Сочинения

Выражение соответствующее второму началу термодинамики имеет вид. Второе начало термодинамики. Энтропия. Статистическое толкование второго начала термодинамики (Формула Больцмана)

Формулировка второго начала. Приведем две наиболее известные формулировки:

1. Невозможен процесс, единственным результатом которого было бы совершение работы за счет теплоты, взятой у теплового резервуара при постоянной температуре (формулировка Томсона). Эта же формулировка, но выраженная другими словами, утверждает невозможность создания вечного двигателя второго рода (т.е. производящего работу за счет внутренней энергии теплового резервуара).

2. Невозможен процесс, единственным результатом которого была бы передача энергии от более холодного тела к более горячему (формулировка Клаузиуса).

Формулировки Томсона и Клаузиуса эквивалентны.

Теорема Карно. Циклом Карно называют цикл, в котором рабочее тело получает теплоту только от резервуара при постоянной температуре (нагревателя), а отдает - только резервуару при постоянной температуре (холодильнику). Теорема Карно утверждает, что КПД произвольного цикла Карно не может превышать КПД

обратимого цикла Карно, работающего при тех же Из этого немедленно следует, что КПД обратимого цикла Карно зависит только от и и не зависит от природы рабочего тела.

Покажем в общих чертах, как можно доказать теорему Карно. Предположим, что КПД обратимой машины меньше, чем необратимой. Подберем объем рабочего тела обратимой машины так, чтобы она совершала за цикл такую же работу, как необратимая. С учетом (15) неравенство для КПД приобретает вид откуда имеем Пустим обратимую машину в обратную сторону так, чтобы работа необратимой машины потреблялась обратимой. За цикл объединенной машины ее работа будет равна нулю, а нагреватель получит энергию целиком взятую у холодильника. Мы пришли к противоречию с формулировкой Клаузиуса.

Так как нам известен КПД одной из машин Карно - газовой (16), то теорему Карно можно записать так:

причем равенство соответствует обратимому циклу Карно.

Термодинамическая шкала температур. Теорема Карно позволяет определить шкалу температур, не зависящую от свойств конкретных тел. Отношение температур двух тел определяют, присоединив к ним обратимую машину Карно; так как отношение зависит только от их температур, то его можно принять равным отношению термодинамических температур: Как видно из (17), отношение термодинамических температур равно отношению газовых температур (в той области, где газовая шкала определена).

Второе начало: вычисление внутренней энергии. Второе начало термодинамики позволяет вывести важное соотношение для внутренней энергии простой системы, которое не может быть получено в рамках первого начала:

Покажем, как можно получить (18) из теоремы Карно. Рассмотрим (бесконечно) малый обратимый цикл Карно и изобразим его в координатах . Работа системы за цикл, равная площади маленького параллелограмма (рис. 14), не изменится при замене кусочков адиабат вертикальными отрезками, длина которых равна Умножив на высоту получим Теплота, полученная на верхней изотерме, равна где для приращения при постоянной температуре использовано (8). Из теоремы Карно и уравнения (17) имеем

откуда получим (18).

Приведем несколько применений формулы (18).

1) Внутренняя энергия идеального газа. Подставим в (18) уравнение состояния . В результате получим т.е. внутренняя энергия идеального газа не зависит от объема.

2) Внутренняя энергия газа Ван-дер-Ваальса. Выразив давление из уравнения состояния (3) и подставив в (18), приходим к формуле

Кроме того, имеем

т.е. не зависит от объема. В области температур, где слабо зависит от Т, можно записать

Выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются. Появление второго начала термодинамики— необходимость дать ответ на вопрос, какие процессы в природе возможны, а какие нет—определяет направление развития процессов.

Используя понятие энтропии и неравенство Клаузиуса , второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики:

В процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Формула Больцмана позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статистическое толкование второго начала термодинамики. Оно, являясь статистическим законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Можно довольно просто доказать (предоставим это читателю) эквивалентность формулировок Кельвина и Клаузиуса. Кроме того, показано, что если в замкнутой системе провести воображаемый процесс, противоречащий второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивалентность формулировки Клаузиуса (а следовательно, и Кельвина) и статистической формулировки, согласно которой энтропия замкнутой системы не может убывать.


