Сочинения

Неравенства и системы неравенств рациональные неравенства. Рациональные неравенства и их системы. Системы рациональных неравенств. Сходные свойства с уравнением

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

Пусть надо найти числовые значения х, при которых превращаются в верные числовые неравенства одновременно несколько рациональных неравенств. В таких случаях говорят, что надо решить систему рациональных неравенств с одним неизвестным х.

Чтобы решить систему рациональных неравенств, надо найти все решения каждого неравенства системы. Тогда общая часть всех найденных решений и будет решением системы.

Пример: Решить систему неравенств

(х -1)(х - 5)(х - 7) < 0,

Сначала решаем неравенство

(х - 1)(х - 5)(х - 7) < 0.

Применяя метод интервала (рис. 1), находим, что множество всех решении неравенства (2) состоит из двух интервалов: (-, 1) и (5, 7).

Рисунок 1

Теперь решим неравенство

Применяя метод интервалов (рис. 2), находим, что множество всех решении неравенства (3) также состоит их двух интервалов: (2, 3) и (4, +).

Теперь надо найти общую часть решении неравенств (2) и (3). Нарисуем координатную ось х и отметим на ней найденные решения. Теперь ясно, что общей частью решении неравенств (2) и (3) является интервал(5, 7) (рис. 3).

Следовательно, множество всех решении системы неравенств (1) составляет интервал (5, 7).

Пример: Решить систему неравенств

х2 - 6х + 10 < 0,

Решим сначала неравенство

х 2 - 6х + 10 < 0.

Применяя метод выделения полного квадрата, можно написать, что

х 2 - 6х + 10 = х 2 - 2х3 + 3 2 - 3 2 + 10 = (х - 3) 2 +1.

Поэтому неравенство (2) можно записать в виде

(х - 3) 2 + 1 < 0,

откуда видно, что оно не имеет решении.

Теперь можно не решать неравенство

так как ответ уже ясен: система (1) не имеет решении.

Пример: Решить систему неравенств

Рассмотрим сначала первое неравенство; имеем

1 < 0, < 0.

С помощью кривой знаков находим решения этого неравенства: х < -2; 0 < x < 2.

Решим теперь второе неравенство заданной системы. Имеем x 2 - 64 < 0, или (х - 8)(х + 8) < 0. С помощью кривой знаков находим решения неравенства: -8 < x < 8.

Отметив найденные решения первого и второго неравенства на общей числовой прямой (рис. 6), найдем такие промежутки, где эти решения совпадают (пресечение решении): -8 < x < -2; 0 < x < 2. Это и есть решение системы.

Пример: Решить систему неравенств

Преобразуем первое неравенство системы:

х 3 (х - 10)(х + 10) 0, или х(х - 10)(х + 10) 0

(т.к. множители в нечетных степенях можно заменять соответствующими множителями первой степени); с помощью метода интервалов найдем решения последнего неравенства: -10 х 0, х 10.

Рассмотрим второе неравенство системы; имеем

Находим (рис. 8) х -9; 3 < x < 15.

Объединив найденные решения, получим (рис. 9) х 0; х > 3.

Пример: Найти целочисленные решения системы неравенств:

х + y < 2,5,

Решение: Приведем систему к виду

Складывая первое и второе неравенства, имеем y < 2, 75, а учитывая третье неравенство, найдем 1 < y < 2,75. В этом интервале содержится только одно целое число 2. При y = 2 из данной системы неравенств получим

откуда -1 < x < 0,5. В этом интервале содержится только одно целое число 0.

В качестве простейших числовых функций рассматриваются много-

члены y P

x n и функции, представимые в виде от-

ношения двух многочленов, т. е. рациональные функции.

Число α называется нулем функции

y P n x или корнем многочлена

P n x , еслиP n a 0 .

Например,

многочлен P x 6 5x x 2

имеет два нуля x 2 иx 3, так

как P 2 0

P 3 0.

Многочлен может вообще не иметь нулей среди

ниями переменной или критическими точками рациональной функции

y n . Q x

1 x 6

Например, для функции y

x 1 x2

x 1,

x 6 .

ческими значениями переменной являются:

x 2 ,x 1,

Рациональным неравенством называется неравенство, которое содержит только рациональные функции.

