Биографии

Свойства действий с рациональными числами. Уроки по математике на тему "Сравнение дробей. Вычисления с рациональными числами" (7 класс). Сложение противоположных рациональных чисел

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА II

§ 36 Действия над рациональными числами

Как известно, две дроби m / n и k / l равны, то есть изображают одно и то же рациональное число, в том и только в том случае, когда ml = nk .

Например, 1 / 3 = 2 / 6 , так как 1 6 = 3 2; -5 / 7 = 10 / - 14 , поскольку (-5) (- 14) = 7 10; 0 / 1 = 0 / 5 , так как 0 5 = 1 0 и т. д.

Очевидно, что для любого целого числа r , не равного 0,

: m / n = m r / n r

Это вытекает из очевидного равенства т (п r ) = п (т r ). Поэтому любое рациональное число можно представить в виде отношения двух чисел бесконечным числом способов. Например,

5 = 5 / 1 = -10 / -2 = 15 / 3 и т. д,

1 / 7 = 2 / -14 = -3 / 21 = -100 / 700 и т. д.

0 = 0 / 1 = 0 / -2 = 0 / 3 = 0 / 100 и т. д.

В множестве всех рациональных чисел выполнимы действия сложения, умножения, вычитания и деления (кроме деления на нуль). Напомним, как определяются эти действия.

Сумма двух рациональных чисел m / n и k / l определяется формулой :

Произведение двух рациональных чисел m / n и k / l определяется формулой :

m / n k / l = mk / nl (2)

Поскольку одно и то же рациональное число допускает несколько записей (например, 1 / 3 = 2 / 6 = 3 / 9 = ...) следовало бы показать, что сумма и произведение рациональных чисел не зависят от того, как записаны слагаемые или сомножители. Например,

1 / 2 + 1 / 3 = 2 / 4 + 3 / 9 ; 1 / 2 1 / 3 = 3 / 6 2 / 6

и т. д. Однако рассмотрение этих вопросов выходит за пределы нашей программы.

При сложении и умножении рациональных чисел соблюдаются следующие основные законы:

1) коммутативный (или переместительный) закон сложения

m / n + k / l = k / l + m / n

2) ассоциативный (или сочетательный) закон сложения:

( m / n + k / l ) + p / q = m / n + ( k / l + p / q )

3) коммутативный (или переместительный) закон умножения:

m / n k / l = k / l m / n

4) ассоциативный (или сочетательный) закон умножения:

( m / n k / l ) p / q = m / n ( k / l p / q )

5) дистрибутивный (или распределительный) закон умножения относительно сложения:

( m / n + k / l ) p / q = m / n p / q + k / l p / q

Сложение и умножение являются основными алгебраическими действиями. Что же касается вычитания и деления, то эти действия определяются как обратные по отношению к сложению и умножению.

Разностью двух рациональных чисел m / n и k / l называется такое число х , которое в сумме с k / l дает m / n . Другими словами, разность m / n - k / l

k / l + x = m / n

Можно доказать, что такое уравнение всегда имеет корень и притом только один:

Таким образом, разность двух чисел m / n и k / l находится по формуле:

Если числа m / n и k / l равны между собой, то разность их обращается в нуль; если же эти числа не равны между собой, то разность их либо положительна, либо отрицательна. При m / n - k / l > 0 говорят, что число m / n больше числа k / l ; если же m / n - k / l < 0, то говорят, что число m / n меньше числа k / l .

Частным от деления рационального числа m / n на рациональное число k / l называется такое число х , которое в произведении с k / l дает m / n . Другими словами, частное m / n : k / l определяется как корень уравнения

k / l х = m / n .

Если k / l =/= 0, то данное уравнение имеет единственный корень

х = ml / nk

Если же k / l = 0, то это уравнение либо совсем не имеет корней (при m / n =/= 0), либо имеет бесконечно много корней (при m / n = 0). Желая сделать операцию деления выполнимой однозначно, условимся не рассматривать вовсе деление на нуль. Таким образом, деление рационального числа m / n на рациональное число k / l определено всегда, если только k / l =/= 0. При этом

m / n : k / l = ml / nk

Упражнения

295. Вычислить наиболее рациональным способом и указать, какими законами действий приходится при этом пользоваться;

а) (5 1 / 12 - 3 1 / 4) 24; в) (333 1 / 3 4) (3 / 125 1 / 16) .

б) (1 / 10 - 3 1 / 2) + 9 / 10


В этой статье дан обзор свойств действий с рациональными числами . Сначала озвучены основные свойства, на которых базируются все остальные свойства. После этого даны некоторые другие часто используемые свойства действий с рациональными числами.

Навигация по странице.

