Бунин

Биологические эффекты инсулина. Фармакологическая группа — Инсулины Какова роль дисульфидных мостиков в структуре инсулина

Инсулин – (от лат. insula – остров) – гормон пептидной природы, он образуется в бета-клетках островков Лангерганса поджелудочной железы. Молекула инсулина состоит из двух полипептидных цепей, которые включают 51 аминокислотный остаток: A-цепь состоит из 21 аминокислотного остатка, B-цепь образована 30 аминокислотными остатками. Полипептидные цепи соединяются двумя дисульфидными мостиками через остатки цистеина, третья дисульфидная связь находится в A-цепи.

Первичная структура инсулина у разных биологических видов имеет некоторые различия, точно так же, как отличается его роль в регуляции обмена углеводов. Больше всего схож с человеческим инсулин свиньи, они отличаются одним аминокислотным остатком: в 30 положении B-цепи свиного инсулина находится аланин, а в инсулине человека – треонин; бычий инсулин отличается на три аминокислотных остатка.

Цепи соединяются друг с другом посредством двух дисульфидных мостиков (получается, что каждый образован двумя атомами серы), а третий дисульфидный мостик выступает связующим звеном отдаленных друг от друга аминокислот А-цепи. Соединенные цепи немного изгибаются и сворачиваются в глобулярную структуру, именно такая конфигурация молекулы гормона важна для проявления его биологической активности.

Существенно влияет на обмен почти во всех тканях. По своей химической структуре данное соединение находится где-то между полипептидами и белками. Инсулин образуется в поджелудочной железе животных и человека. В бета-клетках поджелудочной железы инсулин образуется из предшественника - проинсулина, полипептида из 84 аминокислотных остатков, у которых не наблюдается грмональная активность. Инсулин – это специфическое средство, которому свойственно понижать сахар, также он регулирует углеводный обмен; влияет на усиление усвоения тканями глюкозы и помогает ей превратиться в гликоген, также облегчает проникновение глюкозы в клетки тканей. У инсулина наблюдается не только гипогликемическое влияние, он оказывает ряд других эффектов: влияет на повышение запасов гликогена в мышцах, оказывает стимулирующий эффект на синтез пептидов, снижает расход белка. В некоторых видах спорта данный препарат ценят благодаря тому, что у него наблюдается выраженный анаболический эффект.

Историческая справка

Главная функция инсулина состоит в обеспечении клеток организма важным энергетическим материалом – глюкозой.

В том случае, если наблюдается нехватка инсулина, клетки не имеют возможности усваивать глюкозу, идет процесс накопления в крови, а ткани и органы подвержены энергетическому голоданию. При нехватке инсулина может начать развиваться очень серьезное заболевание (сахарный диабет).

До начала XX в. больные сахарным диабетом умирали в детском или молодом возрасте, в связи с развитием осложнений, вызванных болезнью, почти никто не жил больше 5–7 лет после начала болезни.

О том, какую роль играет поджелудочная железа в развитии сахарного диабета, узнали только в конце XIX в. В 1869 г. в Берлине 22-летний Поль Лангерганс, будучи на то время студентом-медиком, проводил исследования с помощью микроскопа строения поджелудочной железы. Он заметил неизвестные клетки, которые создавали группы, равномерно распределенные по всей железе. Несмотря на это, функция этих клеток, которые потом назвали в честь студента островками Лангерганса, продолжала быть не изученной.

Некоторое время спустя Эрнст Лако выдвинул гипотезу о том, что поджелудочная железа участвует в процессах пищеварения. В 1889 г. немецкий физиолог Оскар Минковски попытался доказать, что данное утверждение не имеет ничего общего с реальностью. С этой целью он поставил эксперимент, в ходе которого удалил железу у здоровой собаки. Спустя пару дней после начала эксперимента помощник Минковски, который следил за состоянием лабораторных животных, заметил то, что на мочу подопытной собаки слеталось очень много мух.

Провели исследование мочи, в ходе которого было обнаружено, что собака, у которой отсутствует поджелудочная железа, вместе с мочой выделяет сахар. Это было первое наблюдение, свидетельствующее о том, что существует некая связь между работой поджелудочной железы и развитием сахарного диабета. В 1901 г. Евген Опи доказал, что сахарный диабет развивается вследствие нарушений в структуре поджелудочной железы (полным или частичным разрушением островков Лангерганса).

Первым человеком, выделившим инсулин и успешно применяющим его для лечения больных, стал канадский физиолог Фредерик Бантинг. Он пытался создать лекарство от диабета в связи с тем, что двое его друзей умерли от данной болезни. Еще до этого многие исследователи, которые поняли роль поджелудочной железы в развитии сахарного диабета, делали попытки выделить вещество, влияющее именно на уровень сахара крови. К сожалению, все попытки заканчивались неудачно.