Рациональные неравенства часто удается решить так называемым методом интервалов. Этот метод основан на одном важном свойстве рациональной функции: в интервале между двумя своими соседними критическими точками рациональная функция сохраняет знак.

Метод интервалов состоит в следующем. Рациональное неравенство приводят к виду:

0 (в случае строгого неравенства);

0 (в случае нестрогого неравенства).

Затем находят все критические точки рациональной функции. Эти точки отмечают на числовой оси. Вся числовая ось разбивается критическими

точками на конечное число интервалов, на каждом из которых левая часть неравенства сохраняет знак. Чтобы определить знак левой части на всем

этого интервала и тем самым установить, входит ли этот интервал в множество решений данного неравенства.

Что касается самих критических точек, то в случае строгого неравенства

0 они, очевидно, не входят в множество решений, в случае нестро-

гого неравенства

нули многочлена

P x входят в множество

решений, если только они не являются нулями и многочлена Q x .

Заметим, что метод интервалов применим только тогда, когда известны (или могут быть найдены) нули многочленов P x иQ x , т. е. критиче-

ские значения переменной для рациональной функции

Пример 1. Решить неравенство

x3 3 x2 x3

x2 3 x2

Решение. Нули многочлена, стоящего в знаменателе: x 1

и x 2 . Ну-

ли многочлена, стоящего в числителе, легко находятся.

В самом деле, x 3 3x 2 x 3x 2 x 3x 3x 3x 1x 1 .

Неравенство можно записать теперь следующим образом:

x 3 x1 x1 0 .

x 1 x2

Критические точки рациональной функции: x 2 ,x 1,x 1,x 3 .

Числовая ось разбирается этими точками на 5 интервалов. Отмечаем точки на числовой оси.

Для определения знака функции на каждом интервале можно действовать следующим образом. Замечаем, что при x 3 все линейные множители числителя и знаменателя рациональной функции положительны и, следо-

вательно, на интервале 3; функция принимает только положительные значения.

При переходе через точку x 3 от интервала3; к интервалу 1; 3 лишь один из линейных множителей, а именноx 3, изменяет знак и, следовательно, функция становится отрицательной.

Затем, переходя к следующему интервалу 1; 1 , устанавливаем, что знак изменяется только у множителя x 1. Это означает, что при переходе через точкуx 1 левая часть неравенства изменяет знак. При переходе через точкуx 1 знак функции, очевидно, сохраняется, так как множительx 1 присутствует и в числителе и в знаменателе рациональной функции. Наконец, переход к последнему интервалу; 2 опять сопровождается изменением знака функции. Чередование знаков фиксируем на рисунке.

Поскольку неравенство строгое, сами критические точки не являются решениями.

Ответ. 2; 1 1;1 3;.

В процессе решения данного неравенства может возникнуть соблазн заменить его с самого начала более простым неравенством

x 1 x3

Такое упрощение (сделанное без всяких оговорок) приведет к ошибке. Полученное неравенство неравносильно исходному, так как в его множество решений входит x 1, а это значение переменной не является решением данного неравенства.

x 3 2

Пример 2. Решить неравенство

4 x x

Критические точки рациональной функции: x 3 ,x 0 ,x 4. Числовая ось разбивается на 4 интервала, на каждом из которых легко определяется знак функции.

При определении знака нужно следить только за изменением знака линейных множителей знаменателя, так как квадратичные множители числите-

ля x 32 иx 2 x 1положительны на всех интервалах. Из трех критических точек толькоx 3 входит в множество решений неравенства.

Ответ. 3 0;4 .

Пример 3. Найти область определения функции

x2 x1

x 31

Для нахождения области определения данной функции нужно решить не-

равенство:

x2 x1

x 31

Приводим его к стандартному виду:

2 x 1x 2 x 1 2x 1

x2 x2

x 31

x 31

и x 2 и записываем неравенство

Находим критические точки

следующим образом:

x 1 x2

x 1 x2 x1

Так как x 2 x 1 0для всех значений переменной, переходим к равно-

сильному неравенству x 1 x 2 0.

Критические точки разбивают числовую ось на три интервала.

+ –

Определяем знак левой части неравенства на каждом интервале. Исследуем сами критические точки: точка x 2 является нулем числителя и, так как неравенство нестрогое, входит в множество решений. Точкаx 1, хотя и является нулём числителя, не принадлежит множеству решений изза того, что обращает нуль в знаменатель.