Перечислим основные свойства действий с рациональными числами (a , b и c – произвольные рациональные числа):

  • Переместительное свойство сложения a+b=b+a .
  • Сочетательное свойство сложения (a+b)+c=a+(b+c) .
  • Существование нейтрального элемента по сложению – нуля, сложение которого с любым числом не изменяет это число, то есть, a+0=a .
  • Для каждого рационального числа a существует противоположное число −a такое, что a+(−a)=0 .
  • Переместительное свойство умножения рациональных чисел a·b=b·a .
  • Сочетательное свойство умножения (a·b)·c=a·(b·c) .
  • Существование нейтрального элемента по умножению – единицы, умножение на которую любого числа не изменяет это число, то есть, a·1=a.
  • Для каждого отличного от нуля рационального числа a существует обратное число a −1 такое, что a·a −1 =1 .
  • Наконец, сложение и умножение рациональных чисел связаны распределительным свойством умножения относительно сложения: a·(b+c)=a·b+a·c .

Перечисленные свойства действий с рациональными числами являются основными, так как все остальные свойства могут быть получены из них.

Другие важные свойства

Помимо девяти перечисленных основных свойств действий с рациональными числами существует еще ряд очень широко используемых свойств. Дадим их краткий обзор.

Начнем со свойства, которое с помощью букв записывается как a·(−b)=−(a·b) или в силу переместительного свойства умножения как (−a)·b=−(a·b) . Из этого свойства напрямую следует правило умножения рациональных чисел с разными знаками , в указанной статье приведено и его доказательство. Указанное свойство объясняет правило «плюс умножить на минус есть минус, и минус умножить на плюс есть минус».

Вот следующее свойство: (−a)·(−b)=a·b . Из него следует правило умножения отрицательных рациональных чисел , в этой статье Вы найдете и доказательство приведенного равенства. Этому свойству отвечает правило умножения «минус умножить на минус есть плюс».

Несомненно, стоит остановиться на умножении произвольного рационального числа a на нуль: a·0=0 или 0·a=0 . Докажем это свойство. Мы знаем, что 0=d+(−d) для любого рационального d , тогда a·0=a·(d+(−d)) . Распределительное свойство позволяет полученное выражение переписать как a·d+a·(−d) , а так как a·(−d)=−(a·d) , то a·d+a·(−d)=a·d+(−(a·d)) . Так мы пришли к сумме двух противоположных чисел, равных a·d и −(a·d) , их сумма дает нуль, что и доказывает равенство a·0=0 .

Легко заметить, что выше мы перечислили только свойства сложения и умножения, при этом ни слова не сказали о свойствах вычитания и деления. Это связано с тем, что на множестве рациональных чисел действия вычитание и деление задаются как обратные к сложению и умножению соответственно. То есть, разность a−b – это есть сумма a+(−b) , а частное a:b – это есть произведение a·b −1 (b≠0 ).

Учитывая эти определения вычитания и деления, а также основные свойства сложения и умножения, можно доказать любые свойства действий с рациональными числами.

Для примера докажем распределительное свойство умножения относительно вычитания: a·(b−c)=a·b−a·c . Имеет место следующая цепочка равенств a·(b−c)=a·(b+(−c))= a·b+a·(−c)=a·b+(−(a·c))=a·b−a·c , которая и является доказательством.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Понятие о числах относится к абстракциям, характеризующим объект с количественной точки зрения. Еще в первобытном обществе у людей возникла потребность в счете предметов, поэтому появились численные обозначения. В дальнейшем они стали основой математики как науки.

Чтобы оперировать математическими понятиями, необходимо, прежде всего, представлять, какие же бывают числа. Основных видов чисел несколько. Это:

1. Натуральные - те, которые мы получаем при нумерации предметов (их естественном счете). Их множество обозначают N.

2. Целые (их множество обозначается буквой Z). Сюда относятся натуральные, противоположные им целые отрицательные числа и нуль.

3. Рациональные числа (буква Q). Это те, которые возможно представить в виде дроби, числитель которой равняется целому числу, а знаменатель - натуральному. Все целые и относятся к рациональным.

4. Действительные (их обозначают буквой R). Они включают в себя рациональные и иррациональные числа. Иррациональными называются числа, полученные из рациональных путем различных операций (вычисление логарифма, извлечение корня), сами не являющиеся рациональными.

