Семья

Как искать наибольшее и наименьшее значение функции. Как найти наибольшее и наименьшее значения функции в ограниченной замкнутой области? Алгоритм поиска наибольшего и наименьшего значений функции $z=f(x,y)$ в замкнутой области $D$


С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции - определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функции , что для любого справедливо неравенство .

Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На отрезке


На первом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале


На четвертом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале , о наибольшем значении никаких выводов сделать нельзя.

На бесконечности


В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение (min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
  5. Из полученных значений функции выбираем наибольшее и наименьшее - они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Пример.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке [-4;-1] .

Решение.

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по :

Очевидно, производная функции существует во всех точках отрезков и [-4;-1] .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение – при x=2 .

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции .

Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция непрерывна на отрезке если:

1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева .

Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:

Функция непрерывна в точке справа , если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева , если определена в данной точке и её левосторонний предел равен значению в этой точке:

Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём . В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)

Согласно второй теореме Вейерштрасса , непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .

Число также называют максимальным значением функции на отрезке и обозначают через , а число – минимальным значением функции на отрезке с пометкой .

В нашем случае:

Примечание : в теории распространены записи .

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно! Как уже заострялось внимание в статье об экстремумах функции , наибольшее значение функции и наименьшее значение функции НЕ ТО ЖЕ САМОЕ , что максимум функции и минимум функции . Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!

Более того, решение чисто аналитическое, следовательно, чертежа делать не надо !

Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

1) Находим значения функции в критических точках , которые принадлежат данному отрезку .

Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует , что там минимальное или максимальное значение. Демонстрационная функция достигает максимума и волей судьбы это же число является наибольшим значением функции на отрезке . Но, понятно, такое совпадение имеет место далеко не всегда.

Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.

2) Вычисляем значения функции на концах отрезка.

3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

Садимся на берег синего моря и бьём пятками по мелководью:

Пример 1

Найти наибольшее и наименьшее значения функции на отрезке

Решение :
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Вычислим значение функции во второй критической точке:

2) Вычислим значения функции на концах отрезка:

3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :

Вот теперь всё понятно.

Ответ :

Дробно-рациональный экземпляр для самостоятельного решения:

Пример 6

Найти максимальное и минимальное значения функции на отрезке

Часто в физике и математике требуется найти наименьшее значение функции. Как это сделать, мы сейчас расскажем.

Как находить наименьшее значение функции: инструкция

  1. Чтобы вычислить наименьшее значение непрерывной функции на заданном отрезке, нужно следовать такому алгоритму:
  2. Найти производную от функции.
  3. Найти на заданном отрезке точки, в которых производная равна нулю, а также все критические точки. Затем выяснить значения функции в этих точках, то есть решить уравнение, где x равно нулю. Выяснить, какое из значений наименьшее.
  4. Выявить, какое значение функция имеет на конечных точках. Определить наименьшее значение функции в этих точках.
  5. Сравнить полученные данные с наименьшим значением. Меньшее из полученных чисел и будет являться наименьшим значением функции.

Заметьте, что в том случае, если функция на отрезке не имеет наименьших точек, это значит, что на данном отрезке она возрастает или убывает. Следовательно, наименьшее значение следует вычислять на конечных отрезках функции.

Во всех остальных случаях значение функции вычисляется по заданному алгоритму. В каждом пункте алгоритма вам нужно будет решить простое линейное уравнение с одним корнем. Решайте уравнение с помощью рисунка, чтобы избежать ошибок.

Как находить наименьшее значение функции на полуоткрытом отрезке? На полуоткрытом или открытом периоде функции наименьшее значение следует находить следующим образом. На конечных точках значения функции вычислите односторонний предел функции. Другими словами, решите уравнение, в котором стремящиеся точки заданы значением a+0 и b+0, где a и b - названия критических точек.

Теперь Вы знаете, как найти наименьшее значение функции. Главное - все вычисления делать правильно, точно и без ошибок.