Ответ: ; 1 1;2 .

2.1. Задачи для самостоятельного решения

1 2x

11 7x

3 x2 x2

2 x 2

x2 6 x9

x 48 x 316 x 2

x2 6 x5

x2 3 x4

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.


Продолжаем углубляться в тему «решение неравенств с одной переменной». Нам уже знакомы линейные неравенства и квадратные неравенства . Они являются частными случаями рациональных неравенств , изучением которых мы сейчас и займемся. Начнем с того, что выясним, неравенства какого вида называются рациональными. Дальше разберемся с их подразделением на целые рациональные и дробные рациональные неравенства. А уже после этого будем изучать, как проводится решение рациональных неравенств с одной переменной, запишем соответствующие алгоритмы и рассмотрим решения характерных примеров с детальными пояснениями.

Навигация по странице.

Что такое рациональные неравенства?

В школе на уроках алгебры, как только заходит разговор про решение неравенств, так сразу же и происходит встреча с рациональными неравенствами. Однако сначала их не называют своим именем, так как на этом этапе виды неравенств представляют мало интереса, а основная цель состоит в получении начальных навыков работы с неравенствами. Сам термин «рациональное неравенство» вводится позже в 9 классе, когда начинается детальное изучение неравенств именно этого вида.

Давайте узнаем, что такое рациональные неравенства. Вот определение:

В озвученном определении ничего не сказано о числе переменных, значит, допускается любое их количество. В зависимости от этого различают рациональные неравенства с одной, двумя и т.д. переменными. Кстати, в учебнике дается подобное определение, но для рациональных неравенств с одной переменной. Это и понятно, так как в школе основное внимание уделяется решению неравенств с одной переменной (ниже мы тоже будем говорить лишь о решении рациональных неравенств с одной переменной). Неравенства с двумя переменными рассматривают мало, а неравенствам с тремя и большим числом переменных практически вообще не уделяют внимания.

Итак, рациональное неравенство можно распознать по его записи, для этого достаточно взглянуть на выражения в его левой и правой части и убедиться, что они являются рациональными выражениями. Эти соображения позволяют привести примеры рациональных неравенств. Например, x>4 , x 3 +2·y≤5·(y−1)·(x 2 +1) , - это рациональные неравенства. А неравенство не является рациональным, так как его левая часть содержит переменную под знаком корня, а, значит, не является рациональным выражением. Неравенство тоже не рациональное, так как обе его части не являются рациональными выражениями.

Для удобства дальнейшего описания введем подразделение рациональных неравенств на целые и дробные.

Определение.

Рациональное неравенство будем называть целым , если обе его части – целые рациональные выражения.

Определение.

Дробно рациональное неравенство – это рациональное неравенство, хотя бы одна часть которого – дробное выражение.

Так 0,5·x≤3·(2−5·y) , - целые неравенства, а 1:x+3>0 и - дробно рациональные.

Теперь мы имеем четкое понимание, что представляют собой рациональные неравенства, и можно смело начинать разбираться с принципами решения целых и дробно рациональных неравенств с одной переменной.

Решение целых неравенств

Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x), ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства .

Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражение r(x)−s(x) , образовавшееся в левой части, тоже целое, а известно, что можно любое . Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) и h(x) имеют одинаковую переменной x ), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).

В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.

Пример.

Найдите решение целого рационального неравенства x·(x+3)+2·x≤(x+1) 2 +1 .

Решение.

Сначала переносим выражение из правой части в левую: x·(x+3)+2·x−(x+1) 2 −1≤0 . Выполнив все в левой части, приходим к линейному неравенству 3·x−2≤0 , которое равносильно исходному целому неравенству. Его решение не представляет сложности:
3·x≤2 ,
x≤2/3 .

Ответ:

x≤2/3 .

Пример.

Решите неравенство (x 2 +1) 2 −3·x 2 >(x 2 −x)·(x 2 +x) .

Решение.

Начинаем как обычно с переноса выражения из правой части, а дальше выполняем преобразования в левой части, используя :
(x 2 +1) 2 −3·x 2 −(x 2 −x)·(x 2 +x)>0 ,
x 4 +2·x 2 +1−3·x 2 −x 4 +x 2 >0 ,
1>0 .