Таким образом, любое из перечисленных множеств является подмножеством нижеперечисленного. Иллюстрацией данного тезиса служит диаграмма в виде т. н. кругов Эйлера. Рисунок представляет собой несколько концентрических овалов, каждый из которых расположен внутри другого. Внутренний, самый малый по размеру овал (область) обозначает множество натуральных чисел. Его полностью охватывает и включает в себя область, символизирующая множество целых чисел, которая, в свою очередь, заключена внутри области рациональных чисел. Внешний, самый большой овал, включающий в себя все остальные, обозначает массив

В данной статье мы рассмотрим множество рациональных чисел, их свойства и особенности. Как уже упоминалось, к ним принадлежат все существующие числа (положительные, а также отрицательные и нуль). Рациональные числа составляют бесконечный ряд, имеющий следующие свойства:

Данное множество упорядочено, то есть, взяв любую пару чисел из этого ряда, мы всегда можем узнать, какое из них больше;

Взяв любую пару таких чисел, мы всегда можем поместить между ними как минимум еще одно, а, следовательно, и целый ряд таковых - таким образом, рациональные числа представляют собой бесконечный ряд;

Все четыре арифметических действия над такими числами возможны, результатом их всегда является определенное число (также рациональное); исключение составляет деление на 0 (нуль) - оно невозможно;

Любые рациональные числа могут быть представлены в виде десятичных дробей. Эти дроби могут быть либо конечными, либо бесконечными периодическими.

Чтобы сравнить два числа, относящихся к множеству рациональных, необходимо помнить:

Любое положительное число больше нуля;

Любое отрицательное число всегда меньше нуля;

При сравнении двух отрицательных рациональных чисел больше то из них, чья абсолютная величина (модуль) меньше.

Как производятся действия с рациональными числами?

Чтобы сложить два таких числа, имеющих одинаковый знак, нужно сложить их абсолютные величины и поставить перед суммой общий знак. Для сложения чисел с разными знаками следует из большего значения вычесть меньшее и поставить знак того из них, чье абсолютное значение больше.

Для вычитания одного рационального числа из другого достаточно к первому числу прибавить противоположное второму. Для умножения двух чисел нужно перемножить значения их абсолютных величин. Полученный результат будет положительным, если сомножители имеют один и тот же знак, и отрицательным, если разные.

Деление производится аналогично, то есть находится частное абсолютных величин, а перед результатом ставится знак «+» в случае совпадения знаков делимого и делителя и знак «-» в случае их несовпадения.

Степени рациональных чисел выглядят как произведения нескольких сомножителей, равных между собой.


























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок обобщения и систематизации знаний с применением компьютерных технологий.

Цели урока:

  • Образовательные :
    • совершенствовать навыки решения примеров и уравнений по теме «Свойства действий с рациональными числами»;
    • закрепить умения выполнять арифметические действия над рациональными числами;
    • проверить умение использовать свойства арифметических действий для упрощения выражений с рациональными числами;
    • обобщить и систематизировать теоретический материал.
  • Развивающие :
  • Воспитательные :
    • воспитывать умение работать с имеющейся информацией;
    • воспитывать уважение к предмету;
    • воспитывать умение слушать своего товарища, чувство взаимопомощи и взаимоподдержки;
    • способствовать воспитанию самоконтроля и взаимоконтроля учащихся.

Оборудование и наглядность: компьютер, мультимедийный проектор, экран, интерактивная презентация, сигнальные карточки для устного счета, цветные мелки.

Структура урока:

ХОД УРОКА

I. Организационный момент

II. Сообщение темы и целей урока

Проверка готовности учащихся к уроку. Сообщение учащимся целей и плана урока.

– Тема нашего урока: «Свойства действий с рациональными числами», а девиз урока я прошу вас прочитать хором:

Да, путь познания не гладок.
Но знаем мы со школьных лет,
Загадок больше, чем разгадок,
И поискам предела нет!

И сегодня мы с вами на уроке дружно и активно создадим математическую газету. Я – буду главным редактором, а вы – корректорами. Как вы понимаете значение этого слова?
Чтобы проверить других, нам необходимо систематизировать свои знания по теме «Свойства действий с рациональными числами».

А газета наша называется «Рациональные числа». А в переводе на татарский язык?
Я слышала, что вы хорошо знаете и английский язык, а как англичане назовут эту газету?
Представляю вам макет газеты, которая состоит из следующих рубрик: чтение хором: «Спрашивают – отвечаем », «Новости дня », «Аукцион проектов », «Актуальный репортаж », «А знаете ли вы…?» .

III. Актуализация опорных знаний

Устная работа:

В первой рубрике «Спрашивают – отвечаем» нам нужно проверить правильность информации, которую нам прислали в письмах наши корреспонденты. Посмотрите внимательно и скажите, какие правила нам нужно вспомнить, чтобы проверить эту информацию.

1.Правило сложения отрицательных чисел:

«Чтобы сложить два отрицательных числа, надо: 1) сложить их модули, 2) поставить перед полученным числом знак минус».

