физические свойства объекта характеризуются качественно и количественно. Качественная характеристика свойства - это его сущность (например, скорость, масса, энергия и т.д.). Классическая физика исходила из того, что средства познания на изучаемые объекты не влияют. Для различных типов механических задач средством познания является система отсчета. Без ее введения нельзя корректно ни сформулировать, ни решить механическую задачу. Если свойства объекта ни по качественной, ни по количественной характеристике не зависят от системы отсчета, то они называются абсолютными. Так, какую бы систему отсчета для решения конкретной механической задачи мы не взяли, в каждой из них будут проявляться качественно и количественно масса объекта, сила, действующая на объект, ускорение, скорость.

Если же свойства объекта зависят от системы отсчета, то их принято считать относительными. Классическая физика знала лишь одну такую величину - скорость объекта по количественной характеристике. Это означало, что бессмысленно говорить, что объект движется с такой-то скоростью, не указывая систему отсчета: в разных системах отсчета количественное значение механической скорости объекта будет различно. Все же остальные свойства объекта были абсолютными и по качественной, и по количественной характеристикам.

Уже теория относительности вскрыла количественную относительность таких свойств, как длина, время жизни, масса. Количественная величина этих свойств зависит не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количественная определенность свойств объекта должна быть отнесена не к самому объекту, а к системе: объект + система отсчета. Но носителем качественной определенности свойств по-прежнему оставался сам объект.

Механика – это часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение.

Механика, в свою очередь, делится на кинематику, динамику и статику.

Механическое движение – это изменение взаимного расположения тел или частей тела с течением времени.

Масса – это скалярная физическая величина, количественно характеризующая инертные и гравитационные свойства материи.

Инертность – это стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

Инертная масса характеризует способность тела сопротивляться изменению своего состояния (покоя или движения), например, во втором законе Ньютона

Гравитационная масса характеризует способность тела создавать гравитационное поле, которое характеризуется векторной величиной , называемой напряженностью. Напряженность гравитационного поля точечной массы равна:

Гравитационная масса характеризует способность тела взаимодействовать с гравитационным полем:

п ринцип эквивалентности гравитационной и инертной масс: каждая масса является одновременно и инертной и гравитационной.

Масса тела зависит от плотности вещества ρ и размеров тела (объема тела V):

Понятие массы не тождественно понятиям веса и силы тяжести. Она не зависит от полей тяготения и ускорений.

Момент инерции – тензорная физическая величина, количественно характеризующая инертность твёрдого тела, проявляющуюся во вращательном движении.

п ри описании вращательного движения задать массу недостаточно. Инертность тела во вращательном движении зависит не только от массы, но и от ее распределения относительно оси вращения.

1. Момент инерции материальной точки

где m – масса материальной точки; r – расстояние от точки до оси вращения.

2. Момент инерции системы материальных точек

3. Момент инерции абсолютно твердого тела

Сила – это векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или деформируется (изменяет свою форму или размеры).

Механика использует различные модели для описания механического движения.

Материальная точка (м.т.)– это тело, обладающее массой, размерами которого в данной задаче можно пренебречь.

Абсолютно твердое тело (а.т.т.) – это тело, которое в процессе движения не деформируется, то есть расстояние между любыми двумя точками в процессе движения остается неизменным.
§ 2. Законы движения.


  • Первый закон н ьютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, воздействие со стороны других тел не заставит ее изменить это состояние.
Те системы отсчета, по отношению к которым выполняется первый закон Ньютона, называются инерциальными системами отсчета (ИСО). Следовательно, первый закон Ньютона утверждает существование ИСО.

  • Второй закон Ньютона (основной закон динамики поступательного движения): скорость изменения импульса материальной точки (тела) равна сумме действующих на нее сил

  • Третий закон Ньютона : всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми материальные точки действуют друг на друга, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки
,

здесь – сила, действующая на первую материальную точку со стороны второй; – сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.



,

здесь – гравитационная постоянная. .

Законы сохранения в классической механике.

з аконы сохранения выполняются в замкнутых системах взаимодействующих тел.

Система называется замкнутой, если на систему не действуют внешние силы.

Импульс – векторная физическая величина, количественно характеризующая запас поступательного движения:

Закон сохранения импульса системы материальных точек (м.т.): в замкнутых системах м.т. полный импульс сохраняется

где – скорость i-й материальной точки до взаимодействия; – ее скорость после взаимодействия.

Момент импульса – физическая векторная величина, количественно характеризующая запас вращательного движения.

– импульс материальной точки, – радиус-вектор материальной точки.
Закон сохранения момента импульса : в замкнутой системе суммарный момент импульса сохраняется:

Физическая величина, характеризующая способность тела или системы тел совершать работу, называется энергией.

Энергия – скалярная физическая величина, являющаяся наиболее общей характеристикой состояния системы.

Состояние системы определяется ее движением и конфигурацией, т. е. взаимным расположением ее частей. Движение системы характеризуется кинетической энергией K, а конфигурация (нахождение тела в потенциальном поле сил) – потенциальной энергией U.

Полная энергия определяется как сумма:

E = K + U + E внутр,

где E внутр – внутренняя энергия тела.