Пусть функция $z=f(x,y)$ определена и непрерывна в некоторой ограниченной замкнутой области $D$. Пусть в этой области заданная функция имеет конечные частные производные первого порядка (за исключением, быть может, конечного количества точек). Чтобы найти наибольшее и наименьшее значения функции двух переменных в данной замкнутой области требуется выполнить три шага простого алгоритма.

Алгоритм поиска наибольшего и наименьшего значений функции $z=f(x,y)$ в замкнутой области $D$.

  1. Найти критические точки функции $z=f(x,y)$, принадлежащие области $D$. Вычислить значения функции в критических точках.
  2. Исследовать поведение функции $z=f(x,y)$ на границе области $D$, найдя точки возможного наибольшего и наименьшего значений. Вычислить значения функции в полученных точках.
  3. Из значений функции, полученных в предыдущих двух пунктах, выбрать наибольшее и наименьшее.

Что такое критические точки? показать\скрыть

Под критическими точками подразумевают такие точки, в которых обе частные производные первого порядка равны нулю (т.е. $\frac{\partial z}{\partial x}=0$ и $\frac{\partial z}{\partial y}=0$) или хотя бы одна частная производная не существует.

Часто точки, в которых частные производные первого порядка равны нулю, именуют стационарными точками . Таким образом, стационарные точки - есть подмножество критических точек.

Пример №1

Найти наибольшее и наименьшее значения функции $z=x^2+2xy-y^2-4x$ в замкнутой области, ограниченной линиями $x=3$, $y=0$ и $y=x+1$.

Будем следовать указанному выше , но для начала разберёмся с чертежом заданной области, которую обозначим буквой $D$. Нам заданы уравнения трёх прямых, кои эту область ограничивают. Прямая $x=3$ проходит через точку $(3;0)$ параллельно оси ординат (оси Oy). Прямая $y=0$ - это уравнение оси абсцисс (оси Ox). Ну, а для построения прямой $y=x+1$ найдём две точки, через которые и проведём данную прямую. Можно, конечно, подставить вместо $x$ парочку произвольных значений. Например, подставляя $x=10$, получим: $y=x+1=10+1=11$. Мы нашли точку $(10;11)$, лежащую на прямой $y=x+1$. Однако лучше отыщем те точки, в которых прямая $y=x+1$ пересекается с линиями $x=3$ и $y=0$. Почему это лучше? Потому, что мы одним выстрелом уложим пару зайцев: получим две точки для построения прямой $y=x+1$ и заодно выясним, в каких точках эта прямая пересекает иные линии, ограничивающие заданную область. Прямая $y=x+1$ пересекает прямую $x=3$ в точке $(3;4)$, а прямую $y=0$ - в точке $(-1;0)$. Дабы не загромождать ход решения вспомогательными пояснениями, то вопрос о получении этих двух точек вынесу в примечание.

Как были получены точки $(3;4)$ и $(-1;0)$? показать\скрыть

Начнём с точки пересечения прямых $y=x+1$ и $x=3$. Координаты искомой точки принадлежат и первой, и второй прямой, поэтому для нахождения неизвестных координат нужно решить систему уравнений:

$$ \left \{ \begin{aligned} & y=x+1;\\ & x=3. \end{aligned} \right. $$

Решение такой системы тривиально: подставляя $x=3$ в первое уравнение будем иметь: $y=3+1=4$. Точка $(3;4)$ и есть искомая точка пересечения прямых $y=x+1$ и $x=3$.

Теперь отыщем точку пересечения прямых $y=x+1$ и $y=0$. Вновь составим и решим систему уравнений:

$$ \left \{ \begin{aligned} & y=x+1;\\ & y=0. \end{aligned} \right. $$

Подставляя $y=0$ в первое уравнение, получим: $0=x+1$, $x=-1$. Точка $(-1;0)$ и есть искомая точка пересечения прямых $y=x+1$ и $y=0$ (оси абсцисс).

Всё готово для построения чертежа, который будет иметь такой вид:

Вопрос примечания кажется очевидным, ведь всё видно по рисунку. Однако стоит помнить, что рисунок не может служить доказательством. Рисунок - лишь иллюстрация для наглядности.