Так, выполняя равносильные преобразования, мы пришли к неравенству 1>0 , которое верно при любых значениях переменной x . А это означает, что решением исходного целого неравенства является любое действительное число.

Ответ:

x - любое.

Пример.

Выполните решение неравенства x+6+2·x 3 −2·x·(x 2 +x−5)>0 .

Решение.

В правой части нуль, так что из нее ничего переносить не нужно. Преобразуем целое выражение, находящееся в левой части, в многочлен:
x+6+2·x 3 −2·x 3 −2·x 2 +10·x>0 ,
−2·x 2 +11·x+6>0 .

Получили квадратное неравенство, которое равносильно исходному неравенству. Решаем его любым известным нам методом. Проведем решение квадратного неравенства графическим способом .

Находим корни квадратного трехчлена −2·x 2 +11·x+6 :

Делаем схематический чертеж, на котором отмечаем найденные нули, и учитываем, что ветви параболы направлены вниз, так как старший коэффициент отрицательный:

Так как мы решаем неравенство со знаком >, то нас интересуют промежутки, на которых парабола располагается выше оси абсцисс. Это имеет место на интервале (−0,5, 6) , он и является искомым решением.

Ответ:

(−0,5, 6) .

В более сложных случаях в левой части полученного неравенства h(x)<0 (≤, >, ≥) будет многочлен третьей или более высокой степени. Для решения таких неравенств подходит метод интервалов , на первом шаге которого нужно будет найти все корни многочлена h(x) , что частенько делается через .

Пример.

Найдите решение целого рационального неравенства (x 2 +2)·(x+4)<14−9·x .

Решение.

Перенесем все в левую часть, после чего там и :
(x 2 +2)·(x+4)−14+9·x<0 ,
x 3 +4·x 2 +2·x+8−14+9·x<0 ,
x 3 +4·x 2 +11·x−6<0 .

Проделанные манипуляции приводят нас к неравенству, которое равносильно исходному. В его левой части многочлен третьей степени. Решить его можно методом интервалов. Для этого в первую очередь надо найти корни многочлена, что упирается в x 3 +4·x 2 +11·x−6=0 . Выясним, имеет ли оно рациональные корни, которые могут быть лишь среди делителей свободного члена, то есть, среди чисел ±1 , ±2 , ±3 , ±6 . Подставляя по очереди эти числа вместо переменной x в уравнение x 3 +4·x 2 +11·x−6=0 , выясняем, что корнями уравнения являются числа 1 , 2 и 3 . Это позволяет представить многочлен x 3 +4·x 2 +11·x−6 в виде произведения (x−1)·(x−2)·(x−3) , а неравенство x 3 +4·x 2 +11·x−6<0 переписать как (x−1)·(x−2)·(x−3)<0 . Такой вид неравенства в дальнейшем позволит с меньшими усилиями определить знаки на промежутках.

А дальше остается выполнить стандартные шаги метода интервалов: отметить на числовой прямой точки с координатами 1 , 2 и 3 , которые разбивают эту прямую на четыре промежутка, определить и расставить знаки, изобразить штриховку над промежутками со знаком минус (так как мы решаем неравенство со знаком <) и записать ответ.

Откуда имеем (−∞, 1)∪(2, 3) .

Ответ:

(−∞, 1)∪(2, 3) .

Следует отметить, что иногда нецелесообразно от неравенства r(x)−s(x)<0 (≤, >, ≥) переходить к неравенству h(x)<0 (≤, >, ≥), где h(x) – многочлен степени выше второй. Это касается тех случаев, когда сложнее разложить многочлен h(x) на множители, чем представить выражение r(x)−s(x) в виде произведения линейных двучленов и квадратных трехчленов, например, путем вынесения за скобки общего множителя. Поясним это на примере.

Пример.

Решите неравенство (x 2 −2·x−1)·(x 2 −19)≥2·x·(x 2 −2·x−1) .

Решение.

Это целое неравенство. Если перенести выражение из его правой части в левую, после чего раскрыть скобки и привести подобные слагаемые, то получится неравенство x 4 −4·x 3 −16·x 2 +40·x+19≥0 . Решить его очень непросто, так как это предполагает поиск корней многочлена четвертой степени. Несложно проверить, что рациональных корней он не имеет (ими могли бы быть числа 1 , −1 , 19 или −19 ), а другие его корни искать проблематично. Поэтому этот путь тупиковый.