Это было связано частично с тем, что ферменты поджелудочной железы (в основном трипсин) успевали хотя бы частично разложить белковые молекулы инсулина до того, как их удавалось выделить из экстракта тканей железы. В 1906 г. Георг Людвиг Зэльцер смог достичь определенного успеха в снижении уровня глюкозы в крови подопытных собак прибегая к помощи панкреатического экстракта, но ему не удалось продолжить свою работу. Скотт в 1911 г. в Чикагском университете работал с водным экстрактом поджелудочной железы, он заметил небольшое уменьшение гликозурии у подопытных животных. В связи с тем, что руководителя проекта не удалось убедить в важности проводимых исследований, их остановили.

Такого же эффекта достиг Израэль Кляйнер в 1919 г., он не смог закончить свою работу, так как началась Первая мировая война.

Схожую работу в 1921 г. опубликовал профессор физиологии Румынской школы медицины Никола Паулеско. Многие исследователи не только в Румынии полагают, что первооткрывателем инсулина был именно этот ученый. Несмотря на это, заслуга выделения инсулина, а также его успешного использования принадлежит именно Фредерику Бантингу.

Бантинг работал младшим преподавателем на кафедре анатомии и физиологии в канадском университете, его руководителем был профессор Джон Маклеод, которого в то время принимали за большого специалиста в вопросах, касающихся диабета. Бантинг пытался добиться атрофии поджелудочной железы прибегая к перевязке ее выводных протоков (каналов) на 6–8 недель, сохранив при этом островки Лангерганса неизмененными от воздействия ферментов поджелудочной железы, и получить чистый экстракт клеток этих островков.

Для проведения этого эксперимента необходима была лаборатория, помощники и подопытные собаки, этого всего у Бантинга не было.

За помощью он обратился к профессору Джону Маклеоду, который хорошо знал о всех прежних неудачах с получением гормонов поджелудочной железы. В связи с этим, он сначала отказал Бантингу. Несмотря на это, Бантинг продолжал упорствовать и весной 1921 г. снова попросил Маклеода дать разрешение поработать в лаборатории хотя бы два месяца. В связи с тем, что именно тогда Маклеод планировал поехать в Европу, соответственно, лаборатория была свободной, он дал свое согласие. В качестве помощника Бантингу дали студента 5-го курса Чарльза Беста, который хорошо разбирался в методах определения сахара в крови и моче.

Для того, чтобы провести эксперимент, требующий больших расходов, Бантинг продал почти все, что у него было.

Нескольким собакам перевязали протоки поджелудочной железы и стали дожидаться ее атрофии. 27 июля 1921 г. собаке, у которой отсутствовала поджелудочная железа, и которая находилась в прекоме, ввели экстракт атрофированной поджелудочной железы. Спустя несколько часов у собаки отмечалось снижение уровня сахара в крови и моче, исчез ацетон.

Затем экстракт поджелудочной железы ввели во второй раз, и она прожила еще 7 дней. Вполне вероятно, что удалось бы продлить жизнь собаки еще на какой-то время, но у исследователей закончился запас экстракта. Это было связано с тем, что получение инсулина из поджелудочных желез собак – очень трудоемкая и длительная работа.

Далее Бантинг и Бест начали добывать экстракт из поджелудочной железы еще не рожденных телят, у которых еще не начали вырабатываться пищеварительные ферменты, но уже производилось достаточное количество инсулина. Количества инсулина теперь было достаточно для того,чтобы поддерживать жизнь подопытной собаки уже до 70 дней. К тому времени Маклеод вернулся из Европы и понемногу стал интересоваться работой Бантинга и Беста, он принял решение подключить к ней весь персонал лаборатории. Бантинг с самого начала назвал полученный экстракт поджелудочной железы ислетином, но потом прислушался к предложению Маклеода и переименовал его в инсулин (от лат. insula – «остров»).

Исследования по получению инсулина успешно продолжались. 14 ноября 1921 г. Бантинг и Бест сделали сообщение о результатах своих исследований на заседании клуба «Физиологического журнала» университета Торонто. Спустя месяц они рассказали о своих успехах в Американском физиологическом обществе в Нью-Хейвене.

Количество экстракта, который получали из поджелудочных желез крупного рогатого скота, забитого на бойне, стало быстро увеличиваться, необходим был специалист для обеспечения тонкой очистки инсулина. Для этого в конце 1921 г. Маклеод пригласил к работе известного биохимика Джеймса Коллипа, он очень быстро добился хороших результатов по очистке инсулина. К январю 1922 г. Бантинг и Бест решили начать первые клинические испытания инсулина на человеке.

Сначала ученые ввели по 10 условных единиц инсулина друг другу, а уже потом – добровольцу. Им стал 14-летний мальчик Леонард Томпсон, который болел сахарным диабетом. Первую инъекцию ему сделали 11 января 1922 г., но она была не совсем удачной. Причиной этому было то, что экстракт недостаточно очистили, начала развиваться аллергия. Следующие 11 дней Коллип упорно работал в лаборатории с целью улучшения экстракта, уже 23 января мальчику сделали вторую инъекцию инсулина.

После ввода инсулина мальчик стал быстро идти на поправку – он был первым человеком, который выжил благодаря инсулину. Некоторое время спустя Бантинг спас от неминуемой смерти своего друга – врача Джо Джилькриста.