Кинетическая и потенциальная энергии в сумме составляют механическую энергию .

Формула Эйнштейна (взаимосвязь энергии и массы):

В системе отсчета, связанной с центром масс системы м.т., m = m 0 – масса покоя, а Е = Е 0 = m 0 . c 2 – энергия покоя.

Внутренняя энергия определяется в системе отсчета, связанной с самим телом, то есть внутренняя энергия является одновременно и энергией покоя.

Кинетическая энергия – это энергия механического движения тела или системы тел. Релятивистская кинетическая энергия определяется по формуле

При малых скоростях v
.

Потенциальная энергия – скалярная физическая величина, характеризующая взаимодействие тел с другими телами или с полями.

Примеры:


    потенциальная энергия упругого взаимодействия
;

  • потенциальная энергия гравитационного взаимодействия точечных масс
;

Закон сохранения энергии : полная энергия замкнутой системы материальных точек сохраняется

При отсутствии диссипации (рассеяния) энергии сохраняются и полная и механическая энергии. В диссипативных системах полная энергия сохраняется, а механическая энергия не сохраняется.


§ 2. Основные понятия классической электродинамики.

Источником электромагнитного поля является электрический заряд.

Электрический заряд – это свойство некоторых элементарных частиц вступать в электромагнитное взаимодействие.

Свойства электрического заряда :

1. Электрический заряд может быть положительным и отрицательным (принято считать, что протон заряжен положительно, а электрон – отрицательно).

2. Электрический заряд квантован. Квант электрического заряда – элементарный электрический заряд (е = 1,610 –19 Кл). В свободном состоянии все заряды кратны целому числу элементарных электрических зарядов:

3. Закон сохранения заряда: суммарный электрический заряд замкнутой системы сохраняется во всех процессах, происходящих с участием заряженных частиц:

q 1 + q 2 +...+ q N = q 1 * + q 2 * +...+ q N * .

4. р елятивистская инвариантность: величина полного заряда системы не зависит от движения носителей заряда (заряд движущейся и покоящейся частиц одинаков). Иными словами – во всех ИСО величина заряда любой частицы или тела одинакова.

Описание электромагнитного поля.

Заряды взаимодействуют друг с другом (рис.1). Величина силы, с которой заряды одного знака отталкиваются друг от друга, а заряды разного знака притягиваются друг к другу, определяется с помощью эмпирически установленного закона Кулона:

Здесь , – электрическая постоянная.





Рис.1

А каков механизм взаимодействия заряженных тел? Можно выдвинуть такую гипотезу: тела, обладающие электрическим зарядом, порождают электромагнитное поле. В свою очередь, электромагнитное поле воздействует на другие заряженные тела, находящиеся в этом поле. Возник новый материальный объект – электромагнитное поле.

Опыт показывает, что в любом электромагнитном поле на неподвижный заряд действует сила, величина которой зависит только от величины заряда (величина силы пропорциональна величине заряда ) и его положения в поле. Можно каждой точке поля поставить в соответствие некоторый вектор , который является коэффициентом пропорциональности между силой, действующей на неподвижный заряд в поле, и зарядом . Тогда силу, с которой поле действует на неподвижный заряд можно определить по формуле:

Сила, действующая со стороны электромагнитного поля на неподвижный заряд, называется электрической силой . Векторная величина , характеризующая то состояние поля, которое обуславливает действие , называется электрической напряженностью электромагнитного поля.

Дальнейшие эксперименты с зарядами показывают, что вектор не характеризует электромагнитное поле полностью. Если заряд начать двигать, то появляется некоторая дополнительная сила, величина и направление которой никак не связаны с величиной и направлением вектора . Добавочную силу, возникающую при движении заряда в электромагнитном поле, называют магнитной силой . Опыт показывает, что магнитная сила зависит от заряда и от величины и направления вектора скорости. Если двигать пробный заряд через какую-либо фиксированную точку поля с одной и той же по величине скоростью, но в разных направлениях, то магнитная сила каждый раз будет разной. Однако всегда . Дальнейший анализ экспериментальных фактов позволил установить, что для каждой точки электромагнитного поля существует единственное направление MN (рис.2), обладающее следующими свойствами:


Рис.2

Если вдоль направления MN направить некоторый вектор , имеющий смысл коэффициента пропорциональности между магнитной силой и произведением , то задание , и однозначно характеризует то состояние поля, которое обусловливает появление . Вектор назвали вектором электромагнитной индукции. Так как и , то

В электромагнитном поле на движущийся со скоростью заряд q действует электромагнитная сила Лоренца (рис.3):


.
Векторы и , то есть шестерка чисел , являются равноправными компонентами единого электромагнитного поля (компоненты тензора электромагнитного поля). В частном случае может оказаться, что все или все ; тогда электромагнитное поле сводится либо к электрическому, либо к магнитному полям.

Эксперимент подтвердил правильность построенной двухвекторной модели электромагнитного поля. В этой модели каждой точке электромагнитного поля задается пара векторов и . Построенная нами модель – модель непрерывного поля, так как функции и , описывающие поле, являются непрерывными функциями координат.