В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной . Рассматривая Вселенную как замкнутую систему и применяя к ней второе начало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую.

Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т.е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся — наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная. На несостоятельность вывода о тепловой смерти указывал также Ф. Энгельс в работе «Диалектика природы».

Первые два начала термодинамики дают недостаточно сведений о поведении термодинамических систем при нуле Кельвина. Они дополняются третьим началом термодинамики, или теоремой Нернста (В. Ф. Г. Нернст (1864-1941) — немецкий физик и физикохимик) — Планка : энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина:

Так как энтропия определяется с точностью до аддитивной постоянной, то эту постоянную удобно взять равной нулю (отметим, однако, что это произвольное допущение, поскольку энтропия по своей сущности всегда определяется с точностью до аддитивной постоянной). Из теоремы Нернста-Планка следует, что теплоемкости С р и С V при 0К равны нулю.

Первое начало термодинамики - один из трех основных законов термодинамики, представляющий собой закон сохранения энергии для систем, в которых существенное значение имеют тепловые процессы.

Согласно первому началу термодинамики, термодинамическая система (например, пар в тепловой машине) может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии.

Первое начало термодинамики объясняет невозможность существования вечного двигателя 1-го рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Сущность первого начала термодинамики заключается в следующем:

При сообщении термодинамической системе некоторого количества теплоты Q в общем случае происходит изменение внутренней энергиисистемы DU и система совершает работу А:

Уравнение (4), выражающее первое начало термодинамики, является определением изменения внутренней энергии системы (DU), так как Q и А - независимо измеряемые величины.

Внутреннюю энергию системы U можно, в частности, найти, измеряя работу системы в адиабатном процессе (то есть при Q = 0): А ад = - DU, что определяет U с точностью до некоторой аддитивной постоянной U 0:

U = U + U 0 (5)

Первое начало термодинамики утверждает, что U является функцией состояния системы, то есть каждое состояние термодинамической системы характеризуется определённым значением U, независимо от того, каким путём система приведена в данное состояние (в то время как значения Q и А зависят от процесса, приведшего к изменению состояния системы). При исследовании термодинамических свойств физической систем первое начало термодинамики обычно применяется совместно со вторым началом термодинамики.

3. Второе начало термодинамики

Второе начало термодинамики является законом, в соответствии с которым макроскопические процессы, протекающие с конечной скоростью, необратимы.

В отличие от идеальных (без потерь) механических или электродинамических обратимых процессов, реальные процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), сопровождаются разнообразными потерями: на трение, диффузию газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д.

Поэтому эти процессы необратимы, то есть могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики возникло исторически при анализе работы тепловых машин.

Само название «Второе начало термодинамики» и первая его формулировка (1850 г.) принадлежат Р. Клаузиусу: «…невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым».

Причем такой процесс невозможен в принципе: ни путем прямого перехода теплоты от более холодных тел к более теплым, ни с помощью каких–либо устройств без использования каких-либо других процессов.

В 1851 году английский физик У. Томсон дал другую формулировку второго начала термодинамики: «В природе невозможны процессы, единственным следствием которых был бы подъем груза, произведенный за счет охлаждения теплового резервуара».

Как видно, обе приведённые формулировки второго начала термодинамики практически одинаковы.

Отсюда следует невозможность реализации двигателя 2-го рода, т.е. двигателя без потерь энергии на трение и другие сопутствующие потери.

Кроме того, отсюда следует, что все реальные процессы, происходящие в материальном мире в открытых системах, необратимы.

В современной термодинамике второе начало термодинамики изолированных систем формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, которую Клаузиус назвал энтропией (S).

Физический смысл энтропии состоит в том, что в случае, когда материальная система находится в полном термодинамическом равновесии, элементарные частицы, из которых состоит эта система, находятся в неуправляемом состоянии и совершают различные случайные хаотические движения. В принципе можно определить общее число этих всевозможных состояний. Параметр, который характеризует общее число этих состояний, и есть энтропия.

Рассмотрим это на простом примере.

