9 класс

Особенность расширения видимой части вселенной. Теория расширяющейся вселенной. Во Вселенной расширяется все

Даже астрономы не всегда правильно понимают расширение Вселенной. Раздувающийся воздушный шар – старая, но хорошая аналогия расширения Вселенной. Галактики, расположенные на поверхности шара, неподвижны, но поскольку Вселенная расширяется, расстояние между ними возрастает, а размеры самих галактик не увеличиваются.

В июле 1965 г. ученые объявили об открытии явных признаков расширения Вселенной из более горячего и плотного исходного состояния. Они нашли остывающее послесвечение Большого взрыва – реликтовое излучение. С этого момента расширение и охлаждение Вселенной легло в основу космологии. Космологическое расширение позволяет понять, как формировались простые структуры и как они постепенно развивались в сложные. Спустя 75 лет после открытия расширения Вселенной многие ученые не могут проникнуть в его истинный смысл. Джеймс Пиблз (James Peebles), космолог из Принстонского университета, изучающий реликтовое излучение, писал в 1993 г. : «Мне кажется, что даже специалисты не знают, каково значение и возможности модели горячего Большого взрыва».

Известные физики, авторы учебников по астрономии и популяризаторы науки порою дают неверную или искаженную трактовку расширения Вселенной, которое легло в основу модели Большого взрыва. Что же мы имеем в виду, когда говорим, что Вселенная расширяется? Несомненно, сбивает с толку то обстоятельство, что теперь говорят об ускорении расширения, и это ставит нас в тупик.

ОБЗОР: КОСМИЧЕСКОЕ НЕДОРАЗУМЕНИЕ

* Расширение Вселенной – одна из фундаментальных концепций современной науки – до сих пор получает различное толкование.

* Не следует воспринимать термин «Большой взрыв» буквально. Он не был бомбой, взорвавшейся в центре Вселенной. Это был взрыв самого пространства, который произошел повсеместно, подобно тому, как расширяется поверхность надуваемого воздушного шара.

* Понимание различия между расширением пространства и расширением в пространстве крайне важно для того, чтобы понять, каков размер Вселенной, скорость разбегания галактик, а также возможности астрономических наблюдений и природы ускорения расширения, которое, вероятно, испытывает Вселенная.

* Модель Большого взрыва описывает лишь то, что случилось после него.

Что такое расширение?

Когда расширяется что-нибудь привычное, например, влажное пятно или Римская империя, то они становятся больше, их границы раздвигаются, и они начинают занимать больший объем в пространстве. Но Вселенная, похоже, не имеет физических ограничений, и ей некуда двигаться. Расширение нашей Вселенной очень похоже на надувание воздушного шара. Расстояния до далеких галактик увеличиваются. Обычно астрономы говорят, что галактики удаляются или убегают от нас, но не перемещаются в пространстве, как осколки «бомбы Большого взрыва». В действительности расширяется пространство между нами и галактиками, хаотически движущимися внутри практически неподвижных скоплений. Реликтовое излучение заполняет Вселенную и служит системой отсчета, подобной резиновой поверхности воздушного шара, по отношению к которой движение и может быть измерено.

Находясь вне шара, мы видим, что расширение его искривленной двухмерной поверхности возможно только потому, что она находится в трехмерном пространстве. В третьем измерении располагается центр шара, а его поверхность расширяется в окружающий его объем. Исходя из этого, можно было бы заключить, что расширение нашего трехмерного мира требует наличия у пространства четвертого измерения. Но согласно общей теории относительности Эйнштейна, пространство динамично: оно может расширяться, сжиматься и изгибаться.

Дорожная пробка

Вселенная самодостаточна. Не требуются ни центр, чтобы расширяться от него, ни свободное пространство с внешней стороны (где бы она ни находилась), чтобы туда расширяться. Правда, некоторые новейшие теории, такие как теория струн, постулируют наличие дополнительных измерений, но при расширении нашей трехмерной Вселенной они не требуются.

В нашей Вселенной, как и на поверхности воздушного шара, каждый объект отдаляется от всех остальных. Таким образом, Большой взрыв не был взрывом в пространстве, а скорее это был взрыв самого пространства, который не произошел в определенном месте и затем не расширялся в окружающую пустоту. Это произошло всюду одновременно.

НА ЧТО БЫЛ ПОХОЖ БОЛЬШОЙ ВЗРЫВ?

НЕВЕРНО : Вселенная родилась тогда, когда вещество, подобно бомбе, взорвалось в определенном месте. Давление было высоким в центре и низким в окружающей пустоте, что и вызвало разлет вещества.

ВЕРНО : Это был взрыв самого пространства, который привел вещество в движение. Наше пространство и время возникло в Большом взрыве и начало расширяться. Нигде не было центра, т.к. условия всюду были одинаковыми, никакого перепада давления, характерного для обычного взрыва, не было.

Если представить, что мы прокручиваем киноленту в обратном порядке, то увидим, как все области Вселенной сжимаются, а галактики сближаются, пока не столкнутся все вместе в Большом взрыве, как автомобили в дорожной пробке. Но сопоставление тут не полное. Если бы речь шла о происшествии, то вы могли бы объехать затор, услышав сообщения о нем по радио. Но Большой взрыв был катастрофой, которую невозможно избежать. Это похоже на то, как если бы поверхность Земли и все дороги на ней смялись, но автомобили оставались бы прежнего размера. В конце концов машины столкнулись бы, и никакое сообщение по радио не помогло бы предотвратить это. Так же и Большой взрыв: он произошел повсеместно, в отличие от взрыва бомбы, который происходит в определенной точке, а осколки разлетаются во все стороны.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна. Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме. Иногда космологи заявляют, что Вселенная когда-то была не больше грейпфрута, но они имеют в виду лишь ту ее часть, которую мы сейчас можем наблюдать.

У обитателей туманности Андромеды или других галактик свои наблюдаемые вселенные. Наблюдатели, находящиеся в Андромеде, могут видеть галактики, которые недоступны нам, просто из-за того, что они немного ближе к ним; зато они не могут созерцать те, которые рассматриваем мы. Их наблюдаемая Вселенная тоже была размером с грейпфрут. Можно вообразить, что ранняя Вселенная была похожа на кучу этих фруктов, безгранично простирающуюся во всех направлениях. Значит, представление о том, что Большой взрыв был «маленьким», ошибочно. Пространство Вселенной безгранично. И как его ни сжимай, оно таковым и останется.

Быстрее света

Ошибочные представления бывают связаны и с количественным описанием расширения. Скорость, с которой увеличиваются расстояния между галактиками, подчиняется простой закономерности, выявленной американским астрономом Эдвином Хабблом (Edwin Hubble) в 1929 г. : скорость удаления галактики v прямо пропорциональна его расстоянию от нас d, или v = Hd. Коэффициент пропорциональности H называется постоянной Хаббла и определяет скорость расширения пространства как вокруг нас, так и вокруг любого наблюдателя во Вселенной.