Теория электромагнитных явлений, использующая модель непрерывного поля, называется классической.

В действительности поле, как и вещество, дискретно. Но это начинает сказываться лишь на расстояниях, сравнимых с размерами элементарных частиц. Дискретность электромагнитного поля учитывается в квантовой теории.

Принцип суперпозиции.

Поля принято изображать с помощью силовых линий.

Силовая линия – это линия, касательная к которой в каждой точке совпадает с вектором напряженности поля.

Д
ля точечных неподвижных зарядов картина силовых линий электростатического поля показана на рис. 6.

Вектор напряженности электростатического поля, создаваемого точечным зарядом определяется по формуле (рис.7 а и б)иловая линия магнитного поля строится так, чтобы в каждой точке силовой линии вектор был направлен по касательной к этой линии. Силовые линии магнитного поля замкнуты (рис.8). Это говорит о том, что магнитное поле – вихревое поле.


Рис. 8

А если поле создает не один, а несколько точечных зарядов? Влияют ли заряды друг на друга или каждый из зарядов системы вносит свой вклад в результирующее поле независимо от остальных? Будет ли электромагнитное поле, создаваемое i-м зарядом в отсутствии остальных зарядов таким же, как и поле создаваемое i-м зарядом в присутствии остальных зарядов?

Принцип суперпозиции : электромагнитное поле произвольной системы зарядов есть результат сложения полей, которые создавались бы каждым из элементарных зарядов этой системы в отсутствии остальных:

и .
Законы электромагнитного поля

Законы электромагнитного поля сформулированы в виде системы уравнений Максвелла.

Первое

Из первого уравнения Максвелла следует, что электростатическое поле – потенциальное (сходящееся или расходящееся) и его источником являются неподвижные электрические заряды.

Второе уравнение Максвелла для магнитостатического поля:

Из второго уравнения Максвелла следует, что магнитостатическое поле – вихревое не потенциальное и не имеет точечных источников.

Третье уравнение Максвелла для электростатического поля:

Из третьего уравнения Максвелла следует, что электростатическое поле не вихревое.

В электродинамике (для переменного электромагнитного поля) третье уравнение Максвелла:

т. е. электрическое поле не потенциальное (не кулоновское), а вихревое и создается переменным потоком вектора индукции магнитного поля.

Четвертое уравнение Максвелла для магнитостатического поля

Из четвертого уравнения Максвелла в магнитостатике следует, что магнитное поле – вихревое и создается постоянными электрическими токами или движущимися зарядами. Направление закрученности силовых линий магнитного поля определяется по правилу правого винта (рис.9).

Р
ис.9

В электродинамике четвертое уравнение Максвелла:

Первое слагаемое в этом уравнении есть ток проводимости I, связанный с движением зарядов и создающий магнитное поле.

Второе слагаемое в этом уравнении есть "ток смещения в вакууме", т. е. переменный поток вектора напряженности электрического поля.

Основные положения и выводы теории Максвелла следующие.

Изменение во времени электрического поля ведет к появлению магнитного поля и наоборот. Следовательно, существуют электромагнитные волны.

Передача электромагнитной энергии происходит с конечной скоростью. Скорость передачи электромагнитных колебаний равна скорости света . Из этого следовала принципиальная тождественность электромагнитных и оптических явлений.

Механика - это раздел физики, в котором изучается простейшая форма движения материи - механическое движение , которое заключается в изменении с течением времени положения тел или их частей. Тот факт, что механические явления протекают в пространстве и во времени, находит свое отражение в любом законе механики, содержащем явно или неявно пространственно-временные соотношения - расстояния и промежутки времени.

Механика ставит перед собой две основные задачи :

    изучение различных движений и обобщение полученных результатов в виде законов, с помощью которых может быть предсказан характер движения в каждом конкретном случае. Решение этой задачи привело к установлению И. Ньютоном и А. Эйнштейном так называемых динамических законов;

    отыскание общих свойств, присущих любой механической системе в процессе ее движения. В результате решения этой задачи были обнаружены законы сохранения таких фундаментальных величин, как энергия, импульс и момент импульса.

Динамические законы и законы сохранения энергии, импульса и момента импульса представляют собой основные законы механики и составляют содержание данной главы.

§1. Механическое движение: исходные понятия

Классическая механика состоит из трех основных разделов - статики, кинематики и динамики . В статике рассматриваются законы сложения сил и условия равновесия тел. В кинематике дается математическое описание всевозможных видов механического движения безотносительно к тем причинам, которые его вызывают. В динамике исследуется влияние взаимодействия между телами на их механическое движение.

На практике все физические задачи решаются приближенно : реальное сложное движение рассматривается как совокупность простейших движений, реальный объект заменяется идеализированной моделью этого объекта и т.д. Например, при рассмотрении движения Земли вокруг Солнца можно пренебречь размерами Земли. В этом случае описание движения значительно упрощается - положение Земли в пространстве можно определить одной точкой. Среди моделей механики определяющими являются материальная точка и абсолютно твердое тело.