Пусть изолированная система состоит из двух тел «1» и «2», обладающих неодинаковой температурой T 1 >T 2 . Тело «1» отдает некоторое количество тепла Q , а тело «2» его получает. При этом идет тепловой поток от тела «1» к телу «2». По мере уравнивания температур увеличивается суммарное количество элементарных частиц тел «1» и «2», находящихся в тепловом равновесии. По мере увеличения этого количества частиц увеличивается и энтропия. И как только наступит полное тепловое равновесие тел «1» и «2», энтропия достигнет своего максимального значения.

Таким образом, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии dS ³ 0. Знак равенства в этой формуле имеет место только для обратимых процессов. В состоянии равновесия, когда энтропия замкнутой системы достигает максимума, никакие макроскопические процессы в такой системе, согласно второму началу термодинамики, невозможны.

Отсюда следует, что энтропия - физическая величина, количественно характеризующая особенности молекулярного строения системы, от которых зависят энергетические преобразования в ней.

Связь энтропии с молекулярным строением системы первым объяснил Л. Больцман в 1887 году. Он установил статистический смысл энтропии (формула 1.6). Согласно Больцману (высокая упорядоченность имеет относительно низкую вероятность)

где k - постоянная Больцмана, P – статистический вес.

k = 1.37·10 -23 Дж/К.

Статистический вес Р пропорционален числу возможных микроскопических состояний элементов макроскопической системы (например, различных распределений значений координат и импульсов молекул газа, отвечающих определённому значению энергии, давления и других термодинамических параметров газа), т. е. характеризует возможное несоответствие микроскопического описания макросостояния.

Для изолированной системы термодинамическая вероятность W данного макросостояния пропорциональна его статистическому весу и определяется энтропией системы:

W = exp (S/k). (7)

Таким образом, закон возрастания энтропии имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Отсюда следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются.

Максимально вероятным состоянием макросистемы является состояние равновесия, которого она может в принципе достичь за достаточно большой промежуток времени.

Как было указано выше, энтропия является величиной аддитивной, то есть она пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относительное изменение энтропии, приходящейся на одну частицу, существенно меняет её абсолютную величину; изменение же энтропии, стоящей в показателе экспоненты в уравнении (7), приводит к изменению вероятности данного макросостояния W в огромное число раз.

Именно этот факт является причиной того, что для системы с большим числом частиц следствия второго начала термодинамики практически имеют не вероятностный, а достоверный характер. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных времён ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абсолютным изменением энтропии. Средние значения частоты и размеров этих флуктуаций являются таким же достоверным следствием статистической термодинамики, как и само второе начало термодинамики.

Буквальное применение второго начала термодинамики к Вселенной как целому, приведшее Клаузиуса к неправильному выводу о неизбежности «тепловой смерти Вселенной», является неправомерным, так как в природе в принципе не может существовать абсолютно изолированных систем. Как будет показано далее, в разделе неравновесной термодинамики, процессы, протекающие в открытых системах, подчиняются другим законам и имеют другие свойства.

Термодинамика как самостоятельный раздел физической науки возникла в первой половине XIX века. Грянул век машин. Промышленная революция требовала изучить и осмыслить процессы, связанные с функционированием тепловых двигателей. На заре машинной эры изобретатели-одиночки могли себе позволить использовать лишь интуицию и «метод тыка». Не было общественного заказа на открытия и изобретения, никому даже в голову не могло прийти, что они могут быть полезны. Но когда тепловые (а немного позже и электрические) машины стали основой производства, ситуация изменилась. Ученые наконец постепенно разобрались с терминологической путаницей, царившей до середины XIX века, определившись, что называть энергией, что силой, что - импульсом.

Что постулирует термодинамика

Начнем с общеизвестных сведений. Классическая термодинамика основана на нескольких постулатах (началах), последовательно вводившихся на протяжении XIX века. То есть эти положения не являются доказуемыми в ее рамках. Они были сформулированы в результате обобщения эмпирических данных.

Первое начало - это приложение закона сохранения энергии к описанию поведения макроскопических систем (состоящих из большого числа частиц). Коротко его можно сформулировать так: запас внутренней энергии изолированной термодинамической системы всегда остается постоянным.

Смысл второго начала термодинамики состоит в определении направления, в котором протекают процессы в таких системах.