Наша область была задана с помощью уравнений прямых, которые её ограничивают. Очевидно, что эти прямые определяют треугольник, не так ли? Или не совсем очевидно? А может, нам задана иная область, ограниченная теми же прямыми:

Конечно, в условии сказано, что область замкнута, поэтому показанный рисунок неверен. Но чтобы избегать подобных двусмысленностей, области лучше задавать неравенствами. Нас интересует часть плоскости, расположенная под прямой $y=x+1$? Ок, значит, $y ≤ x+1$. Наша область должна располагаться над прямой $y=0$? Отлично, значит $y ≥ 0$. Кстати, два последних неравенства легко объединяются в одно: $0 ≤ y ≤ x+1$.

$$ \left \{ \begin{aligned} & 0 ≤ y ≤ x+1;\\ & x ≤ 3. \end{aligned} \right. $$

Эти неравенства и задают область $D$, причём задают её однозначно, не допуская никаких двусмысленностей. Но как это поможет нам в том вопросе, что указан в начале примечания? Ещё как поможет:) Нам нужно проверить, принадлежит ли точка $M_1(1;1)$ области $D$. Подставим $x=1$ и $y=1$ в систему неравенств, которые эту область определяют. Если оба неравенства будут выполнены, то точка лежит внутри области. Если хотя бы одно из неравенств будет не выполнено, то точка области не принадлежит. Итак:

$$ \left \{ \begin{aligned} & 0 ≤ 1 ≤ 1+1;\\ & 1 ≤ 3. \end{aligned} \right. \;\; \left \{ \begin{aligned} & 0 ≤ 1 ≤ 2;\\ & 1 ≤ 3. \end{aligned} \right. $$

Оба неравенства справедливы. Точка $M_1(1;1)$ приналежит области $D$.

Теперь настал черёд исследовать поведение функции на границе области, т.е. переходим ко . Начнём с прямой $y=0$.

Прямая $y=0$ (ось абсцисс) ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставим $y=0$ в заданную функцию $z(x,y)=x^2+2xy-y^2-4x$. Полученную в результате подстановки функцию одной переменной $x$ обозначим как $f_1(x)$:

$$ f_1(x)=z(x,0)=x^2+2x\cdot 0-0^2-4x=x^2-4x. $$

Теперь для функции $f_1(x)$ нужно найти наибольшее и наименьшее значения на отрезке $-1 ≤ x ≤ 3$. Отыщем производную этой функции и приравняем её к нулю:

$$ f_{1}^{"}(x)=2x-4;\\ 2x-4=0; \; x=2. $$

Значение $x=2$ принадлежит отрезку $-1 ≤ x ≤ 3$, поэтому к списку точек добавим ещё и $M_2(2;0)$. Кроме того, вычислим значения функции $z$ на концах отрезка $-1 ≤ x ≤ 3$, т.е. в точках $M_3(-1;0)$ и $M_4(3;0)$. Кстати, если бы точка $M_2$ не принадлежала рассматриваемому отрезку, то, разумеется, значение функции $z$ в ней вычислять не было бы надобности.

Итак, вычислим значения функции $z$ в точках $M_2$, $M_3$, $M_4$. Можно, конечно, подставлять координаты данных точек в исходное выражение $z=x^2+2xy-y^2-4x$. Например, для точки $M_2$ получим:

$$z_2=z(M_2)=2^2+2\cdot 2\cdot 0-0^2-4\cdot 2=-4.$$

Однако вычисления можно немного упростить. Для этого стоит вспомнить, что на отрезке $M_3M_4$ имеем $z(x,y)=f_1(x)$. Распишу это подробно:

\begin{aligned} & z_2=z(M_2)=z(2,0)=f_1(2)=2^2-4\cdot 2=-4;\\ & z_3=z(M_3)=z(-1,0)=f_1(-1)=(-1)^2-4\cdot (-1)=5;\\ & z_4=z(M_4)=z(3,0)=f_1(3)=3^2-4\cdot 3=-3. \end{aligned}