Материальная точка (или частица) - это тело, формой и размерами которого в условиях данной задачи можно пренебречь. Любое тело можно мысленно разбить на очень большое число частей, сколь угодно малых по сравнению с размерами всего тела. Каждую из этих частей можно рассматривать как материальную точку, а само тело - как систему материальных точек.

Если деформации тела при его взаимодействии с другими телами пренебрежимо малы, то его описывают моделью абсолютно твердого тела.

Абсолютно твердое тело (или твердое тело) - это тело, расстояния между любыми двумя точками которого не меняются в процессе движения. Иначе говоря, это тело, форма и размеры которого не изменяются при его движении. Абсолютно твердое тело можно рассматривать как систему материальных точек, жестко связанных между собой.

Положение тела в пространстве может быть определено только по отношению к каким либо другим телам. Например, имеет смысл говорить о положении планеты по отношению к Солнцу, самолета или корабля - по отношению к Земле, но нельзя указать их положения в пространстве безотносительно к какому-либо конкретному телу. Абсолютно твердое тело, которое служит для определения положения интересующего нас объекта, называется телом отсчета. Для описания движения объекта с телом отсчета связывают какую-либо систему координат, например прямоугольную декартову систему координат. Координаты объекта позволяют установить его положение в пространстве. Наименьшее число независимых координат, которые необходимо задать для полного определения положения тела в пространстве, называется числом степеней свободы. Так, например, материальная точка, свободно движущаяся в пространстве, имеет три степени свободы: точка может совершать три независимых движения вдоль осей декартовой прямоугольной системы координат. Абсолютно твердое тело имеет шесть степеней свободы: для определения его положения в пространстве нужны три степени свободы для описания поступательного движения вдоль осей координат и три - для описания вращения относительно этих же осей. Для отсчета времени система координат снабжается часами.

Совокупность тела отсчета, связанной с ним системы координат и множества синхронизированных между собой часов образуют систему отсчета.

Основы классической механики

Механика – раздел физики, изучающий законы механического движения тел.

Тело – вещественный материальный объект.

Механическое движение – изменение положения тела или его частей в пространстве с течением времени.

Аристотель представлял такой вид движения как непосредственную перемену телом своего места относительно других тел, поскольку в его физике материальный мир был неразрывно связан с пространством, существовал вместе с ним. Время он считал мерой движения тела. Изменение в дальнейшем взглядов на природу движения привело к постепенному отделению пространства и времени от физических тел. Наконец, абсолютизация пространства и времени Ньютоном вообще вывела их за пределы возможного опыта.

Однако, этот подход позволил к концу XVIII века построить законченную систему механики, называемую теперь классической . Классичность заключается в том, что она:

1) описывает большинство механических явлений в макромире, используя небольшое число исходных определений и аксиом;

2) строго обоснована математически;

3) часто используется в более специфических разделах науки.

Опыт показывает, что классическая механика применима к описанию движения тел со скоростями υ << с ≈ 3·10 8 м/с. Ее основные разделы:

1) статика изучает условия равновесия тел;

2) кинематика – движение тел без учета его причин;

3) динамика – влияние взаимодействия тел на их движение.

Основные понятия механики:

1) Механическая система – мысленно выделенная совокупность тел, существенных в данной задаче.

2) Материальная точка – тело, формой и размерами которого можно пренебречь в рамках данной задачи. Тело может быть представлено в виде системы материальных точек.

3) Абсолютно твердое тело – тело, расстояние между любыми двумя точками которого не меняется в условиях данной задачи.

4) Относительность движения заключается в том, что изменение положения тела в пространстве может быть установлено только по отношению к каким-то другим телам.

5) Тело отсчета (ТО) – абсолютно твердое тело, относительно которого рассматривается движение в данной задаче.

6) Система отсчета (СО) = {ТО + СК + часы}. Начало системы координат (СК) совмещают с какой-нибудь точкой ТО. Часы измеряют промежутки времени.

Декартова СК:

Рисунок 5

Положение материальной точки М описывается радиусом-вектором точки , – ее проекции на оси координат.

Если задать начальный момент времени t 0 = 0, то движение точки М опишется вектор-функцией или тремя скалярными функциями x (t ), y (t ), z (t ).

Линейные характеристики движения материальной точки:

1) траектория – линия движения материальной точки (геометрическая кривая),

2) путь (S ) – расстояние, пройденное вдоль нее за промежуток времени ,

3) перемещение ,

4) скорость ,

5) ускорение .

Любое движение твердого тела можно свести к двум основным видам – поступательному и вращательному вокруг неподвижной оси.

Поступательное движение – такое, при котором прямая, соединяющая любые две точки тела, остается параллельной своему первоначальному положению. Тогда все точки движутся одинаково, и движение всего тела можно описать движением одной точки .

Вращение вокруг неподвижной оси – такое движение, при котором существует прямая, жестко связанная с телом, все точки которой остаются неподвижными в данной СО. Траектории остальных точек – окружности с центрами на этой прямой. В этом случае удобны угловые характеристики движения, которые одинаковы для всех точек тела.