Третье начало позволяет точно определить такую величину, как энтропия. Рассмотрим ее подробнее.

Понятие энтропии

Формулировка второго начала термодинамики была предложена в 1850 году Рудольфом Клаузиусом: «Невозможен самопроизвольный переход теплоты от менее нагретого тела к более нагретому». При этом Клаузиус подчеркивал заслугу Сади Карно, еще в 1824 году установившего, что доля энергии, которая может быть превращена в работу тепловой машины, зависит только от разности температур нагревателя и холодильника.

При дальнейшей разработке второго начала термодинамики Клаузиус вводит понятие энтропии - меры количества энергии, которая необратимо переходит в форму, непригодную для обращения в работу. Клаузиус выразил эту величину формулой dS = dQ/T, где dS, определяющей изменение энтропии. Здесь:

dQ - изменение теплоты;

T - абсолютная температура (та самая, которая измеряется в кельвинах).

Простой пример: потрогайте капот вашего автомобиля при включенном двигателе. Он явно теплее окружающей среды. Но ведь двигатель автомобиля предназначен не для того, чтобы нагревать капот или воду в радиаторе. Преобразуя химическую энергию бензина в тепловую, а затем в механическую, он совершает полезную работу - вращает вал. Но большая часть вырабатываемого тепла теряется, так как никакой полезной работы из него извлечь нельзя, а то, что вылетает из выхлопной трубы, уже никоим образом бензином не является. При этом тепловая энергия теряется, но не исчезает, а рассеивается (диссипирует). Горячий капот, конечно, остывает, а каждый цикл цилиндров в двигателе снова добавляет ему теплоту. Таким образом система стремится достичь термодинамического равновесия.

Особенности энтропии

Клаузиус вывел общий принцип для второго начала термодинамики в формуле dS ≥ 0. Физический смысл ее можно определить, как "неубывание" энтропии: в обратимых процессах она не меняется, в необратимых - возрастает.

Следует заметить, что все реальные Термин «неубывание» отражает лишь тот факт, что в рассмотрение явления включен также теоретически возможный идеализированный вариант. То есть количество недоступной энергии в любом самопроизвольном процессе увеличивается.

Возможность достижения абсолютного нуля

Макс Планк внес серьезный вклад в разработку термодинамики. Помимо работы над статистической интерпретацией второго начала, он принял деятельное участие в постулировании третьего начала термодинамики. Первая формулировка принадлежит Вальтеру Нернсту и относится к 1906 году. Теорема Нернста рассматривает поведение равновесной системы при температуре, стремящейся к абсолютному нулю. Первое и второе начала термодинамики не дают возможности выяснить, какова будет энтропия в данных условиях.

При T = 0 K энергия равна нулю, частицы системы прекращают хаотические тепловые движения и образуют упорядоченную структуру, кристалл с термодинамической вероятностью, равной единице. Значит, энтропия тоже обращается в ноль (ниже мы узнаем, почему так происходит). В реальности она даже делает это несколько раньше, из чего следует, что охлаждение любой термодинамической системы, любого тела до абсолютного нуля невозможно. Температура будет сколь угодно приближаться к этой точке, но не достигнет ее.

Перпетуум-мобиле: нельзя, даже если очень хочется

Клаузиус обобщил и сформулировал первое и второе начала термодинамики таким образом: полная энергия любой замкнутой системы всегда остается постоянной, а полная энтропия возрастает с течением времени.

Первая часть этого утверждения налагает запрет на вечный двигатель первого рода - устройство, совершающее работу без притока энергии из внешнего источника. Вторая часть запрещает и вечный двигатель второго рода. Такая машина переводила бы энергию системы в работу без энтропийной компенсации, не нарушая закона сохранения. Можно было бы откачивать тепло из равновесной системы, например, жарить яичницу или лить сталь за счет энергии теплового движения молекул воды, охлаждая ее при этом.

Второе и третье начала термодинамики запрещают вечный двигатель второго рода.

Увы, у природы ничего нельзя получить не только даром, приходится еще и комиссию выплачивать.