Разумеется, что в столь подробных записях обычно нет нужды, и все вычисления в дальнейшем станем записывать покороче:

$$z_2=f_1(2)=2^2-4\cdot 2=-4;\; z_3=f_1(-1)=(-1)^2-4\cdot (-1)=5;\; z_4=f_1(3)=3^2-4\cdot 3=-3.$$

Теперь обратимся к прямой $x=3$. Эта прямая ограничивает область $D$ при условии $0 ≤ y ≤ 4$. Подставим $x=3$ в заданную функцию $z$. В результате такой подстановки мы получим функцию $f_2(y)$:

$$ f_2(y)=z(3,y)=3^2+2\cdot 3\cdot y-y^2-4\cdot 3=-y^2+6y-3. $$

Для функции $f_2(y)$ нужно найти наибольшее и наименьшее значения на отрезке $0 ≤ y ≤ 4$. Отыщем производную этой функции и приравняем её к нулю:

$$ f_{2}^{"}(y)=-2y+6;\\ -2y+6=0; \; y=3. $$

Значение $y=3$ принадлежит отрезку $0 ≤ y ≤ 4$, поэтому к найденным ранее точкам добавим ещё и $M_5(3;3)$. Кроме того, нужно вычислить значение функции $z$ в точках на концах отрезка $0 ≤ y ≤ 4$, т.е. в точках $M_4(3;0)$ и $M_6(3;4)$. В точке $M_4(3;0)$ мы уже вычисляли значение $z$. Вычислим значение функции $z$ в точках $M_5$ и $M_6$. Напомню, что на отрезке $M_4M_6$ имеем $z(x,y)=f_2(y)$, поэтому:

\begin{aligned} & z_5=f_2(3)=-3^2+6\cdot 3-3=6; & z_6=f_2(4)=-4^2+6\cdot 4-3=5. \end{aligned}

И, наконец, рассмотрим последнюю границу области $D$, т.е. прямую $y=x+1$. Эта прямая ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставляя $y=x+1$ в функцию $z$, будем иметь:

$$ f_3(x)=z(x,x+1)=x^2+2x\cdot (x+1)-(x+1)^2-4x=2x^2-4x-1. $$

Вновь мы получили функцию одной переменной $x$. И вновь нужно найти наибольшее и наименьшее значения этой функции на отрезке $-1 ≤ x ≤ 3$. Отыщем производную функции $f_{3}(x)$ и приравняем её к нулю:

$$ f_{3}^{"}(x)=4x-4;\\ 4x-4=0; \; x=1. $$

Значение $x=1$ принадлежит отрезку $-1 ≤ x ≤ 3$. Если $x=1$, то $y=x+1=2$. Добавим к списку точек ещё и $M_7(1;2)$ и выясним, чему равно значение функции $z$ в этой точке. Точки на концах отрезка $-1 ≤ x ≤ 3$, т.е. точки $M_3(-1;0)$ и $M_6(3;4)$, были рассмотрены ранее, значение функции в них мы уже находили.

$$z_7=f_3(1)=2\cdot 1^2-4\cdot 1-1=-3.$$

Второй шаг решения закончен. Мы получили семь значений:

$$z_1=-2;\;z_2=-4;\;z_3=5;\;z_4=-3;\;z_5=6;\;z_6=5;\;z_7=-3.$$

Обратимся к . Выбирая наибольшее и наименьшее значения из тех чисел, что были получены в третьем пункте, будем иметь:

$$z_{min}=-4; \; z_{max}=6.$$

Задача решена, осталось лишь записать ответ.

Ответ : $z_{min}=-4; \; z_{max}=6$.

Пример №2

Найти наибольшее и наименьшее значения функции $z=x^2+y^2-12x+16y$ в области $x^2+y^2 ≤ 25$.