Угловые характеристики движения материальной точки:

1) угол поворота (угловой путь) , измеряемый в радианах [рад], где r – радиус траектории точки,

2) угловое перемещение , модуль которого представляет собой угол поворота за малый промежуток времени dt ,

3) угловая скорость ,

4) угловое ускорение .

Рисунок 6

Связь между угловыми и линейными характеристиками:

Динамика использует понятие силы , измеряемой в ньютонах (H), как меры воздействия одного тела на другое. Это воздействие является причиной движения.

Принцип суперпозиции сил – результирующий эффект воздействия на тело нескольких тел равен сумме эффектов воздействий каждого из этих тел в отдельности. Величина называется равнодействующей силой и характеризует эквивалентное воздействие на тело n тел.

Законы Ньютона обобщают опытные факты механики.

1-й закон Ньютона . Существуют системы отсчета, относительно которых материальная точка сохраняет состояние покоя или равномерного прямолинейного движения при отсутствии силового воздействия на нее, т.е. если , то .

Такое движение называется движением по инерции или инерциальным движением, и поэтому системы отсчета, в которых выполняется 1-й закон Ньютона, называются инерциальными (ИСО).

2-й закон Ньютона . , где – импульс материальной точки, m – ее масса, т.е. если , то и, следовательно, движение уже не будет инерциальным.

3-й закон Ньютона . При взаимодействии двух материальных точек возникают силы и , приложенные к обеим точкам, причем .

Возникновение классической механики явилось началом превращения физики в строгую науку, то есть систему знания утверждающую истинность, объективность, обоснованность и проверяемость как своих исходных принципов, так и своих конечных выводов. Это возникновение происходило в XVI-XVII веке и связано с именами Галилео Галилея, Рене Декарта и Исаака Ньютона. Именно они осуществили "математизацию" природы и заложили основы экспериментально-математического взгляда на природу. Они представили природу как множество "материальных" точек, обладающих пространственно-геометрическими (форма), количественно-математическими (число, величина) и механическими (движение) свойствами и связанных причинно-следственными зависимостями, которые можно выразить в уравнениях математики.

Начало превращения физики в строгую науку было положено Г. Галилеем. Галилей сформулировал ряд фундаментальных принципов и законов механики. А именно:

- принцип инерции , согласно которому когда тело двигается по горизонтальной плоскости, не встречая никаких сопротивлений движению, то движение его является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца;

- принцип относительности , согласно которому в инерциальных системах все законы механики одинаковы и нет возможности, находясь внутри, определить движется ли она прямолинейно и равномерно или покоится;

- принцип сохранения скоростей и сохранения пространственных и временных интервалов при переходе от одной инерциальной системы к другой. Это знаменитое галилеево преобразование .

Целостный вид логико-математически организованной системы основных понятий, принципов и законов механика получила в работах Исаака Ньютона. Прежде всего в работе "Математические начала натуральной философии" В этой работе Ньютон вводит понятия: масса , или количество материи, инерция , или свойство тела сопротивляться изменению состояния покоя или движения, вес , как мера массы, сила , или действие, производимое на тело для изменения его состояния.

Ньютон различал абсолютные (истинные, математические) пространство и время, которые не зависят от находящихся в них тел и всегда равны сами себе, и относительные пространство и время - подвижные части пространства и измеряемые длительности времени.

Особое место в концепции Ньютона занимает учение о силе тяготения или гравитации, в котором он объединяет движение "небесных" и земных тел. Это учение включает утверждения:

Тяжесть тела пропорциональна заключенному в нем количеству материи или массы;

Сила тяжести пропорциональна массе;


Сила тяжести или тяготение и есть та сила, которая действует между Землей и Луной обратно пропорционально квадрату расстояния между ними;

Эта сила тяготения действует между всеми материальными телами на расстоянии.

В отношении природы силы тяготения Ньютон говорил: "Гипотез не измышляю".

Механика Галилея-Ньютона, развитая в работах Д. Аламбера, Лагранжа, Лапласа, Гамильтона... получила в итоге стройную форму, определяющую физическую картину мира того времени. Эта картина основывалась на принципах самотождественности физического тела; его независимости от пространства и времени; детерминированности, то есть строгой однозначной причинно-следственной связи между конкретными состояниями физических тел; обратимости всех физических процессов.

Термодинамика.

Исследования процесса превращения теплоты в работу и обратно, осуществленные в Х1Х веке С. Кално, Р. Майером, Д. Джоулем, Г. Гемгольцем, Р. Клаузиусом, У. Томсоном (лордом Кельвином), привели к выводам, о которых Р. Майер писал: "Движение, теплота..., электричество представляют собой явления, которые измеряются друг другом и переходят друг в друга по определенным законам". Гемгольц обобщает это утверждение Майера в вывод: "Сумма существующих в природе напряженных и живых сил постоянна". Уильям Томсон уточнил понятия "напряженные и живые силы" до понятий потенциальной и кинетической энергии, определив энергию как способность совершать работу. Р. Клаузиус обобщил эти идеи в формулировке: "Энергия мира постоянна". Так, совместными усилиями сообщества физиков был сформулирован фундаментальный для всего физического знания закон сохранения и превращения энергии .