«Тепловая смерть»

Мало найдется в науке понятий, которые вызывали столько неоднозначных эмоций не только у широкой публики, но и в среде самих ученых, сколько пришлось на долю энтропии. Физики, и в первую очередь сам Клаузиус, практически сразу экстраполировали закон неубывания сначала на Землю, а затем и на всю Вселенную (почему бы и нет, ведь ее тоже можно считать термодинамической системой). В итоге физическая величина, важный элемент расчетов во многих технических приложениях, стала восприниматься как воплощение некоего вселенского Зла, уничтожающего светлый и добрый мир.

В среде ученых есть и такие мнения: поскольку, согласно второму началу термодинамики, энтропия необратимо растет, рано или поздно вся энергия Вселенной деградирует в рассеянную форму, и наступит «тепловая смерть». Чему тут радоваться? Клаузиус, например, несколько лет не решался на публикацию своих выводов. Разумеется, гипотеза «тепловой смерти» немедленно вызвала множество возражений. Серьезные сомнения в ее правильности есть и сейчас.

Демон-сортировщик

В 1867 году Джеймс Максвелл, один из авторов молекулярно-кинетической теории газов, в очень наглядном (хоть и вымышленном) эксперименте продемонстрировал кажущуюся парадоксальность второго начала термодинамики. Кратко опыт можно изложить следующим образом.

Пусть имеется сосуд с газом. Молекулы в нем движутся хаотически, скорости их несколько различаются, но средняя кинетическая энергия одинакова по всему сосуду. Теперь разделим сосуд перегородкой на две изолированные части. Средняя скорость молекул в обеих половинках сосуда останется одинаковой. Перегородку сторожит крохотный демон, который позволяет более быстрым, «горячим» молекулам проникать в одну часть, а более медленным «холодным» - в другую. В результате в первой половинке газ нагреется, во второй - охладится, то есть из состояния термодинамического равновесия система перейдет к разности температурных потенциалов, что означает уменьшение энтропии.

Вся проблема в том, что в эксперименте система совершает этот переход не самопроизвольно. Она получает извне энергию, за счет которой открывается и закрывается перегородка, либо система с необходимостью включает в себя демона, затрачивающего свою энергию на исполнение обязанностей привратника. Увеличение энтропии демона с избытком покроет уменьшение ее в газе.

Недисциплинированные молекулы

Возьмем стакан с водой и оставим его на столе. Наблюдать за стаканом не обязательно, достаточно через некоторое время вернуться и проверить состояние воды в нем. Мы увидим, что ее количество уменьшилось. Если же оставить стакан надолго, в нем вообще не обнаружится воды, так как вся она испарится. В самом начале процесса все молекулы воды находились в некой ограниченной стенками стакана области пространства. В конце эксперимента они разлетелись по всей комнате. В объеме комнаты у молекул гораздо больше возможностей менять свое местоположение без всяких последствий для состояния системы. Мы никак не сможем собрать их в спаянный "коллектив" и загнать обратно в стакан, чтобы с пользой для здоровья выпить воду.

Это значит, что система эволюционировала к состоянию с более высокой энтропией. Исходя из второго начала термодинамики, энтропия, или процесс рассеивания частиц системы (в данном случае молекул воды) необратим. Почему это так?

Клаузиус не ответил на этот вопрос, да и никто другой не смог этого сделать до Людвига Больцмана.

Макро и микросостояния

В 1872 году этот ученый ввел в науку статистическое толкование второго начала термодинамики. Ведь макроскопические системы, с которыми имеет дело термодинамика, образованы большим количеством элементов, поведение которых подчиняется статистическим законам.

Вернемся к молекулам воды. Хаотически летая по комнате, они могут занимать разные положения, иметь некоторые различия в скоростях (молекулы постоянно сталкиваются друг с другом и с другими частицами в воздухе). Каждый вариант состояния системы молекул называется микросостоянием, и таких вариантов огромное количество. При реализации подавляющего большинства вариантов макросостояние системы не изменится никак.

Ничто не запрещено, но кое-что крайне маловероятно

Знаменитое соотношение S = k lnW связывает число возможных способов, которым можно выразить определенное макросостояние термодинамической системы (W), с ее энтропией S. Величину W называют термодинамической вероятностью. Окончательный вид этой формуле придал Макс Планк. Коэффициент k - чрезвычайно малую величину (1,38×10 −23 Дж/К), характеризующую связь между энергией и температурой, Планк назвал постоянной Больцмана в честь ученого, который первым предложил статистическое толкование второго начала термодинамики.