Сначала построим чертёж. Уравнение $x^2+y^2=25$ (это граничная линия заданной области) определяет окружность с центром в начале координат (т.е. в точке $(0;0)$) и радиусом 5. Неравенству $x^2+y^2 ≤ 25$ удовлетворяют все точки внутри и на упомянутой окружности.

Будем действовать по . Найдем частные производные и выясним критические точки.

$$ \frac{\partial z}{\partial x}=2x-12; \frac{\partial z}{\partial y}=2y+16. $$

Точек, в которых найденные частные производные не существуют, нет. Выясним, в каких точках обе частные производные одновременно равны нулю, т.е. найдём стационарные точки.

$$ \left \{ \begin{aligned} & 2x-12=0;\\ & 2y+16=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x=6;\\ & y=-8. \end{aligned} \right. $$

Мы получили стационарную точку $(6;-8)$. Однако найденная точка не принадлежит области $D$. Это легко показать, даже не прибегая к помощи рисунка. Проверим, выполняется ли неравенство $x^2+y^2 ≤ 25$, которое определяет нашу область $D$. Если $x=6$, $y=-8$, то $x^2+y^2=36+64=100$, т.е. неравенство $x^2+y^2 ≤ 25$ не выполнено. Вывод: точка $(6;-8)$ не принадлежит области $D$.

Итак, внутри области $D$ нет критических точек. Переходим дальше, ко . Нам нужно исследовать поведение функции на границе заданной области, т.е. на окружности $x^2+y^2=25$. Можно, конечно, выразить $y$ через $x$, а потом подставить полученное выражение в нашу функцию $z$. Из уравнения окружности получим: $y=\sqrt{25-x^2}$ или $y=-\sqrt{25-x^2}$. Подставляя, например, $y=\sqrt{25-x^2}$ в заданную функцию, будем иметь:

$$ z=x^2+y^2-12x+16y=x^2+25-x^2-12x+16\sqrt{25-x^2}=25-12x+16\sqrt{25-x^2}; \;\; -5≤ x ≤ 5. $$

Дальнейшее решение будет полностью идентично исследованию поведения функции на границе области в предыдущем примере №1. Однако мне кажется более разумным в этой ситуации применить метод Лагранжа . Нас будет интересовать лишь первая часть этого метода. После применения первой части метода Лагранжа мы получим точки, в которых и исследуем функцию $z$ на предмет минимального и максимального значений.

Составляем функцию Лагранжа:

$$ F=z(x,y)+\lambda\cdot(x^2+y^2-25)=x^2+y^2-12x+16y+\lambda\cdot (x^2+y^2-25). $$

Находим частные производные функции Лагранжа и составляем соответствующую систему уравнений:

$$ F_{x}^{"}=2x-12+2\lambda x; \;\; F_{y}^{"}=2y+16+2\lambda y.\\ \left \{ \begin{aligned} & 2x-12+2\lambda x=0;\\ & 2y+16+2\lambda y=0;\\ & x^2+y^2-25=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x+\lambda x=6;\\ & y+\lambda y=-8;\\ & x^2+y^2=25. \end{aligned} \right. $$

Для решения этой системы давайте сразу укажем, что $\lambda\neq -1$. Почему $\lambda\neq -1$? Попробуем подставить $\lambda=-1$ в первое уравнение:

$$ x+(-1)\cdot x=6; \; x-x=6; \; 0=6. $$

Полученное противоречие $0=6$ говорит о том, что значение $\lambda=-1$ недопустимо. Вывод: $\lambda\neq -1$. Выразим $x$ и $y$ через $\lambda$:

\begin{aligned} & x+\lambda x=6;\; x(1+\lambda)=6;\; x=\frac{6}{1+\lambda}. \\ & y+\lambda y=-8;\; y(1+\lambda)=-8;\; y=\frac{-8}{1+\lambda}. \end{aligned}

Полагаю, что тут становится очевидным, зачем мы специально оговаривали условие $\lambda\neq -1$. Это было сделано, чтобы без помех поместить выражение $1+\lambda$ в знаменатели. Т.е., чтобы быть уверенным, что знаменатель $1+\lambda\neq 0$.