Исследования процессов сохранения и превращения энергии привели к открытию еще одного закона - закона возрастания энтропии . "Переход теплоты от более холодного тела к более теплому, - писал Клаузиус, - не может иметь места без компенсации". Меру способности теплоты к превращению Клаузиус назвал энтропией. Суть энтропии выражается в том, что во всякой изолированной системе процессы должны протекать в направлении превращения всех видов энергии в теплоту при одновременном уравнивании температурных разностей существующих в системе. Это означает, что реальные физические процессы протекают необратимо. Принцип, утверждающий стремление энтропии к максимуму называют вторым началом термодинамики. Первое начало - закон сохранения и превращения энергии.

Принцип возрастания энтропии поставил перед физической мыслью ряд проблем: соотношения обратимости и необратимости физических процессов, формальности сохранения энергии, не способной совершать работу при температурной однородности тел. Все это требовало более глубокого обоснования начал термодинамики. Прежде всего природы тепла.

Попытку такого обоснования предпринял Людвиг Больцман, который пришел, опираясь на молекулярно-атомное представление о природе теплоты, к выводу о статистическом характере второго закона термодинамики, так как вследствие огромного числа молекул, составляющих макроскопические тела, и чрезвычайной быстроты и хаотичности их движения мы наблюдаем лишь средние значения . Определение же средних значений - задача теории вероятностей. При максимальном температурном равновесии максимален и хаос движения молекул, в котором исчезает всякий порядок. Встает вопрос: может ли и, если да, то как, из хаоса снова возникнуть порядок? На это физика сможет ответить лишь через сто лет, введя принцип симметрии и принцип синергии.

Электродинамика.

К середине Х1Х века физика электрических и магнитных явлений достигла определенного завершения. Был открыт ряд важнейших законов Кулона, закон Ампера, закон электромагнитной индукции, законы постоянного тока и т.д. Все эти законы базировались на принципе дальнодействия . Исключением были взгляды Фарадея, который считал, что электрическое действие передается посредством непрерывной среды, то есть на основе принципа близкодействия . Опираясь на идеи Фарадея, английский физик Дж. Максвелл вводит понятие электромагнитного поля и описывает "открытое" им состояние материи в своих уравнениях. "... Электромагнитное поле, - пишет Максвелл, - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии". Комбинируя уравнения электромагнитного поля, Максвелл получает волновое уравнение, из которого следует существование электромагнитных волн , скорость распространения которых в воздухе равна скорости света. Существование таких электромагнитных волн экспериментально было подтверждено немецким физиком Генрихом Герцем в 1888 г.

Для того, чтобы объяснить взаимодействие электромагнитных волн с веществом, немецкий физик Гендрик Антон Лоренц выдвинул гипотезу о существовании электрона , то есть малой электрически заряженной частички, которая в громадных количествах присутствует во всех весомых телах. Эта гипотеза объяснила открытое в 1896 году немецким физиком Зееманом явление расщепления спектральных линий в магнитном поле. В 1897 году Томсон экспериментально подтвердил наличие мельчайшей отрицательно заряженной частицы или электрона.

Так, в рамках классической физики возникла достаточно стройная и завершенная картина мира, описывающая и объясняющая движение, гравитацию, теплоту, электричество и магнетизм, свет. Это и дало повод лорду Кельвину (Томсону) сказать, что здание физики практически построено, не хватает лишь несколько деталей...

Во-первых, оказалось, что уравнения Максвелла являются неинвариантными относительно преобразований Галилея. Во-вторых, теория эфира, как абсолютной системы координат, к которой "привязаны" уравнения Максвелла, не нашла экспериментального подтверждения. Опыт Майкельсона-Морли показал, что никакой зависимости скорости света от направления в движущейся системе координат нет . Сторонник сохранения уравнений Максвелла Гендрик Лоренц, "привязав" эти уравнения к эфиру, как абсолютной системе отсчета, пожертвовал принципом относительности Галилея, его преобразованиями и сформулировал свои преобразования. Из преобразований Г. Лоренца следовало, что пространственные и временные интервалы неинвариантны при переходе от одной инерциальной системы отсчета к другой. Все бы ничего, но существование абсолютной среды - эфира не подтверждалось, как отмечалось, опытно-экспериментально. Это кризис.

Неклассическая физика. Специальная теория относительности .

Описывая логику создания специальной теории относительности Альберт Эйнштейн в совместной книге с Л. Инфельдом пишет: "Соберем теперь вместе те факты, которые достаточно проверены опытом, не заботясь больше о проблеме эфира:

1. Скорость света в пустом пространстве всегда постоянна, независимо от движения источника или приемника света.

2. В двух системах координат, движущихся прямолинейно и равномерно друг относительно друга, все законы природы строго одинаковы, и нет никакого средства обнаружить абсолютное прямолинейное и равномерное движение...