Ясно, что W - всегда натуральное число 1, 2, 3,…N (не бывает дробного количества способов). Тогда логарифм W, а следовательно, и энтропия, не могут быть отрицательными. При единственно возможном для системы микросостоянии энтропия становится равной нулю. Если вернуться к нашему стакану, этот постулат можно представить так: молекулы воды, беспорядочно снующие по комнате, вернулись обратно в стакан. При этом каждая в точности повторила свой путь и заняла в стакане то же место, в каком пребывала перед вылетом. Ничто не запрещает реализацию этого варианта, при котором энтропия равна нулю. Только ждать осуществления такой исчезающе малой вероятности не стоит. Это один из примеров того, что можно осуществить лишь теоретически.

Все смешалось в доме…

Итак, молекулы хаотически летают по комнате разными способами. Нет никакой закономерности в их расположении, нет порядка в системе, как ни меняй варианты микросостояний, не прослеживается никакой внятной структуры. В стакане было то же самое, но из-за ограниченности пространства молекулы меняли свое положение не так активно.

Хаотическое, неупорядоченное состояние системы как наиболее вероятное соответствует ее максимальной энтропии. Вода в стакане являет пример более низкоэнтропийного состояния. Переход к нему из равномерно распределенного по комнате хаоса практически неосуществим.

Приведем более понятный для всех нас пример - уборка беспорядка в доме. Чтобы все расставить по местам, нам тоже приходится затрачивать энергию. В процессе этой работы нам становится жарко (то есть мы не мерзнем). Оказывается, энтропия может принести пользу. Это так и есть. Можно сказать даже больше: энтропия, а через нее второе начало термодинамики (наряду с энергией) управляют Вселенной. Взглянем еще раз на обратимые процессы. Так выглядел бы мир, не будь энтропии: никакого развития, никаких галактик, звезд, планет. Никакой жизни...

Еще немного информации о «тепловой смерти». Есть хорошие новости. Поскольку, согласно статистической теории, «запрещенные» процессы на самом деле являются маловероятными, в термодинамически равновесной системе возникают флуктуации - спонтанные нарушения второго начала термодинамики. Они могут быть сколь угодно большими. При включении гравитации в термодинамическую систему распределение частиц уже не будет хаотически-равномерным, а состояние максимальной энтропии не будет достигнуто. Кроме того, Вселенная не является неизменной, постоянной, стационарной. Следовательно, сама постановка вопроса о «тепловой смерти» лишена смысла.

Выше мы познакомились с термодинамическим методом решения различных физических задач. Все рассуждения при этом основывались на использовании одного из основных законов природы: закона сохранения и превращения энергии, или первого начала термодинамики.

Как показал человеческий опыт, при всей важности этого закона, его, однако, недостаточно для того, чтобы объяснить своеобразие протекания различных явлений в природе. Для того чтобы убедиться в этом, рассмотрим первое начало термодинамики и следствия, вытекающие из него, с несколько иной точки зрения, чем это делалось выше. Математически первое начало термодинамики выражается уравнением:

физический смысл которого сводится к утверждению, что изменение внутренней энергии системы возможно или в результате

совершения работы, или в результате передачи некоторого количества теплоты. Чрезвычайно важно то, что написанное уравнение исчерпывает все возможные способы изменения внутренней энергии системы: внутренняя энергия системы может изменяться только в результате совершения работы или передачи некоторого количества теплоты.

Обратим теперь внимание на то обстоятельство, что оба указанных способа изменения внутренней энергии системы подразумевают взаимодействие ее с какими-то телами, не входящими в рассматриваемую систему. Работа совершается или внешними силами, т. е. силами, действующими на систему со стороны каких-либо не входящих в нее тел, или, наоборот, системой, преодолевающей действие этих внешних сил.

Точно так же количество теплоты, необходимое для изменения внутренней энергии системы, передается последней или от каких-либо тел, не входящих в нее, или от самой системы этим телам.