Давайте поищем другие возможности решения. Несложно заметить, что после переноса выражения из правой части исходного целого неравенства в левую, можно вынести за скобки общий множитель x 2 −2·x−1 :
(x 2 −2·x−1)·(x 2 −19)−2·x·(x 2 −2·x−1)≥0 ,
(x 2 −2·x−1)·(x 2 −2·x−19)≥0 .

Проделанное преобразование является равносильным, поэтому решение полученного неравенства будет решением и исходного неравенства.

А теперь мы можем найти нули выражения, находящегося в левой части полученного неравенства, для этого надо x 2 −2·x−1=0 и x 2 −2·x−19=0 . Их корнями являются числа . Это позволяет перейти к равносильному неравенству , а его мы можем решить методом интервалов:

По чертежу записываем ответ .

Ответ:

В заключение этого пункта хочется лишь добавить, что далеко не всегда есть возможность найти все корни многочлена h(x) , и как следствие разложить его в произведение линейных двучленов и квадратных трехчленов. В этих случаях нет возможности решить неравенство h(x)<0 (≤, >, ≥), а значит, нет возможности найти решение исходного целого рационального уравнения.

Решение дробно рациональных неравенств

Теперь займемся решением такой задачи: пусть требуется решить дробно рациональное неравенство с одной переменной x вида r(x), ≥), где r(x) и s(x) – некоторые рациональные выражения, причем хотя бы одно из них – дробное. Давайте сразу приведем алгоритм ее решения, после чего внесем необходимые пояснения.

Алгоритм решения дробно рационального неравенства с одной переменной r(x), ≥):

  • Сначала надо найти область допустимых значений (ОДЗ) переменной x для исходного неравенства.
  • Дальше нужно перенести выражение из правой части неравенства в левую, и образовавшееся там выражение r(x)−s(x) преобразовать к виду дроби p(x)/q(x) , где p(x) и q(x) – целые выражения, представляющие собой произведения линейных двучленов, неразложимых квадратных трехчленов и их степеней с натуральным показателем.
  • Дальше надо решить полученное неравенство методом интервалов.
  • Наконец, из полученного на предыдущем шаге решения нужно исключить точки, не входящие в ОДЗ переменной x для исходного неравенства, которая была найдена на первом шаге.

Так будет получено искомое решение дробно рационального неравенства.

Пояснений требует второй шаг алгоритма. Перенос выражения из правой части неравенства в левую дает неравенство r(x)−s(x)<0 (≤, >, ≥), которое равносильно исходному. Здесь все понятно. А вот вопросы вызывает дальнейшее его преобразование к виду p(x)/q(x)<0 (≤, >, ≥).

Первый вопрос: «Всегда ли его возможно провести»? Теоретически, да. Мы знаем, что можно любое . В числителе и знаменателе рациональной дроби находятся многочлены. А из основной теоремы алгебры и теоремы Безу следует, что любой многочлен степени n с одной переменной можно представить в виде произведения линейных двучленов. Это и объясняет возможность проведения указанного преобразования.

На практике же довольно сложно раскладывать многочлены на множители, а если их степень выше четвертой, то и не всегда возможно. Если разложение на множители невозможно, то не будет и возможности найти решение исходного неравенства, но в школе такие случаи обычно не встречаются.

Второй вопрос: «Будет ли неравенство p(x)/q(x)<0 (≤, >, ≥) равносильно неравенству r(x)−s(x)<0 (≤, >, ≥), а значит, и исходному»? Оно может быть как равносильно, так и неравносильно. Оно равносильно тогда, когда ОДЗ для выражения p(x)/q(x) совпадает с ОДЗ для выражения r(x)−s(x) . В этом случае последний шаг алгоритма будет излишним. Но ОДЗ для выражения p(x)/q(x) может оказаться шире, чем ОДЗ для выражения r(x)−s(x) . Расширение ОДЗ может происходить при сокращении дробей, как, например, при переходе от к . Также расширению ОДЗ может способствовать приведение подобных слагаемых, как, например, при переходе от к . Для этого случая и предназначен последний шаг алгоритма, на котором исключаются посторонние решения, возникающие из-за расширения ОДЗ. Давайте последим за этим, когда будем разбирать ниже решения примеров.