Первое положение выражает постоянство скорости света, второе обобщает принцип относительности Галилея, сформулированный для механических явлений, на все происходящее в природе". Эйнштейн отмечает, что принятие этих двух принципов и отказ от принципа галилеевского преобразования, так как он противоречит постоянству скорости света, и положило начало специальной теории относительности. К принятым двум принципам: постоянства скорости света и эквивалентности всех инерциальных систем отсчета, Эйнштейн добавляет принцип инвариантности всех законов природы по отношению к преобразованиям Г. Лоренца. Поэтому во всех инерциальных системах справедливы те же самые законы, а переход от одной системы к другой дается преобразованиями Лоренца. Это значит, что ритм движущихся часов и длина движущихся стержней зависит от скорости: стержень сократится до нуля, если его скорость достигнет скорости света, а ритм движущихся часов замедляется, часы совершенно остановились бы, если бы они могли двигаться со скоростью света.

Так из физики были элиминированы ньютоновское абсолютное время, пространство, движение, которые были как бы независимы от движущихся тел и их состояния.

Общая теория относительности.

В цитируемой уже книге Эйнштейн спрашивает: "Можем ли сформулировать физические законы таким образом, чтобы они были справедливы для всех систем координат, не только для систем, движущихся прямолинейно и равномерно, но и для систем, движущихся совершенно произвольно по отношению друг к другу?". И отвечает: "Это оказывается возможным".

Потеряв в специальной теории относительности свою "независимость" от движущихся тел и друг от друга, пространство и время как бы "нашли" друг друга в едином пространственно-временном четырехмерном континууме. Автор континуума математик Герман Минковский опубликовал в 1908 году работу "Основания теории электромагнитных процессов", в которой утверждал, что отныне пространство само по себе и время само по себе должны быть низведены до роли теней, и только некоторый вид соединения обоих должен по-прежнему сохранять самостоятельность. Идея А. Эйнштейна и состояла в том, чтобы представить все физические законы как свойства этого континуума, как его метрику . С этой новой позиции Эйнштейн рассмотрел закон тяготения Ньютона. Вместо силы тяготения он стал оперировать полем тяготения . Поля тяготения были включены в пространственно-временной континуум как его "искривление". Метрика континуума стала неевклидовой, "римановской" метрикой. "Кривизна" континуума стала рассматриваться как результат распределения движущихся в нем масс. Новая теория объяснила не согласующуюся с ньютоновским законом тяготения траекторию вращения Меркурия вокруг Солнца, а также отклонения луча звездного света проходящего вблизи Солнца.

Так из физики было элиминировано понятие "инерциальной системы координат" и обосновано утверждение обобщенного принципа относительности : любая система координат является одинаково пригодной для описания явлений природы .

Квантовая механика.

Вторым, по мнению лорда Кельвина (Томсона), недостающим элементом для завершения здания физики на рубеже Х1Х-ХХ веков было серьезное расхождение между теорией и экспериментом при исследовании законов теплового излучения абсолютно черного тела. Согласно господствующей теории, оно должно быть непрерывным, континуальным . Однако, это приводило к парадоксальным выводам, вроде того, что общая энергия, излучаемая черным телом при данной температуре, равна бесконечности (формула Релея-Джина). Для решения проблемы немецкий физик Макс Планк выдвинул в 1900 году гипотезу, что вещество не может излучать или поглощать энергию иначе, как конечными порциями (квантами), пропорциональными излучаемой (или поглощаемой) частоте. Энергия одной порции (кванта) Е=hn, где n - частота излучения, а h - универсальная константа. Гипотеза Планка была использована Эйнштейном для объяснения фотоэффекта. Эйнштейн ввел понятие кванта света или фотона. Он же предложил, что свет , в соответствии с формулой Планка, обладает одновременно волновыми и квантовыми свойствами. В сообществе физиков заговорили о корпускулярно-волновом дуализме, тем более что в 1923 году было открыто еще одно явление, подтверждающее существование фотонов - эффект Комптона.

В 1924 году Луи де Бройль распространил идею о двойственной корпускулярно-волновой природе света на все частицы материи, введя представление о волнах материи . Отсюда можно говорить и о волновых свойствах электрона, например, о дифракции электрона, каковые и были экспериментально установлены. Однако эксперименты Р. Фейнмана с "обстрелом" электронами щита с двумя отверстиями показали, что невозможно, с одной стороны, сказать, через какое отверстие пролетает электрон, то есть точно определить его координату, а с другой стороны - не исказить картины распределения регистрируемых электронов, не нарушив характера интерференции. Это значит, что мы можем знать или координату электрона, или импульс, но не то и другое вместе.

Этот эксперимент поставил под вопрос само понятие частицы в классическом смысле точной локализации в пространстве и времени.

Объяснение "неклассического" поведения микрочастиц было впервые дано немецким физиком Вернером Гейзенбергом. Последний сформулировал закон движения микрочастицы, согласно которому знание точной координаты частицы приводит к полной неопределенности ее импульса, и наоборот, точное знание импульса частицы - к полной неопределенности ее координаты. В. Гейзенберг установил соотношение неопределенностей значений координаты и импульса микрочастицы:

Dх * DР х ³ h, где Dх - неопределенность в значении координаты; DР х - неопределенность в значении импульса; h - постоянная Планка. Этот закон и соотношение неопределенностей получил название принципа неопределенности Гейзенберга.