Необходимость для изменения внутренней энергии системы взаимодействия ее с телами, не входящими в нее, приводит к тому, что в изолированной системе, т. е. в системе, включающей все взаимодействующие тела, внутренняя энергия остается неизменной. Учитывая сказанное, первое начало термодинамики иногда так и формулируют, утверждая, что внутренняя энергия изолированной системы постоянна, или, что то же самое, в изолированной системе

В различных термодинамических системах можно представить себе мысленно самые разнообразные процессы. Первое начало термодинамики позволяет выбрать из этого многообразия процессы, протекание которых с точки зрения энергетических соотношений принципиально возможно.

Предположим, например, что рассматриваемая система состоит из двух порций одной и той же жидкости, имеющих соответственно температуры При сливании этих порций жидкости в условиях изоляции от взаимодействия с какими-либо другими телами для всей смеси устанавливается некоторая общая температура Опираясь на первое начало термодинамики, можно утверждать, что конечная температура всей смеси не может быть больше температуры более теплой из смешиваемых порций жидкости. Процесс, приводящий к подобному результату, не допускается первым началом термодинамики. Более того, на том же основании можно утверждать, что в случае действительно изолированной системы возможны только такие процессы, при которых выполняется следующее равенство:

Огромное значение первого начала термодинамики заключается именно в том, что оно указывает, каким образом выбрать из бесконечного количества процессов, которые человек может себе

представить, те процессы, протекание которых, вообще говоря, возможно.

Однако, помогая выделить возможные процессы, первое начало термодинамики не дает основания для дальнейшего различия между ними: с точки зрения первого начала термодинамики все отобранные процессы одинаково возможны.

Для того чтобы уяснить эту особенность, возвратимся к приведенному выше примеру. При смешении двух порций жидкости с разной температурой с точки зрения первого начала термодинамики возможен любой процесс, в результате которого температура смеси примет значение соответствующее уравнению (21).

Однако с точки зрения первого начала термодинамики вполне возможен и процесс, обратный рассмотренному: первое начало термодинамики допускает возможность того, что жидкость, масса которой имеющая повсюду одинаковую температуру самопроизвольно разделится на две части с различными температурами если только эти температуры удовлетворяют уравнению (21). Первое начало термодинамики не допускает лишь изменения внутренней энергии изолированной системы, но никак не ограничивает перераспределение внутренней энергии внутри данной изолированной системы.

В то же время опыт учит человека тому, что в природе наблюдается иное положение.

Хорошо известно, что при смешении нескольких порций жид кости с разными температурами смесь всегда приобретает некоторую температуру, общую для всей жидкости. Также хорошо известно из опыта, что без воздействия извне в жидкости, имевшей повсюду одинаковую температуру, никогда не возникает разность температур, обусловленная самопроизвольным переходом некоторого количества теплоты от одной части жидкости к Другой.

Точно так же, при смешении водного раствора какой-либо соли с чистой водой всегда наблюдается диффузия растворенного вещества, приводящая к выравниванию концентрации раствора во всей жидкости, и никогда не наблюдается, чтобы растворенное в какой-либо жидкости вещество самопроизвольно собралось бы в одной ее части, в то время как во второй оказался бы чистый растворитель, хотя этот процесс и не противоречит первому началу термодинамики.

Наконец, можно постоянно наблюдать самопроизвольное превращение механической работы в теплоту. Так, например, можно заставить скользить тяжелый брусок по наклонной плоскости, (рис. 101), причем вся работа, совершаемая силой тяжести, будет благодаря трению превращаться в теплоту. В результате трения температура бруска и наклонной плоскости слегка возрастет, а внутренняя энергия системы останется постоянной.

В то же время, сколько бы ни ожидать, не удается наблюдать самопроизвольного охлаждения бруска и наклонной плоскости, в результате которого брусок сам начал бы двигаться вверх по наклонной плоскости, хотя этот процесс может также протекать при неизменной внутренней энергии системы.

Таким образом, возможные с точки зрения первого начала термодинамики процессы оказываются неравноценными в отношении их протекания в том смысле, что, как показывает опыт, в изолированной системе одни из этих процессов протекают, а другие не протекают.

На различие таких процессов и указывается вторым основным законом, или вторым началом, термодинамики.

Второе начало термодинамики утверждает, что существует функция состояния, называемая энтропией, которая обладает тем свойством, что при всех реальных процессах, протекающих в изолированной системе, она возрастает.

Таким образом, второму началу термодинамики можно придать следующую формулировку: в изолированной системе возможны только такие процессы, при которых энтропия системы возрастает.

Часто второе начало термодинамики формулируют несколько иначе, например Кельвин формулировал этот закон в форме утверждения, что невозможен процесс, единственным результатом которого было бы получение от какого-либо тела теплоты и превращение ее в эквивалентное количество работы.

Клаузиус предложил записать второе начало термодинамики как утверждение невозможности самопроизвольного перехода теплоты от более холодного тела к телу более теплому. Эти формулировки второго начала, так же как и еще несколько формулировок, встречающихся в литературе, приводят в конечном счете к одним и тем же выводам, и в этом отношении равноценны.

Формулировка, приведенная в качестве первой, отличается тем, что в ней более ясно выступает общность второго начала термодинамики.

Согласно второму началу термодинамики, для того чтобы ответить на вопрос, возможно ли в изолированной системе то или иное превращение, необходимо рассчитать приращение энтропии при этом превращении, и если это приращение окажется положительным, то рассматриваемое превращение возможно, так как в результате его энтропия изолированной системы возрастает. Те же

процессы, при которых приращение энтропии оказывается отрицательным, в изолированной системе невозможны, поскольку при подобных процессах энтропия изолированной системы должна убывать.

Количественно в термодинамике определяется не энтропия, а разность энтропии, соответствующая какому-либо изменению состояния системы. Новая функция состояния - энтропия - обозначается буквой и согласно определению

Дифференциальное изменение энтропии определяется, таким образом, отношением дифференциально малого количества теплоты, полученного или отданного системой, к температуре, при которой происходит процесс. Для гого чтобы пояснить, как используются формулы (22) и (23), рассмотрим некоторые примеры.

1. Подсчитаем изменение энтропии при плавлении 1 кмоля льда. Удельная теплота плавления льда Плавление льда происходит при постоянной температуре 273° К, и поэтому в уравнении (23) выносится за знак интеграла который в данном случае будет равен количеству теплоты, необходимому для плавления одного киломоля льда.

Таким образом:

2. Один киломоль идеального газа занимает при давлении и температуре объем Определим изменение энтропии при равновесном переходе газа в состояние, характеризуемое параметрами состояния

Запишем первое начало термодинамики:

В случае идеального газа Подставив эти значения в уравнение первого начала, запишем его в виде:

Разделив это уравнение на и приняв во внимание определение энтропии (уравнение 22), получим:

Интегрируя уравнение в пределах от до найдем искомое решение:

Будем считать, что куски настолько велики, что при получении или потере изменением температуры можно пренебречь. Когда теплота переходит от тела более теплого к телу более холодному, общее изменение энтропии в системе составит:

Знак минус ставится в том случае, когда теплота отдается телом, и плюс, когда тело получает некоторое количество теплоты.

В случае, когда теплота переходит от тела более холодного к телу более теплому, общее изменение энтропии системы составит:

Таким образом, переход теплоты от тела более нагретого к телу более холодному сопровождается положительным приращением энтропии, и, следовательно, этот процесс в изолированной системе возможен. Наоборот, переход теплоты от более холодного тела к телу более теплому сопровождается отрицательным приращением энтропии, и, следовательно, в изолированной системе такой процесс невозможен.

В качестве второго примера рассмотрим изменение энтропии при изменении объема идеального газа. Изменение энтропии в этом случае выражается формулой:

Если изменение объема происходит изотермически:

т. е. изменение энтропии будет всегда положительно, когда конечный объем больше начального. Другими словами, идеальный газ, представляющий собой изолированную систему, будет самопроизвольно расширяться, стремясь занять весь предоставленный ему объем.

Выше были рассмотрены наиболее элементарные примеры применения второго начала для определения направления возможного процесса. Однако этот закон позволяет определить направление и более сложных процессов. Кроме того, он дает возможность предопределить, при каких именно условиях данный процесс будет протекать в желательном направлении.