2. Правило деления чисел с разными знаками:

«При делении чисел с разными знаками, надо: 1) разделить модуль делимого на модуль делителя, 2) поставить перед полученным числом знак минус».

3. Правило умножения двух отрицательных чисел:

«Чтобы перемножить два отрицательных числа, надо перемножить их модули».

4. Правило умножения чисел с разными знаками:

«Чтобы перемножить два числа с разными знаками, надо перемножить модули этих чисел и поставить перед полученным числом знак минус».

5. Правило деления отрицательного числа на отрицательное число:

«Чтобы разделить отрицательное число на отрицательное число, надо разделить модуль делимого на модуль делителя».

6. Правило сложения чисел с разными знаками:

«Чтобы сложить два числа с разными знаками, надо 1) из большего модуля слагаемых вычесть меньший, 2) поставить перед полученным числом знак того слагаемого, модуль которого больше.

1) – 8,4 + (– 8,4) = 0; (– 16,8)
2) (– 6,7) . (– 10) = – 67; (67)
3) (– 2,2) + 3,5 = 1,3;
4) – 13 – 8 = – 5; (– 21)
5) 15 – 18 = – 13; (– 3)
6) 7,4 – (– 3,2) = – 10,6; (10,6)
7) – 9 . 6 = – 54;
8) – 3,6 . 1 = –1; (– 3,6)
9) – 18: (– 0,3) = 60;
10) – 3,7 . 0 = – 3,7. (0)

– Молодцы, хорошо справились.

IV. Закрепление пройденного материала

– А сейчас мы переходим к рубрике «Новости дня ». Чтобы заполнить эту рубрику, нам необходимо систематизировать знания о числах.
– Какие вы знаете числа? (Натуральные, дробные, рациональные)
– А какие числа относятся к рациональным? (Положительные, отрицательные и 0)
– А какие свойства рациональных чисел вы знаете? (Переместительное, сочетательное и распределительное, умножение на 1, умножение на 0)
– А теперь перейдем к письменной работе. Открыли тетради, записали число, классная работа, тема «Свойства действий с рациональными числами».
Используя эти свойства, упростим выражения:

А) х + 32 – 16 = х + 16
Б) – х – 18 – 23 = – х – 41
В) – 1,5 + х – 20 = – 21,5 + х
Г) 12 – 26 + х = х – 14
Д) 1,7 + 3,6 – х = 5,3 – х
Е) – х + а + 6,1 – а + 2,8 – 8,8 = – х + 0,1

– А следующие примеры требуют от нас еще более рационального решения с объяснением.

– 98 + 85 + 45 – 55 – 28 + 63 = 12
– 6,56 + 2,4 – 3,2 + 6,56 + 4 + 3,2 – 2,4 = 4
– 19,61 * 20 + 19,61 * 120 = 1961

12.04.1961 – Вам о чем-нибудь говорят полученные ответы?
50 лет назад 12 апреля 1961 года Юрий Гагарин полетел в космос. Город Заинск тоже имеет свою космическую историю: 9 марта 1961 года спускаемый аппарат №1 космического корабля «ВОСТОК-4» совершил мягкую посадку в районе села Старый Токмак Заинского района с манекеном человека, собакой и другими мелкими животными на борту. И в честь этого события в нашем районе поставят памятник. Сейчас в городе работает конкурсная комиссия. В конкурсе участвуют 3 проекта, они перед вами на экране. А сейчас мы с вами проведем аукцион проектов.
Я прошу проголосовать за понравившийся вам проект. Ваш голос может оказаться решающим.

V. Физкультминутка

– Свое мнение вы выражаете аплодисментами и топаньем. Давайте прорепетируем! Три хлопка и три притопа.
– Еще раз попробуем. Итак, голосование начинается:

– Отдаем свои голоса за Макет №1
– Отдаем свои голоса за Макет №2
– Отдаем свои голоса за Макет №3
– А теперь за все макеты вместе.
– Победу одержал Макет № ... Спасибо, я записала ваши голоса (поднимает сотовый телефон и показывает детям) и передам в счетную комиссию.
– Молодцы, спасибо. А впереди не менее важный – Актуальный репортаж.

VI. Подготовка к ГИА

В рубрику «Актуальный репортаж» пришло письмо, где ученик просит помочь ему в решении заданий к итоговому экзамену в 9 классе. Нам нужно каждому самостоятельно прорешать задания, тесты <Приложение 1 > у вас на столах:

1. Решить уравнения:

а) (х + 3)(х – 6) = 0

1) х = 3, х = – 6
2) х = – 3, х = – 6
3) х = – 3, х = 6