Анализируя принцип неопределенностей датский физик Нильс Бор показал, что в зависимости от постановки эксперимента микрочастица обнаруживает либо свою корпускулярную природу, либо волновую, но не обе сразу . Следовательно, эти две природы микрочастиц взаимно исключают друг друга, и в то же время должны быть рассмотрены как дополняющие друг друга, а их описание на основе двух классов экспериментальных ситуаций (корпускулярной и волновой) - целостным описанием микрочастицы. Существует не частица "само по себе", а система "частица - прибор". Эти вывод Н. Бора получили название принципа дополнительности .

Неопределенность и дополнительность оказываются в рамках такого подхода не мерой нашего незнания, а объективными свойствами микрочастиц , микромира в целом. Из этого следует, что статистические, вероятностные законы лежат в глубине физической реальности, а динамические законы однозначной причинно-следственной зависимости лишь некоторый частный и идеализированный случай выражения статистических закономерностей.

Релятивистская квантовая механика.

В 1927 году английский физик Поль Дирак обратил внимание на то, что для описания движения открытых к тому времени микрочастиц: электрона, протона и фотона, так как они движутся со скоростями, близкими к скорости света, требуется применение специальной теории относительности. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механики, и теории относительности Эйнштейна. Этому уравнению удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое - неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и симметричных им античастицах. Это породило вопрос: пуст ли вакуум? После эйнштейновского "изгнания" эфира он казался несомненно пустым.

Современные, хорошо доказанные представления говорят, что вакуум "пуст" только в среднем. В нем постоянно рождается и исчезает огромное количество виртуальных частиц и античастиц. Это не противоречит и принципу неопределенности, который имеет также выражение DЕ * Dt ³ h. Вакуум в квантовой теории поля определяется как наинизшее энергетическое состояние квантового поля, энергия которого равна нулю только в среднем. Так что вакуум - это "нечто" по имени "ничто".

На пути построения единой теории поля.

В 1918 году Эмми Нетером было доказано, что если некоторая система инвариантна относительно некоторого глобального преобразования, то для нее существует определенная сохраняющая величина. Из этого следует, что закон сохранения (энергии) является следствием симметрий , существующих в реальном пространстве-времени.

Симметрия как философское понятие означает процесс существования и становления тождественных моментов между различными и противоположными состояниями явлений мира. Это означает, что, изучая симметрию каких-либо систем, необходимо рассматривать их поведение при различных преобразованиях и выделять во всей совокупности преобразований такие, которые оставляют неизменными, инвариантными некоторые функции, соответствующие рассматриваемым системам.

В современной физике употребляется понятие калибровочной симметрии . Под калибровкой железнодорожники понимают переход с узкой колеи на широкую. В физике под калибровкой первоначально понималось также изменение уровня или масштаба. В специальной теории относительности законы физики не изменяются относительно переноса или сдвига при калибровке расстояния. В калибровочной симметрии требование инвариантности порождает определенный конкретный вид взаимодействия. Следовательно, калибровочная инвариантность позволяет ответить на вопрос: "Почему и зачем в природе существуют такого рода взаимодействия?". В настоящее время в физике определено существование четырех типов физических взаимодействий: гравитационного, сильного, электромагнитного и слабого. Все они имеют калибровочную природу и описываются калибровочными симметриями, являющимися различными представлениями групп Ли. Это позволяет предположить существование первичного суперсимметричного поля , в котором еще нет различия между типами взаимодействий. Различия, типы взаимодействия являются результатом самопроизвольного, спонтанного нарушения симметрии исходного вакуума. Эволюция Вселенной предстает тогда как синергетический самоорганизующийся процесс : в процессе расширения из вакуумного суперсимметричного состояния Вселенная разогрелась до "большого взрыва". Дальнейший ход ее истории пролегал через критические точки - точки бифуркации, в которых происходили спонтанные нарушения симметрии исходного вакуума. Утверждение самоорганизации систем через самопроизвольное нарушение исходного типа симметрии в точках бифуркации и есть принцип синергии .

Выбор направленности самоорганизации в точках бифуркации, то есть в точках самопроизвольного нарушения исходной симметрии не случаен. Он определен как бы присутствующим уже на уровне суперсимметрии вакуума "проектом" человека, то есть "проектом" существа, спрашивающего о том, почему мир таков. Это антропный принцип , который в физике сформулировал в 1962 году Д. Дике.

Принципы относительности, неопределенности, дополнительности, симметрии, синергии, антропный принцип, а также утверждение глубинно-основного характера вероятностных причинно-следственных зависимостей по отношению к динамическим, однозначным причинно-следственным зависимостям и составляют категориально-концептуальную структуру современного гештальта, образа физической реальности.

Литература

1. Ахиезер А.И., Рекало М.П. Современная физическая картина мира. М., 1980.

2. Бор Н. Атомная физика и человеческое познание. М., 1961.

3. Бор Н. Причинность и дополнительность// Бор Н. Избранные научные труды в 2-х т. Т.2. М., 1971.

4. Борн М. Физика в жизни моего поколения, М., 1061.

5. Бройль Л. Де. Революция в физике. М., 1963

6. Гейзенберг В. Физика и философия. Часть и целое. М. 1989.

8. Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965.