Некоторых сбивает с толку то, что не все галактики подчиняются закону Хаббла. Ближайшая к нам крупная галактика (Андромеда) вообще движется к нам, а не от нас. Такие исключения бывают, поскольку закон Хаббла описывает лишь среднее поведение галактик. Но каждая из них может иметь и небольшое собственное движение, поскольку галактики гравитационно воздействуют друг на друга, как, например, наша Галактика и Андромеда. Отдаленные галактики также имеют небольшие хаотические скорости, но при большом расстоянии от нас (при большом значении d) эти случайные скорости ничтожно малы на фоне больших скоростей удаления (v). Поэтому для далеких галактик закон Хаббла выполняется с высокой точностью.

Согласно закону Хаббла, Вселенная расширяется не с постоянной скоростью. Некоторые галактики удаляются от нас со скоростью 1 тыс. км/с, другие, находящиеся вдвое дальше, со скоростью 2 тыс. км/с, и т.д. Таким образом, закон Хаббла указывает, что, начиная с некоторого расстояния, называемого хаббловским, галактики удаляются со сверхсветовой скоростью. Для измеренного значения постоянной Хаббла это расстояние составляет около 14 млрд. световых лет.

Но разве частная теория относительности Эйнштейна не утверждает, что никакой объект не может иметь скорость выше скорости света? Такой вопрос ставил в тупик многие поколения студентов. А ответ состоит в том, что частная теория относительности применима лишь к «нормальным» скоростям – к движению в пространстве. В законе Хаббла речь идет о скорости удаления, вызванного расширением самого пространства, а не движением в пространстве. Этот эффект общей теории относительности не подчиняется частной теории относительности. Наличие скорости удаления выше скорости света никак не нарушает частную теорию относительности. По-прежнему верно, что никто не может догнать луч света.

МОГУТ ЛИ ГАЛАКТИКИ УДАЛЯТЬСЯ СО СКОРОСТЬЮ ВЫШЕ СКОРОСТИ СВЕТА?

НЕВЕРНО : Частная теория относительности Эйнштейна запрещает это. Рассмотрим область пространства, содержащую несколько галактик. Из-за ее расширения галактики удаляются от нас. Чем дальше галактика, тем больше ее скорость (красные стрелки). Если скорость света – предел, то скорость удаления должна в итоге стать постоянной.

ВЕРНО : Разумеется, могут. Частная теория относительности не рассматривает скорость удаления. Скорость удаления бесконечно возрастает с рассто- янием. Дальше некоторого расстояния, называемого хаббловским, она превышает скорость света. Это не является нарушением теории относительности, пос- кольку удаление вызвано не движением в простран- стве, а расширением самого пространства.

МОЖНО ЛИ УВИДЕТЬ ГАЛАКТИКИ, УДАЛЯЮЩИЕСЯ БЫСТРЕЕ СВЕТА?

НЕВЕРНО : Конечно нет. Свет от таких галактик улетает вместе с ними. Пусть галактика находится за пределом хаббловского расстояния (сфера), т.е. удаляется от нас быстрее скорости света. Она испускает фотон (помечено желтым цветом). Пока фотон летит сквозь пространство, само оно расширяется. Расстояние до Земли увеличивается быстрее, чем движется фотон. Он никогда не достигнет нас.

ВЕРНО : Конечно можно, поскольку скорость расширения изменяется со временем. Сначала фотон действительно сносится расширением. Однако хаббловское расстояние не постоянно: оно увеличивается, и в конце концов фотон может попасть в сферу Хаббла. Как только это случится, фотон будет двигаться быстрее, чем удаляется Земля, и он сможет достичь нас.

Растяжение фотонов

Первые наблюдения, показывающие, что Вселенная расширяется, были сделаны между 1910 и 1930 г. В лаборатории атомы испускают и поглощают свет всегда на определенных длинах волн. То же наблюдается и в спектрах далеких галактик, но со смещением в длинноволновую область. Астрономы говорят, что излучение галактики испытывает красное смещение. Объяснение простое: при расширении пространства световая волна растягивается и поэтому ослабевает. Если в течение того времени, пока световая волна дошла до нас, Вселенная расширилась вдвое, то и длина волны удвоилась, а ее энергия ослабла в два раза.

ГИПОТЕЗА УСТАЛОСТИ

Каждый раз, когда Scientific American публикует статью по космологии, многие читатели пишут нам, что, по их мнению, галактики на самом деле не удаляются от нас и что расширение пространства – иллюзия. Они полагают, что красное смещение в спектрах галактик вызвано чем-то вроде «утомления» от долгой поездки. Некий неизвестный процесс вынуждает свет, распространяясь сквозь пространство, терять энергию и поэтому краснеть.

Данной гипотезе уже более полувека, и на первый взгляд она выглядит разумной. Но она совершенно не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. Весь процесс длится примерно две недели у сверхновых того типа, который астрономы используют для определения расстояний до галактик. За этот период времени сверхновая излучает поток фотонов. Гипотеза усталости света говорит, что за время пути фотоны потеряют энергию, но наблюдатель все равно получит поток фотонов длительностью в две недели.

Однако в расширяющемся пространстве не только сами фотоны растягиваются (и поэтому теряют энергию), но и их поток также растягивается. Поэтому требуется более двух недель, чтобы все фотоны добрались до Земли. Наблюдения подтверждают такой эффект. Вспышка сверхновой в галактике с красным смещением 0,5 наблюдается три недели, а в галактике с красным смещением 1 – месяц.

Гипотеза усталости света противоречит также наблюдениям спектра реликтового излучения и измерениям поверхностной яркости далеких галактик. Пришло время отправить на покой «утомленный свет» (Чарльз Линевивер и Тамара Дэвис).

Сверхновые звезды, как эта в скоплении галактик в Деве, помогают измерять космическое расширение. Их наблюдаемые свойства исключают альтернативные космологические теории, в которых пространство не расширяется.

Процесс можно описать в терминах температуры. Испускаемые телом фотоны имеют распределение по энергии, которое в целом характеризуют температурой, указывающей, насколько тело горячее. Когда фотоны движутся в расширяющемся пространстве, они теряют энергию и их температура снижается. Таким образом, Вселенная при расширении охлаждается, как сжатый воздух, вырывающийся из баллона аквалангиста. К примеру, реликтовое излучение сейчас имеет температуру около 3 К, тогда как оно родилось при температуре около 3000 К. Но с того времени Вселенная увеличилась в размере в 1000 раз, а температура фотонов понизилась во столько же раз. Наблюдая газ в далеких галактиках, астрономы прямо измеряют температуру этого излучения в далеком прошлом. Измерения подтверждают, что Вселенная со временем охлаждается.

В связи между красным смещением и скоростью также существуют некоторые противоречия. Красное смещение, вызванное расширением, часто путают с более знакомым красным смещением, вызванным эффектом Доплера, который обычно делает звуковые волны более длинными, если источник звука удаляется. То же верно и для световых волн, которые становятся более длинными, если источник света отдаляется в пространстве.

Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами. Первая вытекает из частной теории относительности, которая не принимает во внимание расширение пространства, а вторая следует из общей теории относительности. Эти две формулы почти одинаковы для близлежащих галактик, но различаются для отдаленных.

Согласно формуле Доплера, если скорость объекта в пространстве приближается к скорости света, то его красное смещение стремится к бесконечности, а длина волны становится слишком большой и поэтому недоступной для наблюдения. Если бы это было верно для галактик, то самые отдаленные видимые объекты на небе удалялись бы со скоростью, заметно меньшей скорости света. Но космологическая формула для красного смещения приводит к другому выводу. В рамках стандартной космологической модели галактики с красным смещением около 1,5 (т.е. принимаемая длина волны их излучения на 50% больше лабораторного значения) удаляются со скоростью света. Астрономы уже обнаружили около 1000 галактик с красным смещением больше 1,5. А значит, нам известно около 1000 объектов, удаляющихся быстрее скорости света. Реликтовое излучение приходит с еще большего расстояния и имеет красное смещение около 1000. Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света.

Бег на месте

Трудно поверить, что мы можем видеть галактики, движущиеся быстрее скорости света, однако это возможно из-за изменения скорости расширения. Вообразите луч света, идущий к нам с расстояния большего, чем расстояние Хаббла (14 млрд. световых лет). Он движется к нам со скоростью света относительно своего местоположения, но само оно удаляется от нас быстрее скорости света. Хотя свет устремляется к нам с максимально возможной скоростью, он не может угнаться за расширением пространства. Это напоминает ребенка, пытающегося бежать в обратную сторону по эскалатору. Фотоны на хаббловском расстоянии перемещаются с максимальной скоростью, чтобы оставаться на прежнем месте.

Можно подумать, что свет из областей, удаленных дальше расстояния Хаббла, никогда не сможет дойти до нас и мы его никогда не увидим. Но расстояние Хаббла не остается неизменным, поскольку постоянная Хаббла, от которой оно зависит, меняется со временем. Эта величина пропорциональна скорости разбегания двух галактик, деленной на расстояние между ними. (Для вычисления можно использовать любые две галактики.) В моделях Вселенной, согласующихся с астрономическими наблюдениями, знаменатель увеличивается быстрее числителя, поэтому постоянная Хаббла уменьшается. Следовательно, расстояние Хаббла растет. А раз так, свет, который первоначально не достигал нас, может со временем оказаться в пределах хаббловского расстояния. Тогда фотоны окажутся в области, удаляющейся медленнее скорости света, после чего они смогут добраться до нас.

ДЕЙСТВИТЕЛЬНО ЛИ КОСМИЧЕСКОЕ КРАСНОЕ СМЕЩЕНИЕ – ЭТО ДОПЛЕРОВСКОЕ СМЕЩЕНИЕ?

НЕВЕРНО : Да, потому что удаляющиеся галактики движутся в пространстве. В эффекте Доплера световые волны растягиваются (становясь более красными), когда их источник удаляется от наблюдателя. Длина волны света не меняется во время его путешествия сквозь пространство. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики.

ВЕРНО : Нет, красное смещение не имеет никакого отношения к эффекту Доплера. Галактика почти неподвижна в пространстве, поэтому испускает свет одинаковой длины волны во всех направлениях. За время пути длина волны становится больше, поскольку пространство расширяется. Поэтому свет постепенно краснеет. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики. Космическое красное смещение отличается от доплеровского смещения, что подтверждают наблюдения.

Однако галактика, пославшая свет, может продолжать удаляться со сверхсветовой скоростью. Таким образом, мы можем наблюдать свет от галактик, которые, как и прежде, всегда будут удаляться быстрее скорости света. Одним словом, хаббловское расстояние не фиксировано и не указывает нам границы наблюдаемой Вселенной.

А что в действительности отмечает границу наблюдаемого пространства? Здесь тоже происходит некая путаница. Если бы пространство не расширялось, то самый отдаленный объект мы могли бы наблюдать теперь на расстоянии около 14 млрд. световых лет от нас, т.е. на расстоянии, которое свет преодолел за 14 млрд. лет, прошедших с момента Большого взрыва. Но поскольку Вселенная расширяется, пространство, пересеченное фотоном, расширилось за время его пути. Поэтому текущее расстояние до самого удаленного из наблюдаемых объектов примерно втрое больше – около 46 млрд. световых лет.

Раньше космологи думали, что мы живем в замедляющейся Вселенной и поэтому можем наблюдать все больше и больше галактик. Однако в ускоряющейся Вселенной мы отгорожены границей, вне которой никогда не увидим происходящие события – это космический горизонт событий. Если свет от галактик, удаляющихся быстрее скорости света, достигнет нас, значит, расстояние Хаббла увеличится. Но в ускоряющейся Вселенной его увеличение запрещено. Удаленное событие может послать луч света в нашем направлении, но этот свет навсегда останется за пределом расстояния Хаббла из-за ускорения расширения.

Как видим, ускоряющаяся Вселенная напоминает черную дыру, тоже имеющую горизонт событий, извне которого мы не получаем сигналов. Нынешнее расстояние до нашего космического горизонта событий (16 млрд. световых лет) целиком лежит в пределах нашей наблюдаемой области. Свет, испущенный галактиками, находящимися сейчас дальше космического горизонта событий, никогда не сможет достигнуть нас, т.к. расстояние, которое сейчас соответствует 16 млрд. световых лет, будет расширяться слишком быстро. Мы сможем увидеть события, происходившие в галактиках прежде, чем они пересекли горизонт, но о последующих событиях мы не узнаем никогда.

Во Вселенной расширяется все?

Люди часто думают, что если пространство расширяется, то и все в нем тоже расширяется. Но это неверно. Расширение как таковое (т.е. по инерции, без ускорения или замедления) не производит никакой силы. Длина волны фотона увеличивается вместе с ростом Вселенной, поскольку в отличие от атомов и планет фотоны не связанные объекты, размеры которых определяются равновесием сил. Изменяющаяся скорость расширения действительно вносит новую силу в равновесие, но и она не может заставить объекты расширяться или сжиматься.

Например, если бы гравитация стала сильнее, ваш спинной мозг сжался бы, пока электроны в позвоночнике не достигли бы нового положения равновесия, чуть ближе друг к другу. Ваш рост немного уменьшился бы, но сжатие на этом прекратилось бы. Точно так же, если бы мы жили во Вселенной с преобладанием сил тяготения, как еще несколько лет назад считало большинство космологов, то расширение замедлялось бы, а на все тела действовало бы слабое сжатие, заставляющее их достигать меньшего равновесного размера. Но, достигнув его, они бы больше не сжимались.

НАСКОЛЬКО ВЕЛИКА НАБЛЮДАЕМАЯ ВСЕЛЕННАЯ?