Подставим полученные выражения для $x$ и $y$ в третье уравнение системы, т.е. в $x^2+y^2=25$:

$$ \left(\frac{6}{1+\lambda} \right)^2+\left(\frac{-8}{1+\lambda} \right)^2=25;\\ \frac{36}{(1+\lambda)^2}+\frac{64}{(1+\lambda)^2}=25;\\ \frac{100}{(1+\lambda)^2}=25; \; (1+\lambda)^2=4. $$

Из полученного равенства следует, что $1+\lambda=2$ или $1+\lambda=-2$. Отсюда имеем два значения параметра $\lambda$, а именно: $\lambda_1=1$, $\lambda_2=-3$. Соответственно, получим и две пары значений $x$ и $y$:

\begin{aligned} & x_1=\frac{6}{1+\lambda_1}=\frac{6}{2}=3; \; y_1=\frac{-8}{1+\lambda_1}=\frac{-8}{2}=-4. \\ & x_2=\frac{6}{1+\lambda_2}=\frac{6}{-2}=-3; \; y_2=\frac{-8}{1+\lambda_2}=\frac{-8}{-2}=4. \end{aligned}

Итак, мы получили две точки возможного условного экстремума, т.е. $M_1(3;-4)$ и $M_2(-3;4)$. Найдём значения функции $z$ в точках $M_1$ и $M_2$:

\begin{aligned} & z_1=z(M_1)=3^2+(-4)^2-12\cdot 3+16\cdot (-4)=-75; \\ & z_2=z(M_2)=(-3)^2+4^2-12\cdot(-3)+16\cdot 4=125. \end{aligned}

На следует выбрать наибольшее и наименьшее значения из тех, что мы получили на первом и втором шагах. Но в данном случае выбор невелик:) Имеем:

$$ z_{min}=-75; \; z_{max}=125. $$

Ответ : $z_{min}=-75; \; z_{max}=125$.

Как найти наибольшее и наименьшее значения функции на отрезке?

Для этого мы следуем известному алгоритму :

1 . Находим ОДЗ функции.

2 . Находим производную функции

3 . Приравниваем производную к нулю

4 . Находим промежутки, на которых производная сохраняет знак, и по ним определяем промежутки возрастания и убывания функции:

Если на промежутке I производная функции 0" title="f^{prime}(x)>0">, то функция возрастает на этом промежутке.

Если на промежутке I производная функции , то функция убывает на этом промежутке.

5 . Находим точки максимума и минимума функции .

В точке максимума функции производная меняет знак с "+" на "-" .

В точке минимума функции производная меняет знак с "-" на "+" .

6 . Находим значение функции в концах отрезка,

  • затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
  • или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции

Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.

Рассмотрим функцию . График этой функции выглядит так:

Рассмотрим несколько примеров решения задач из Открытого банка заданий для

1 . Задание B15 (№ 26695)

На отрезке .

1. Функция определена при всех действительных значениях х

Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.

Ответ: 5.

2 . Задание B15 (№ 26702)

Найдите наибольшее значение функции на отрезке .

1. ОДЗ функции title="x{pi}/2+{pi}k, k{in}{bbZ}">

Производная равна нулю при , однако, в этих точках она не меняет знак:

Следовательно, title="3/{cos^2{x}}>=3">, значит, title="3/{cos^2{x}}-3>=0">, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .

Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:

Title="y^{prime}=3/{cos^2{x}}-3={3-3cos^2{x}}/{cos^2{x}}={3sin^2{x}}/{cos^2{x}}=3tg^2{x}>=0">

Ответ: 5.

3 . Задание B15 (№ 26708)

Найдите наименьшее значение функции на отрезке .

1. ОДЗ функции : title="x{pi}/2+{pi}k, k{in}{bbZ}">

Расположим корни этого уравнения на тригонометрической окружности.

Промежутку принадлежат два числа: и

Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.

Изобразим смену знаков производной функции на координатной прямой:

Очевидно, что точка является точкой минимума (в ней производная меняет знак с "-" на "+"), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .