Краткие содержания

Х 0 округленным относительная погрешность. Абсолютная и относительная погрешность числа. Вычислим значение функции в точке

Имея дело в вычислениях с бесконечными десятичными дробями, приходится для удобства выполнять приближение этих чисел, т. е. округлять их. Приблизительные числа получаются также при различных измерениях.

Бывает полезно узнать, как сильно приближенное значение числа отличается от его точного значения. Понятно, что чем это различие меньше, тем лучше, тем точнее выполнено измерение или вычисление.

Для определения точности измерений (вычислений) вводят такое понятие как погрешность приближения . По-другому его называют абсолютной погрешностью . Погрешность приближения представляет собой взятую по модулю разность между точным значением числа и его приближенным значением.

Если a - это точное значение числа, а b - его приближенное значение, то погрешность приближения определяется по формуле |a – b|.

Допустим, что в результате измерений было получено число 1,5. Однако в результате вычисления по формуле точное значение этого числа равно 1,552. В таком случае погрешность приближения будет равна |1,552 – 1,5| = 0,052.

В случае с бесконечными дробями погрешность приближения определяется по той же формуле. На месте точного числа записывается сама бесконечная дробь. Например, |π – 3,14| = |3,14159... – 3,14| = 0,00159... . Здесь получается, что погрешность приближения выражена иррациональным числом.

Как известно, приближение может выполняться как по недостатку, так и по избытку. То же число π при приближении по недостатку с точностью до 0,01 равно 3,14, а при приближении по избытку с точностью до 0,01 равно 3,15. Причина, по которой в вычислениях используется его приближение по недостатку, заключается в применении правил округления. Согласно этим правилам, если первая отбрасываемая цифра равна пяти или больше пяти, то выполняется приближение по избытку. Если меньше пяти, то по недостатку. Так как третьей цифрой после запятой у числа π является 1, то поэтому при приближении с точностью до 0,01 оно выполняется по недостатку.

Действительно, если вычислить погрешности приближения до 0,01 числа π по недостатку и по избытку, то получим:

|3,14159... – 3,14| = 0,00159...
|3,14159... – 3,15| = 0,0084...

Так как 0,00159...

Говоря о погрешности приближения, также как и в случае с самим приближением (по избытку или недостатку), указывают его точность. Так в приводимом выше примере с числом π следует сказать, что оно равно числу 3,14 с точностью до 0,01. Ведь модуль разности между самим числом и его приближенным значением не превышает 0,01 (0,00159... ≤ 0,01).

Точно также π равно 3,15 с точностью до 0,01, так как 0,0084... ≤ 0,01. Однако если говорить о большей точности, например до 0,005, то мы можем сказать, что π равно 3,14 с точностью до 0,005 (так как 0,00159... ≤ 0,005). Сказать же это по отношению к приближению 3,15 мы не можем (так как 0,0084... > 0,005).

Рассчитывая значения систематической, случайной и суммарной погрешностей, особенно при использовании электронного калькулятора, получают значение с большим числом знаков. Однако исходные данные для этих расчетов всегда указываются с одной или двумя значащими цифрами. Действительно, класс точности прибора на его шкале указывается не более чем с двумя значащими цифрами, а среднее квадратическое отклонение не имеет смысла записывать с более чем двумя значащими цифрами, так как точность этой оценки при 10 измерениях не выше 30 %. Вследствие этого и в окончательном значении расчетной погрешности должны быть оставлены только первые одна - две значащие цифры. При этом необходимо учитывать следующее. Если полученное число начинается с цифры 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 30– 50 %), это недопустимо. Если же полученное число начинается, например, с цифры 9, то сохранение второго знака, то есть указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

В итоге можно сформулировать правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения:

1. Абсолютная погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 или 2, и одной, – если первая есть 3 и более.

2. Среднее значение измеренной величины округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности.

3. Относительную погрешность, выраженную в процентах, достаточно записать двумя значащими цифрами.

4. Округление производится лишь в окончательном ответе, а все предварительные вычисления проводятся с одним лишним знаком.

Пример:
На вольтметре класса точности 2,5 с пределом измерений 300 В были произведены несколько повторных измерений одного и того же напряжения. При этом оказалось, что все замеры дали одинаковый результат 267,5 В .

Отсутствие различий между знаками говорит о том, что случайная погрешность пренебрежимо мала, поэтому суммарная погрешность совпадает с систематической (см. рис. 1а).

Сначала найдем абсолютную, а затем относительную погрешности. Абсолютная погрешность градуировки прибора равна:

Так как первая значащая цифра абсолютной погрешности больше трех, то это значение должно быть округлено до 8 В . Относительная погрешность:

В значении относительной погрешности должны быть сохранены два значащих разряда: 2,8 %.

Таким образом, в окончательном ответе должно быть сообщено “Измеренное напряжение U=(268+8) В при относительной погрешности d U =2,8 % ”.

результата измерений

Погрешность результата измерений позволяет определить те цифры результата, которые являются достоверными. При расчете величины погрешности, особенно с помощью калькуляторов, значение погрешности получается с большим числом знаков. Это создает впечатление о высокой точности измерений, что не соответствует действительности, так как исходными данными для расчета чаще всего являются нормируемые значения погрешности используемого СИ, которые указываются всего с одной или двумя значащими цифрами. Вследствие этого и в окончательном значении рассчитанной погрешности не следует удерживать более двух значащих цифр. В метрологии существуют следующие правила:

1. Погрешность результата измерения указывается двумя значащими цифрами, если первая из них 3 или меньше, и одной - если первая цифра есть 4 и более.

Значащими цифрами числа считаются все цифры от первой слева, не равной нулю, до последней справа цифры, при этом нули, записанные в виде множителя 10 n , не учитываются.

2. Результат измерения округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности. (Например, результат 85.6342, погрешность 0.01. Результат округляют до 85.63. Тот же результат при погрешности в пределах 0.012 следует округлить до 85.634).

3. Округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним - двумя лишними знаками.

4. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление приводит к ошибкам.

При округлении числовых значений погрешности и результата измерений необходимо руководствоваться следующими общими правилами округления.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются. (Например, число 165245 при сохранении четырех значащих цифр округляется до 165200, а число 165.245 - до 165.2).

Если десятичная дробь оканчивается нулями, они отбрасываются только до разряда, который соответствует разряду погрешности. (Например, результат измерений 235.200, погрешность 0.05. Результат округляют до 235.20. Тот же результат при погрешности в пределах 0.015 следует округлить до 235.200).

Если первая (считая слева направо) из заменяемых нулями или отбрасываемых цифр меньше 5, остающиеся цифры не изменяются .

Если первая из этих цифр равна 5, а за ней не следует никаких цифр, или идут нули, то, если последняя цифра в округляемом числе четная или нуль, она остается без изменения , если нечетная - увеличивается на единицу . (Например, число 1234.50 округляют до 1234, а число 8765.50 - до 8766).

Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу . (Например, число 6783.6 при сохранении четырех значащих цифр, округляют до 6784, а число 12.34520 - до 12.35).

Особенно внимательно следует относиться к записи результата измерения без указания погрешности, так как записи результата 2.4 10 3 В и 2400В не являются тождественными . Первая запись означает, что верны цифры тысяч и сотен вольт и истинное значение может находиться в интервале от 2.351кВ до 2.449кВ. Запись 2400 означает, что верны и единицы вольт, следовательно истинное значение напряжения может находиться в интервале от 2399.51В до 2400.49В.

Поэтому запись результата без указания погрешности крайне нежелательна .

Окончательно правила записи результата измерений можно сформулировать следующим образом.

1) При промежуточных вычислениях значения погрешности сохраняют три -четыре значащие цифры.

2) Окончательное значение погрешности и значение результата округляются в соответствии с изложенными выше правилами.

3) При однократных технических измерениях когда учитывается только основная погрешность СИ (СИ используются в нормальных условиях эксплуатации), результат записывается в виде:

(Например, результат измерения напряжения
В, погрешность
В. Результат может быть записан в виде:)

4) При однократных технических измерениях в рабочих условиях, когда по нормативным данным на СИ учитывают основную и дополнительные погрешности и результирующую погрешность определяют по формуле (1.35), результат записывают в виде:

5) При статистических измерениях, когда определяется только величина случайной погрешности нормально распределенных данных в виде доверительного интервала, результат записывается в соответствии с (1.31):

Если границы доверительного интервала несимметрична, то они указываются по отдельности.

Например,

6) При статистических измерениях, когда оцениваются границы неисключенных систематических погрешностей результата (НСП) и доверительный интервал случайной погрешности нормально распределенных данных, но результат используется как промежуточный для нахождения других величин (например, при статистических косвенных измерениях) или предполагается сопоставление его с другими результатами аналогичного измерительного эксперимента, результат записывается в соответствии с (1.39):

если
, то это указывается дополнительно, как в п. 5.

Если границы НСП или границы доверительного интервала несимметричны, то они указываются по отдельности:

7) Если при измерении получены оценки погрешности при условиях, оговоренных в п. 6, но результат является окончательным и не предполагается в дальнейшем анализ его и сопоставление с другими результатами, то он записывается в соответствии с (1.41):

где
определяется по формуле (1.40),

если же
, это указывается дополнительно, как в п. 5.

8) При статистических измерениях, когда оцениваются границы НСП и доверительный интервал случайной погрешности, но при обработке результатов идентифицирован закон распределения, отличный от нормального, оценки значения результата измерения и доверительный интервал случайной погрешности находятся по соответствующим формулам , результат представляется в виде аналогичном представлению результата в п. 6, но дополнительно приводится информация о виде закона распределения опытных данных.

9) Если как в п. 8 обрабатываются результаты статических измерений и заранее известно, что закон распределения опытных данных отличается от нормального, но действий по идентификации вида реального закона по какой-либо причине не предпринимается, то результат может быть представлен в виде, аналогичном представлению результата в п. 6, но доверительный интервал случайной погрешности определяется в соответствии с рекомендациями ГОСТ 11.001-73 как
при доверительной вероятности
.

Запись результата может выглядеть, например, так:


(при
);
;
;
.

Доверительная вероятность, при которой определяется суммарный НСП -
, в этом случае может отличаться от
.

При выполнении вычислений часто возникает необходимость в округлении чисел, т.е. в замене их числами с меньшим количеством значащих цифр.

Существуют три способа округления чисел:

Округление с недостатком до k -й значащей цифры состоит в отбрасывании всех цифр, начиная с (k+1) -й.

Округление с избытком отличается от округления с недостатком тем, что последняя сохраняемая цифра увеличивается на единицу.

Округление с наименьшей погрешностью отличается от округления с избытком тем, что увеличение на единицу последней сохраняемой цифры производится лишь в том случае, когда первая из отбрасываемых цифр больше 4.

Исключение: если округление с наименьшей погрешностью сводится к отбрасыванию только одной цифры 5, то последняя сохраняемая цифра не изменяется если она четная, и увеличивается на 1, если она нечетная.

Из вышеуказанных правил округления приближенных чисел следует, что погрешность, вызываемая округлением с наименьшей погрешностью, не превышает половины единицы последнего сохраняемого разряда, а при округлении с недостатком или с избытком погрешность может быть и больше половины единицы последнего сохраняемого разряда, но не более целой единицы этого разряда.

Рассмотрим это на следующих примерах.

1. Погрешность суммы. Пусть x а , у -- некоторое приближение величины b . Пусть х и у -- абсолютные погрешности соответствующих приближений х и у . Найдем границу абсолютной погрешности h a+b суммы х+у , являющейся приближением суммы а+b .

a = x + х,

b = y + y.

Сложим эти два равенства, получим

a + b = x + y + х + y.

Очевидно, что погрешность суммы приближений x и у равна сумме погрешностей слагаемых, т.е.

(x + y) = x + y

Известно, что модуль суммы меньше или равен сумме модулей слагаемых. Поэтому

(x + y) = x + y x + y

Отсюда следует, что абсолютная погрешность суммы приближений не превышает суммы абсолютных погрешностей слагаемых. Следовательно, за границу абсолютной погрешности суммы можно принять сумму границ абсолютных погрешностей слагаемых.

Обозначив границу абсолютной погрешности величины а через h a , а величины b через h b будем иметь

h a+b = h a + h b

2. Погрешность разности. Пусть х и у -- погрешности приближений x и у соответственно величин a и b.

a = x + х,

b = y + y.

Вычтем из первого равенства второе, получим

a - b = (x - y) + (x - y)

Очевидно, что погрешность разности приближений равна разности погрешностей уменьшаемого и вычитаемого, т. е.

(x - y) = x - y) ,

(x - y) = x + (-y)

А тогда, рассуждая так же, как в случае сложения, будем иметь

(x - y) = x + (-y) x + y

Отсюда следует, что абсолютная погрешность разности не превышает суммы абсолютных погрешностей уменьшаемого и вычитаемого.

За границу абсолютной погрешности разности можно принять сумму границ абсолютных погрешностей уменьшаемого и вычитаемого. Таким образом.

h a-b = h a + h b (9)

Из формулы (9) следует, что граница абсолютной погрешности разности не может быть меньше границы абсолютной погрешности каждого приближения. Отсюда вытекает правило вычитания приближений, применяемое иногда при вычислениях.

При вычитании чисел, являющихся приближениями некоторых величин, в результате следует оставить столько цифр после запятой, сколько их имеет приближение с наименьшим числом цифр после запятой.

3. Погрешность произведения. Рассмотрим произведение чисел х и у , являющихся приближениями величин a и b . Обозначим через x погрешность приближения х , а через у -- погрешность приближения у ,

a = x + х,

b = y + y.

Перемножив эти два равенства, получим

Абсолютная погрешность произведения ху равна

И поэтому

Разделив обе части полученного неравенства на ху , получим

Учитывая, что модуль произведения равен произведению модулей сомножителей, будем иметь

Здесь левая часть неравенства представляет собой относительную погрешность произведения ху , -- относительную погрешность приближения х , а -- относительную погрешность приближения у . Следовательно, отбрасывая здесь малую величину, получим неравенство

Таким образом, относительная погрешность произведения приближений не превышает суммы относительных погрешностей сомножителей. Отсюда следует, что сумма границ относительных погрешностей сомножителей является границей относительной погрешности произведения, т.е.

E ab = E a + E b (10)

Из формулы (10) следует, что граница относительной погрешности произведения не может быть меньше границы относительной погрешности наименее точного из сомножителей. Поэтому здесь, как и в предыдущих действиях, не имеет смысла сохранять в сомножителях излишнее количество значащих цифр.

Иногда при вычислениях для сокращения объема работы полезно руководствоваться следующим правилом: При умножении приближений с различным числом значащих цифр в результате следует сохранить столько значащих цифр, сколько их имеет приближение с наименьшим числом значащих цифр.

4. Погрешность частного. Если x -- приближение величины а, погрешность которого x, а у -- приближение величины b с погрешностью y, то

Вычислим сначала абсолютную погрешность частного:

а затем относительную погрешность:

Принимая во внимание, что y мало по сравнению с y , абсолютную величину дроби можно считать равной единице. Тогда

из последней формулы вытекает, что относительная погрешность частного не превышает суммы относительных погрешностей делимого и делителя. Следовательно, можно считать, что граница относительной погрешности частного равна сумме границ относительных погрешностей делимого и делителя, т.е.

5. Погрешность степени и корня. 1) Пусть u = a n , где n -- натуральное число, и пусть а х. Тогда, если E a -- граница относительной погрешности приближения x величины a , то

и поэтому

Таким образом, граница относительной погрешности степени равна произведению границы относительной погрешности основания на показатель степени, т.е.

E u = n E a (11)

2) Пусть, где n -- натуральное число, и пусть ах .

По формуле (11)

и, следовательно,

погрешность вычитаемый вычисление

Таким образом, граница относительной погрешности корня n -й степени в n раз меньше границы относительной погрешности подкоренного числа.

6. Обратная задача приближенных вычислений. В прямой задаче требуется найти приближенное значение функции u=f(х,у,…,n) по данным приближенным значениям аргументов

и границу погрешности h a , которая выражается через погрешности аргументов некоторой функции

h u = (h x , h y , …, h z ) (12)

На практике нередко приходится решать и обратную задачу, в которой требуется узнать, с какой точностью должны быть заданы значения аргументов х, у, …, z , чтобы вычислить соответствующие значения функции u = f(х, у, …, z) с наперед заданной точностью h u .

Таким образом, при решении обратной задачи искомыми являются границы погрешностей аргументов, связанные с заданной границей погрешности функции h u уравнением (12), и решение обратной задачи сводится к составлению и решению уравнения h u = (h x , h y , …, h z ) относительно h x , h y , …, h z . Такое уравнение или имеет бесконечное множество решений, или совсем не имеет решений. Задача считается решенной, если найдено хотя бы одно решение такого уравнения.

Для решения обратной задачи, которая часто бывает неопределенной, приходится вводить добавочные условия об отношениях искомых погрешностей, например считать их равными и тем самым сводить задачу к уравнению с одним неизвестным.