НЕВЕРНО : Вселенной 14 млрд. лет, поэтому наблюдаемая ее часть должна иметь радиус 14 млрд. световых лет.Рассмотрим самую далекую из наблюдаемых галактик – ту, чьи фотоны, испущенные сразу после Большого взрыва, только теперь достигли нас. Световой год – это расстояние, проходимое фотоном за год. Значит, фотон преодолел 14 млрд. световых лет

ВЕРНО : Поскольку пространство расширяется, наблюдаемая область имеет радиус больше, чем 14 млрд. световых лет. Пока фотон путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени полета, – приблизительно втрое больше

Фактически же расширение ускоряется, что вызвано слабой силой, «раздувающей» все тела. Поэтому связанные объекты имеют размеры немного больше, чем были бы в неускоряющейся Вселенной, поскольку равновесие сил достигается у них при немного большем размере. На поверхности Земли ускорение, направленное наружу, от центра планеты, составляет мизерную долю ($10^{–30}$) нормального гравитационного ускорения к центру. Если это ускорение неизменно, то оно не заставит Землю расширяться. Просто планета принимает чуть больший размер, чем он был бы без силы отталкивания.

Но все изменится, если ускорение не постоянно, как полагают некоторые космологи. Если отталкивание увеличивается, то это может в конце концов вызвать разрушение всех структур и привести к «Большому разрыву», который произошел бы не из-за расширения или ускорения как такового, а потому что ускорение ускорялось бы.

А ОБЪЕКТЫ ВО ВСЕЛЕННОЙ ТОЖЕ РАСШИРЯЮТСЯ?

НЕВЕРНО : Да. Расширение заставляет Вселенную и все находящееся в ней увеличиваться. В качестве объекта рассмотрим скопление галактик. Раз Вселенная становится больше, то и скопление – также. Граница скопления (желтая линия) расширяется.

ВЕРНО : Нет. Вселенная расширяется, но связанные объекты в ней не делают этого. Соседние галактики сначала удаляются, но в конечном счете их взаимное притяжение пересиливает расширение. Формируется скопление такого размера, которое соответствует его равновесному состоянию.

По мере того как новые точные измерения помогают космологам лучше понять расширение и ускорение, они могут задаться еще более фундаментальными вопросами о самых ранних мгновениях и наибольших масштабах Вселенной. Чем было вызвано расширение? Многие космологи считают, что в этом виноват процесс, называемый «инфляцией» (раздуванием), особый тип ускоряющегося расширения. Но возможно, это лишь частичный ответ: чтобы она началась, похоже, Вселенная уже должна была расширяться. А что относительно наибольших масштабов за пределом наших наблюдений? Расширяются ли разные части Вселенной по-разному, так, что наша Вселенная – это всего лишь скромный инфляционный пузырь в гигантской сверхвселенной? Никто не знает. Но мы надеемся, что со временем мы сможем прийти к пониманию процесса расширения Вселенной.

ОБ АВТОРАХ:
Чарльз Линевивер (Charles H. Lineweaver) и Тамара Дэвис (Tamara M. Davis) – астрономы из австралийской обсерватории Маунт-Стромло. В начале 1990-х гг. в Калифорнийском университете в Беркли Линевивер входил в группу ученых, открывших с помощью спутника COBE флуктуации реликтового излучения. Он защитил диссертацию не только по астрофизике, но и по истории и английской литературе. Дэвис работает над созданием космической обсерватории Supernova/Acceleration Probe (Исследователь сверхновых звезд и ускорения).

ЗАМЕЧАНИЯ К СТАТЬЕ «ПАРАДОКСЫ БОЛЬШОГО ВЗРЫВА»
Профессор Засов Анатолий Владимирович, физ. ф-т МГУ: Все недоразумения, с которыми спорят авторы статьи, связаны с тем, что для наглядности чаще всего рассматривают расширение ограниченного объема Вселенной в жесткой системе отсчета (причем расширение достаточно маленькой области, чтобы не учитывать разность хода времени на Земле и на далеких галактиках в земной системе отсчета). Отсюда представление и о взрыве, и о доплеровском смещении, и распространенная путаница со скоростями движения. Авторы же пишут, и пишут правильно, как все выглядит в неинерциальной (сопутствующей) системе координат, в которой обычно работают космологи, хотя в статье прямо не говорится об этом (в принципе, все расстояния и скорости зависят от выбора системы отсчета, и здесь всегда есть некий произвол). Единственно, что написано нечетко, так это то, что не определено, что же в расширяющейся Вселенной понимается под расстоянием. Сначала у авторов это скорость света, умноженная на время распространения, а далее говорится, что необходим еще учет расширения, которое удалило галактику еще больше, пока свет был в пути. Таким образом, расстояние уже понимается как скорость света, умноженная на время распространения, которое он потратил бы, если бы галактика перестала удаляться и излучила свет сейчас. В действительности все сложнее. Расстояние – величина модельно зависимая и непосредственно из наблюдений не получаемая, поэтому космологи без него прекрасно обходятся, заменяя красным смещением. Но может быть, более строгий подход здесь и неуместен.

  • Перевод

Если Вселенная расширяется, можно понять, почему далёкие галактики удаляются от нас. Но почему не расширяются звёзды, планеты и атомы?

Одним из крупнейших научных сюрпризов XX века стало открытие расширения Вселенной. Удалённые галактики разбегаются от нас и друг от друга быстрее, чем ближе расположенные, будто бы растягивается сама ткань пространства. На крупнейших масштабах плотность материи и энергии Вселенной падали миллиарды лет, и продолжают это делать. А если мы заглянем достаточно далеко, мы увидим галактики, разлетающиеся так быстро, что ничто, что мы могли бы отправить к ним сегодня, не сможет их догнать – не хватит даже скорости света. Но нет ли в этом парадокса? Именно об этом спрашивает читатель:

Если вселенная расширяется быстрее скорости света, почему это не влияет на нашу солнечную систему и расстояния от Солнца до планет? И почему относительное расстояние между звёздами нашей галактики не увеличивается… или оно увеличивается?

Мысль читателя верна, и Солнечная система, расстояния между планетами и звёздами не увеличиваются при расширении Вселенной. Так что же расширяется в расширяющейся Вселенной? Давайте разбираться.



Первоначальное представление о пространстве, выдвинутое Ньютоном, как о фиксированном, абсолютном и неизменном. Это была сцена, на которой массы могли существовать и притягиваться

Когда Ньютон впервые задумался о Вселенной, он представлял себе пространство в виде сетки. Это была абсолютная, фиксированная сущность, наполненная массами, гравитационно притягивающимися друг к другу. Но когда появился Эйнштейн, он понял, что эта воображаемая сетка не фиксирована, не абсолютна, и не похожа на представление Ньютона. Эта сетка похожа на ткань, и эта ткань искривлена, искажена и меняется со временем из-за присутствия материи и энергии. Более того, материя и энергия определяют её искривление.


Искривление пространства-времени гравитационными массами согласно ОТО

Но если бы в вашем пространстве-времени был только набор различных масс, они неизбежно бы схлопнулись и сформировали чёрную дыру. Эйнштейну эта идея не нравилась, поэтому он добавил «поправку» в виде космологической константы. Если существует этот дополнительный член уравнения – дополнительная энергия, пронизывающая пустое пространство – она может отталкивать все эти массы и удерживать Вселенную в неподвижности. Она предотвратит гравитационный коллапс. Добавив её, Эйнштейн позволял Вселенной существовать в почти неподвижном состоянии вечно.

Но не всех привлекала идея статичной Вселенной. Одно из первых решений получил физик по имени Александр Фридман . Он показал, что если не добавлять эту космологическую константу, и заполнить Вселенную энергией – материей, излучением, пылью, жидкостями, и т.д. – то существует два класса решений: один для сжимающейся Вселенной, а другой для расширяющейся.


Модель расширения Вселенной в виде «хлеба с изюмом», где относительные расстояния увеличиваются при расширении пространства (теста)

Математика даёт вам возможные решения, но вам нужно посмотреть на физическую Вселенную, чтобы узнать, какое из них её описывает. Это произошло в 1920-х годах благодаря работам Эдвина Хаббла . Хаббл первым открыл, что можно измерить характеристики отдельных звёзд в других галактиках и определить расстояние до них. Скомбинировав эти измерения с работами Весто Слайфера, показавшего, что у этих объектов происходит сдвиг атомного спектра, он получил удивительный результат.


График видимой скорости расширения (ось y) в зависимости от расстояния (ось x) соответствует Вселенной, быстро расширявшейся в прошлом, но до сих пор расширяющейся и сегодня. Это современная версия работы Хаббла, расширенная на расстояния в тысячи раз большие первоначальных

Либо вся теория относительности неверна, мы находимся в центре Вселенной и всё симметрично убегает от нас, либо теория относительности верна, Фридман прав, и чем дальше от нас галактика, тем быстрее она в среднем удаляется от нас. Одним движением теория расширяющейся Вселенной перешла от простой идеи к лидирующему описанию Вселенной.

Расширение работает немного контринтуитивно. Выглядит всё так, будто ткань пространства со временем растягивается, и все объекты в этом пространстве растаскиваются друг от друга. Чем дальше объект отстоит от другого, тем больше между ними растяжения, тем быстрее они удаляются друг от друга. Если бы у нас была однородно заполненная материей Вселенная, то материя просто становилась бы менее плотной и каждый её участок со временем отдалялся бы от всех остальных.


Холодные флуктуации (синий) реликтового излучения по сути не холоднее, а просто представляют участки, в которых имеется большее гравитационное притяжение из-за большей плотности материи. Горячие участки (красный) горячее, потому что излучение в этих участках живёт в более мелком гравитационном колодце. Со временем более плотные участки превратятся в звёзды, галактики и скопления с большей вероятностью, а менее плотные – с меньшей.

Но Вселенная не является идеально равномерной. В ней есть участки повышенной плотности, типа планет, звёзд, галактик, скоплений галактик. В ней есть участки пониженной плотности, такие, как огромные космические войды , где практически не встретить массивных объектов. Тому причиной наличие других физических явлений, кроме расширения Вселенной. На мелких масштабах, размером с животных и меньше, преобладают электромагнетизм и ядерные силы. На крупных масштабах – планеты, солнечные системы и галактики – преобладает гравитационное воздействие. На крупнейших масштабах – размерах, сравнимых со Вселенной – главная борьба разворачивается между расширением Вселенной и гравитационным притяжением всей имеющейся в ней материи и энергии.


На крупнейших масштабах Вселенная расширяется, и галактики удаляются друг от друга. На маленьких масштабах гравитация пересиливает расширение, что приводит к формированию звёзд, галактик и их скоплений

На крупнейших масштабах расширение побеждает. Самые удалённые галактики удаляются так быстро, что никакие сигналы, которые мы могли бы отправить к ним, даже со скоростью света, никогда до них не дойдут. Сверхскопления Вселенной – длинные, нитевидные структуры, вдоль которых выстраиваются галактики, тянущиеся на миллиарды световых лет – растягиваются и раздвигаются из-за расширения Вселенной. В относительно короткие сроки они исчезнут. И даже ближайшее к Млечному Пути скопление галактик, скопление Девы , находящееся всего в 50 миллионах световых лет от нас, не притянет нас к себе. Несмотря на гравитационное притяжение, более чем в тысячу раз превышающее наше собственное, расширение Вселенной растащит нас в стороны.


Крупный набор из многих тысяч галактик составляет наше ближайшее окружение в пределах 100 000 000 световых лет. Скопление Девы останется гравитационно связанным, но Млечный Путь продолжит со временем отдаляться от него

Но есть и масштабы поменьше, где расширение было побеждено – по крайней мере, локально. Скопление Девы останется связанным гравитационно. Млечный Путь и вся местная группа галактик останется связанной, и в итоге сольётся под действием гравитации. Земля так и будет двигаться по орбите вокруг Солнца на том же расстоянии, Земля останется того же размера, и атомы, из которых состоит всё, расширяться не будут. Почему? Потому, что расширение Вселенной работает только там, где другие взаимодействия – гравитационное, электромагнитное, ядерное – его не преодолели. Если какая-то сила способна удерживать объект в целости, даже расширение Вселенной не сможет его изменить.


Орбиты планет в системе TRAPPIST-1 не меняются с расширением Вселенной благодаря связующей силе гравитации, преодолевающей все последствия расширения

Этому есть неочевидная причина, связанная с тем, что расширение – это не взаимодействие, а больше скорость. Пространство расширяется на всех масштабах, но расширение воздействует только на все объекты совокупно. Между двумя точками пространство будет расширяться с определённой скоростью, но если эта скорость меньше скорости убегания между двумя объектами – если между ними действует связующая их сила – тогда расстояние между ними увеличиваться не будет. Нет увеличения расстояния, нет эффекта от расширения. В любой момент расширение преодолевается с запасом, поэтому оно никогда не приобретёт суммарный эффект, наблюдаемый между несвязанными между собой объектами. В результате стабильные, связные объекты могут выжить без изменений в расширяющейся Вселенной вечно.


Размеры стабильных, удерживаемых вместе объектов, будь они связаны гравитацией, электромагнетизмом или другой силой, не изменятся с расширением Вселенной. Если вам удастся преодолеть космическое расширение, вы останетесь связным навечно.

Пока Вселенная обладает измеренными нами свойствами, так всё и будет продолжаться. Тёмная энергия может существовать и заставлять удалённые галактики двигаться от нас с ускорением, но действие расширения на фиксированном расстоянии меняться не будет. Только в варианте

Когда астрофизик Эдвин Хаббл почти сто лет назад определил, что Вселенная равномерно расширяется во всех направлениях, это открытие стало настоящим сюрпризом. Потом, в середине 1990-х, выяснилась ещё одна неожиданная вещь: оказывается, Вселенная расширяется всё быстрее, то есть с ускорением. Причиной этого посчитали отталкивающие свойства вещества, названного «тёмной энергией».

Теперь c помощью космического телескопа Хаббла астрофизики НАСА определили, что Вселенная расширяется быстрее, чем ожидалось . Как трактовать это открытие, пока неясно, но постоянную Хаббла придётся пересмотреть.

«Это неожиданное открытие может оказаться важным ключом к пониманию того, что из себя представляет 95% массы Вселенной, которая не излучает свет, в том числе тёмная энергия, тёмная материя и тёмное излучение (dark radiation)», - пояснил ведущий автор исследования и нобелевский лауреат Адам Рисс (Adam Riess) из Института исследований космоса с помощью космического телескопа и университета Джонса Хопкинса.

Так называемое «тёмное излучение», о котором говорит нобелевский лауреат, - вероятно, одна из гипотетических форм тёмной энергии.

Учёные предлагают несколько объяснений происходящему. Возможно, тёмная энергия расталкивает галактики сильнее, чем ожидалось. Или ранний космос может содержать новый тип элементарных частиц, именуемых «тёмным излучением» (dark radiation), то есть в формулу расширения Вселенной после Большого взрыва следует добавить больше энергии от тёмной радиации.

Третий вариант - что тёмная материя, невидимая форма материи, которая составляет большую часть массы нашей Вселенной, обладает некими странными, неожиданными характеристиками. В конце концов, теория гравитации Эйнштейна может быть неполной.

Адам Рисс с коллегами разработали новую технику оценки скорости расширения Вселенной в 2005 году. Инновационная техника позволяет лучше определить расстояние до дальних галактик.

Метод состоит из трёх шагов, которые показаны на схеме. Он предусматривает поиск галактик со сверхновыми типа Ia и звёздами цефеидами. Цифеиды пульсируют в точной зависимости от своей инстинной светимости, что можно сравнить с их видимой светимостью для точной оценки расстояния. Сверхновые класса типа Ia, в свою очередь, образуются в результате взрывов белых карликов и достаточно ярки для наблюдения с относительно большого расстояния.

За десять лет учёные измерили примерно 2400 цефеид в 19 галактиках, оценили их видимую яркость, точно измерили истинную яркость и рассчитали расстояние примерно до 300 сверхновых типа Iа в дальних галактиках.

До настоящего времени наиболее надёжная оценка постоянной Хаббла составляла 67,80 ± 0,77 (км/с)/Мпк, то есть в современную эпоху две галактики, разделённые расстоянием в 1 мегапарсек, в среднем разлетаются со скоростью ~68 км/с.

Согласно новым измерениям, постоянная Хаббла составляет 73,2 (км/с)/Мпк, то есть две галактики, разделённые расстоянием в 1 мегапарсек, в среднем разлетаются со скоростью ~73 км/с.

Предложенный способ более точный, чем предыдущие методы: скорость расширения определяется с погрешностью 2,4%. Но даже с учётом этой погрешности новая постоянная Хаббла существенно больше, чем старая.

Результаты десятилетнего исследования будут опубликованы в ближайшем номере The Astrophysical Journal .

Расчёт истинного значения постоянной Хаббла - непростая задача. Например, анализ послесвечения от Большого взрыва, проведённый аппаратом Wilkinson Microwave Anisotropy Probe (WMAP) и результаты наблюдений спутниковой миссией Planck Европейского космического агентства дали противоположные результаты: по предсказанной траектории, скорость расширения Вселенной сейчас должна быть на 5% и 9% меньше, чем полученное значение постоянной Хаббла.

Дальнейшие исследования помогут внести ясность и измерить скорость удаления галактик более точно в разные периоды времени.

«Мы настолько мало знаем о тёмных частях Вселенной, что очень важно измерить, с какой силой они притягивались и отталкивались на протяжении космической истории», - сказал Лукас Макри (Lucas Macri), один из авторов научной работы.

До запуска телескопа Хаббла оценки скорости расширения Вселенной отличались на два порядка. Измерения в конце 1990-х помогли уменьшить погрешность до 10%. Сейчас учёные из группы Supernova H0 for the Equation of State (SH0ES) работают над новыми методами расчёта, которые снизят погрешность до 1%.

Мироздание не статично. Это подтвердили исследования астронома Эдвина Хаббла еще в 1929 году, то есть почти 90 лет назад. На эту мысль его навели наблюдения за движением галактик. Еще одним открытием астрофизиков в завершение двадцатого века стало вычисление расширения Вселенной с ускорением.

Как называют расширение Вселенной

Некоторые удивляются, услышав, как ученые называют расширение Вселенной. Это наименование у большинства связано с экономикой, причем с негативными ожиданиями.

Инфляция - это процесс расширения Вселенной сразу после её появления, причем с резким ускорением. В переводе с английского «инфляция» - «накачивать», «раздувать».

Новые сомнения о существовании темной энергии как фактора теории инфляции Вселенной используют противники теории расширения.

Тогда ученые предложили карту черных дыр. Первоначальные данные отличаются от тех, что были получены на позднем этапе:

  1. Шестьдесят тысяч черных дыр с расстоянием между самыми дальними больше одиннадцати миллионов световых лет - данные четырехлетней давности.
  2. Сто восемьдесят тысяч галактик с черными дырами с удалением в тринадцать миллионов световых лет. Данные, полученные учеными, в том числе российскими ядерными физиками, в начале 2017 года.

Эти сведения, говорят астрофизики, не противоречат классической модели Вселенной.

Скорость расширения Вселенной - задача для космологов

Скорость расширения действительно является задачей для космологов и астрономов. Правда, о том, что скорость расширения Вселенной не имеет постоянного параметра, космологи больше не спорят, расхождения перешли в другую плоскость - когда расширение начало ускоряться. Данные о кочевании в спектре очень далеких сверхновых галактик первого типа доказывают, что расширение - это не внезапно наступивший процесс.

Ученые считают, что первые пять миллиардов лет Вселенная сужалась.

Первые последствия Большого Взрыва сначала спровоцировали мощное расширение, а потом началось сжатие. Но темная энергия все-таки повлияла на рост мироздания. Причем с ускорением.

Американские ученые приступили к созданию карты размеров Вселенной для разных эпох, чтобы выяснить, когда началось ускорение. Наблюдая взрывы сверхновых, а также направление концентрации в древних галактиках, космологи заметили особенности ускорения.

Почему Вселенная «разгоняется»

Изначально подразумевалось, что в составленной карте значения ускорения не были линейны, а превратились в синусоиду. Ее назвали «волной Вселенной».

Волна Вселенной говорит о том, что ускорение не шло с постоянной скоростью: оно то замедлялось, то ускорялось. Причем несколько раз. Ученые считают, что было семь таких процессов за 13,81 миллиарда лет после Большого Взрыва.

Однако космологи пока не могут ответить на вопрос о том, от чего зависит ускорение-замедление. Предположения сводятся к мысли, что энергетическое поле, от которого берет начало темная энергия, подчинено волне Вселенной. И, переходя от одного положения к другому, Вселенная то расширяет ускорение, то замедляет его.

Несмотря на убедительность доводов, они все-таки остаются пока теорией. Астрофизики надеются, что информация орбитального телескопа «Планк» подтвердит существование волны Вселенной.

Когда нашли темную энергию

Впервые о ней заговорили в девяностые из-за взрывов сверхновых. Природа темной энергии неизвестна. Хотя еще Альберт Эйнштейн выделил космическую постоянную в своей теории относительности.

В 1916 году, сто лет назад, Вселенная еще считалась неизменной. Но сила притяжения вмешалась: космические массы неизменно бы ударились друг от друга, если бы Вселенная была недвижима. Эйнштейн объявляет гравитацию за счет космической силы отталкивания.

Жорж Леметр обоснует это через физику. Вакуум содержит энергию. Из-за её колебаний, приводящих к появлению частиц и дальнейшего их разрушения, энергия приобретает силу отталкивания.

Когда Хаббл доказал расширение Вселенной, Эйнштейн назвал чушью.

Влияние темной энергии

Мироздание раздвигается с постоянной скоростью. В 1998 году миру представили данные анализа вспышек сверхновых первого типа. Было доказано, что Вселенная разрастается все быстрее.

Происходит это из-за непознанного вещества, её прозвали «темной энергией». Выяснится, что она занимает почти 70 % пространства Вселенной. Суть, свойства и природа темной энергии не изучены, но её ученые пытаются выяснить, имелась ли она в других галактиках.

В 2016 году вычислили точную скорость расширения на ближайшее будущее, но появилось несовпадение: Вселенная расширяется с большей скоростью, чем ранее предположили астрофизики. В среде ученых разгорелись споры о существовании темной энергии и её влиянии на скорость расширения пределов мироздания.

Расширение Вселенной происходит без темной энергии

Теорию независимости процесса расширения Вселенной от темной энергии выдвинули ученые в начале 2017 года. Расширение они объясняют изменением структуры Вселенной.

Ученые из Будапештского и Гавайского университетов пришли к выводу, что несовпадение расчетов и реальной скорости расширения связаны с изменением свойств пространства. Никто не учитывал, что происходит с моделью Вселенной при расширении.

Усомнившись в существовании темной энергии, ученые объясняют: самые большие концентраты материи Вселенной влияют на её расширение. При этом остальное содержание распределяется равномерно. Однако факт остается неучтенным.

Для демонстрации обоснованности своих предположений ученые предложили модель мини-Вселенной. Они представили её в форме набора пузырьков и начали просчет параметров роста каждого пузырька с собственной скоростью, зависящей от его массы.

Такое моделирование Вселенной показало ученым, что она может изменяться без учета энергии. А если «примешать» темную энергию, то модель не изменится, считают ученые.

В общем-то, споры все еще продолжаются. Сторонники темной энергии говорят, что она влияет на расширение границ Вселенной, противники стоят на своем, утверждая, что значение имеет концентрация материи.

Скорость расширения Вселенной сейчас

Ученые убеждены, что расти Вселенная начала после Большого Взрыва. Тогда, почти четырнадцать миллиардов лет назад, оказалось, что скорость расширения Вселенной больше скорости света. И она продолжает расти.

В книге Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени» отмечается, что скорость расширения границ Вселенной не может превышать 10 % за миллиард лет.

Чтобы определить, какова скорость расширения Вселенной, летом 2016 года лауреат Нобелевской премии Адам Рисс рассчитал расстояние до пульсирующих цефеид в близких друг к другу галактиках. Эти данные позволили вычислить скорость. Выяснилось, что галактики на расстоянии не меньше трех миллионов световых лет могут отдаляться со скоростью почти 73 км/с.

Результат был удивителен: орбитальные телескопы, тот же «Планк», говорили о 69 км/с. Почему зафиксирована такая разница, ученые не в силах дать ответ: им ничего не известно о происхождении темной материи, на которую опирается теория расширения Вселенной.

Темная радиация

Еще один фактор «разгона» Вселенной обнаружили астрономы с помощью «Хаббла». Темное излучение, как предполагают, появилось в самом начале образования Вселенной. Тогда больше в ней было энергии, а не материи.

Темное излучение «помогло» темной энергии расширить границы Вселенной. Расхождения в определении скорости ускорения были из-за неизвестности этого излучения, считают ученые.

Дальнейшая работа «Хаббла» должна сделать наблюдения более точными.

Таинственная энергия может уничтожить Вселенную

Такой сценарий ученые рассматривают уже несколько десятилетий, данные космической обсерватории «Планк» говорят, что это далеко не только предположения. Их опубликовали в 2013 году.

«Планк» замерил «эхо» Большого взрыва, появившееся в возрасте Вселенной около 380 тысяч лет, температура составила 2 700 градусов. Причем температура менялась. «Планк» определил и «состав» Вселенной:

  • почти 5 % - звезды, космическая пыль, космический газ, галактики;
  • почти 27 % - масса темной материи;
  • около 70 % - темная энергия.

Физик Роберт Колдуэл предположил, что темная энергия обладает силой, способной нарастать. И эта энергия разъединит пространство-время. Галактика будет отдаляться в ближайшие двадцать-пятьдесят миллиардов лет, считает ученый. Этот процесс будет происходить при нарастающем расширении границ Вселенной. Это оторвет Млечный Путь от звезды, и он тоже распадется.

Космосу отмерили около шестидесяти миллионов лет. Солнце станет карликовой гаснущей звездой, и от нее отделятся планеты. После взорвется Земля. В следующие тридцать минут пространство разорвет атомы. Финалом станет разрушение структуры пространство-время.

Куда «улетает» Млечный Путь

Иерусалимские астрономы убеждены, что Млечный Путь набрал максимальную скорость, которая выше скорости расширения Вселенной. Ученые объясняют это стремлением Млечного Пути к «Великому Аттрактору», считающемуся самым крупным Так Млечный Путь уходит из космической пустыни.

Ученые используют разные методики измерения скорости расширения Вселенной, поэтому нет единого результата этого параметра.

Природа темной энергии является предметом ожесточенных споров. Открытый чуть менее чем тридцать лет назад, невидимый компонент Вселенной все еще не получил единого объяснения. Пришло время разобраться: почему темная энергия вызывает столько проблем, и как ученые пытаются ее детектировать?

Форма вселенной

С хорошей степенью точности наша Вселенная пространственно-однородна и изотропна – она не содержит «особых» точек и направлений, относительно которых ее свойства меняются. Такое пространство создать непросто: необходимо поддерживать определенную плотность энергии всех входящих в нее компонентов.

Уже в 1980-х годах ученым была точно известна так называемая критическая плотность, обеспечивающая пространственно-плоскую Вселенную. Но полученные результаты измерения количества барионного вещества в галактических кластерах совместно с плотностью, которую мог обеспечить Большой взрыв, скорее указывали на низкую плотностью материи в пространстве.

Также о недостатке материи говорил возраст шаровых скоплений – весьма немолодых конгломератов звезд. Оказалось, что такие скопления родились как минимум 10 миллиардов лет назад: но при наблюдаемом количестве вещества после Большого взрыва расширение Вселенной должно было постепенно замедляться и в целом оценка ее возраста была меньше. Наш мир оказывался моложе, чем его составляющие.

Сверхновые типа Ia

Окончательно убедить ученых в необходимости поиска нового источника энергии во Вселенной смогли сверхновые типа Iа – звезды, жизненный цикл которых заканчивается вспышкой, настолько интенсивной, что ее возможно наблюдать на Земле.

Две команды ученых, Supernova Cosmology Project, руководителем которого был Сол Перлмуттер, и High-Z Supernova Research Team, возглавляемый Брайаном Шмидтом, предложили процедуру использования самых мощных телескопов в мире для изучения сверхновых.

Прорыв совершил Марк Филлипс, астроном, работающий в Чили: он предложил новый способ определения внутренней светимости сверхновых типа Ia, которая напрямую связана с расстоянием до небесного тела. С другой стороны, расстояние до некоторых из звезд можно было определить с помощью закона Хаббла, описывающего изменение длины волны излучаемых объектом фотонов вследствие расширения Вселенной.

Оказалось, что сверхновые в далеких галактиках гораздо более «бледные»: их светимость была сильно меньше предсказанной исходя из расстояния, рассчитанного по закону Хаббла. Иными словами, сверхновые должны были находится гораздо дальше: так ученые впервые предположили, что Вселенная не просто расширяется, а с некоторым ускорением.

Наблюдение далеких сверхновых типа Ia в одночасье перевернуло представление ученых о Вселенной. Исследования показали, что около 70 % плотности энергии составляет новый, неизвестный компонент с отрицательным давлением.

Термин «темная энергия» предложил позднее космолог Майкл Тeрнер, а перед учеными встала новая загадка: объяснить природу еe возникновения.

Можно ли объяснить ускоренное расширение Вселенной?

В настоящее время существуют три класса теорий, претендующих на роль темной энергии. Первый вариант постулирует наличие энергии у вакуума: по сути дела это стало возвращением к космологической постоянной, предложенной Эйнштейном для поддержания статической Вселенной. В новом варианте плотность вакуума одинакова во всем пространстве, но не исключается, что она могла меняться со временем.

Второй вариант, получивший название квинтэссенции, предложенный немецким физиком Кристофом Веттерихом, предполагает наличие нового поля – фактически, новых частиц, вносящих вклад в общую плотность Вселенной. Энергия таких частиц уже не только изменяется со временем, но и в пространстве: для того, чтобы сильные колебания плотности темной энергии отсутствовали, частицы должны быть достаточно легкими. В этом, пожалуй, состоит основная проблема квинтэссенции: предложенные варианты частиц, согласно основным принципам современной физики, не могут оказываться легкими, а наоборот, приобретать значительную массу, и на данный момент никаких указаний на этот сценарий не получено.

К третьему варианту относятся различные теории модифицированной гравитации, в которой взаимодействие между массивными объектами не подчиняется стандартным законам Общей теории относительности (ОТО). Существует великое множество модификаций гравитации, но к настоящему времени отклонения от ОТО в экспериментах не были обнаружены.

Темная энергия, несмотря на огромный вклад в состояние Вселенной, упорно «прячется» от наблюдателей, и изучаются лишь косвенные проявления ее свойств. Среди них основную роль играют барионные акустические осцилляции, анизотропия реликтового излучения и слабое гравитационное линзирование.

Барионные акустические осцилляции

Барионные акустические осцилляции, или, сокращенно, БАО – наблюдаемое периодическое изменение плотности обычного, барионного вещества на больших масштабах. В первоначальной, горячая космической плазме, состоявшей из барионов и фотонов, конкурировали два процесса: гравитационное притяжение, с одной стороны, и отталкивание за счет высвобождения энергии при реакциях между веществом и фотонами – с другой. Подобное «противостояние» приводило к акустическим колебаниями, подобно звуковым волнам в воздухе между областями с различной плотностью.

При остывании Вселенной в определенный момент произошла рекомбинация – отдельным частицам стало выгоднее образовывать атомы, а фотоны фактически стали «свободными» и отделились от вещества. При этом вследствие колебаний вещество успело разлететься на некоторое определенное расстояние, называемое звуковым горизонтом. Последствия наличия горизонта в настоящее время наблюдаются в распределении галактик во Вселенной.

Сам по себе звуковой горизонт – величина, предсказываемая космологически. Он напрямую зависит от параметра Хаббла, определяющего скорость расширения Вселенной, который в свою очередь определяется и параметрами темной энергии.

Реликтовое излучение

Микроволновое реликтовое излучение – дальний «отголосок» Большого взрыва, равномерно заполняющие Вселенную фотоны с практически одинаковой энергией. В настоящее время именно реликтовое излучение является основным источником ограничений на различные космологические модели.

Однако, с увеличением чувствительности инструментов было обнаружено, что реликтовое излучение анизотропно и имеет неоднородности – с каких-то направлений приходит несколько больше фотонов, чем с других. Такое различие в том числе также вызвано наличием неоднородностей в распределении вещества, и масштаб распределения «горячих» и «холодных» пятен на небе определяется свойствами темной энергии.

Слабое гравитационное линзирование

Еще один важный для исследования темной энергии эффект – гравитационное темное линзирование – состоит в отклонении пучков света в поле вещества. Линзирование одновременно позволяет изучать структуру Вселенной и её геометрию, то есть форму пространства-времени.

Существуют различные виды гравитационного линзирования, среди которых наиболее удобным для изучения темной энергии является слабое линзирование за счет отклонения света крупномасштабной структурой Вселенной – это приводит к размыванию изображений далеких галактик.

Темная энергия одновременно влияет как на свойства источника, например расстояние до него, так и на свойства искажающего картинку пространства. Поэтому слабое линзирование, с учетом постоянно обновляющихся астрономических данных, является вдвойне важным способом постановки ограничений на свойства темной энергии.

Темная энергия – по прежнему в тени

Подведем итоги, что же удалось узнать физикам за практически тридцатилетний стаж изучения темной энергии?

С большой точностью известно, что темная энергия обладает отрицательным давлением: более того, уравнение зависимости давления от плотности энергии определено с большой достоверностью, и такими свойствами не обладает ни одна другая известная нам среда.

Темная энергия пространственно-однородна, а ее вклад в плотность энергии стал доминирующим относительно недавно – около пяти миллиардом лет назад; при этом она влияет одновременно и на расстояния между объектами и на саму структуру Вселенной.

Различные космологические эксперименты позволяют изучать темную энергию, но в настоящее время ошибки измерения слишком велики, чтобы делать точные предсказания. Пока что ученые еще явно далеки от ответа на вопрос о природе темной энергии, которая многие миллиарды лет тайно управляет устройством Вселенной.