Весть о том, что инсулин впервые успешно применили 23 января 1922 г. очень быстро стала международной сенсацией. Бантинг и его коллеги практически воскрешали сотни больных диабетом, особенно с тяжелыми формами. Люди присылали очень много писем с просьбами об излечении, некоторые приезжали непосредственно в лабораторию. Несмотря на все это, на тот момент существовало очень много недостатков – препарат инсулина еще не стандартизировали, средств самоконтроля не было, и вводимые дозы отмеряли грубо, на глаз. В связи с этим, часто происходили гипогликемические реакции организма, когда уровень глюкозы падал ниже нормы.

Несмотря на все это, продолжались усовершенствование внедрение инсулина в повседневную врачебную практику.

Университет Торонто начал продажу фармацевтическим компаниям лицензии на производство инсулина, уже к 1923 г. он стал доступен всем больным сахарным диабетом.

Разрешение на производство лекарства получили компании «Лили» (США) и «Ново Нордиск» (Дания), они и сейчас являются лидерами в этой области. Бантингу в 1923 г. университет Торонто присвоил степень доктора наук, его избрали профессором. Помимо этого было принято решение открыть отделения медицинских специальных исследований для Бантинга и Беста, им назначили высокие персональные оклады.

В 1923 г. Бантингу и Маклеоду присудили Нобелевскую премию по физиологии и медицине, которую они на добровольных началах разделили с Бестом и Коллипом.

В 1926 г. ученый-медик Абель синтезировал синтезировать инсулин в кристаллическом виде. Спустя 10 лет датский исследователь Хагедорн добыл инсулин пролонгированного (продленного) действия, а еще спустя 10 лет создал нейтральный протамин Хагердона, он до сих пор является одним из наиболее популярных видов инсулина.

Химический состав инсулина установил британский молекулярный биолог Фредерик Сенгер, которому присвоили в 1958 г. за это Нобелевскую премию. Инсулин стал первым белком, последовательность аминокислот которого полностью расшифровали.

Пространственное строение молекулы инсулина установили с помощью метода рентгеновской дифракции в 1990-х гг. Дороти Кроуфт Ходжкин, ее также наградили Нобелевской премией.

После того, как Бантинг добыл бычий инсулин, исследовали инсулин, полученный из поджелудочных желез свиней и коров, а также других животных (например, китов и рыб).

Молекула человеческого инсулина состоит из 51 аминокислоты. Свиной инсулин отличается только одной аминокислотой, коровий – тремя, но это не мешает им нормализовать уровень сахара вполне хорошо. Несмотря на это, у инсулина животного происхождения существует большой недостаток – у большей части больных он становится причиной аллергической реакции. В связи с этим требовались дальнейшие работы по усовершенствованию инсулина. В 1955 г. расшифровали структуру человеческого инсулина, и приступили к работам по его выделению.
Впервые это сделали в 1981 г. американские ученые Жильбер и Ломедико. Некоторое время спустя появился инсулин, который получили из пекарских дрожжей методом генной инженерии. Инсулин стал первым из человеческих белков, который синтезировали в 1978 г. генетически модифицированной бактерией Е. coli. С этого момента в биотехнологии началась новая эпоха. Начиная с 1982 г. американская компания «Генентех» выпускает человеческий инсулин, который синтезировали в биореакторе. Он не приводит к появлению аллергических реакций.

Фармакологическое действие (по данным производителя)

Инсулин является средством, которое понижает сахар и обладает способностью регулировать углеводный обмен; усиливает усвоение тканями глюкозы и способствует ее превращению в гликоген, кроме этого облегчает проникновение глюкозы в клетки тканей.

Помимо оказания гипогликемического действия (понижения уровня сахара в крови), инсулин имеет несколько других эффектов: повышает запасы гликогена в мышцах, стимулирует синтез пептидов, снижает расход белка и др.

Влияние инсулина сопровождается стимуляцией или ингибированием (подавлением) некоторых ферментов; стимулируются гликогенсинтетаза, пируватдегидрогеназа, гексокиназа; ингибируются липаза, которая активирует жирные кислоты жировой ткани, липопротеиновая липаза, снижающая "помутнение" сыворотки крови после приема пищи, насыщенной жирами.

Степень биосинтеза и секреции (выделения) инсулина находится в зависимости от содержания глюкозы в крови. При повышении ее концентрации усиливается секреция инсулина поджелудочной железой; снижение концентрации глюкозы в крови замедляет секрецию инсулина.

Действие инсулина напрямую связано с его взаимодействием со специфическим рецептором, который находится на плазматической мембране клетки, и образование инсулинрецепторного комплекса. Инсулиновый рецептор вместе с инсулином проникает в клетку, там влияет на процессы фосфолирования клеточных белков; механизм действия дальнейших внутриклеточных реакций до конца не известен.

Активность инсулина определяют биологическим путем (по способности понижать концентрацию глюкозы в крови у здоровых кроликов) и одним из физикохимических методов (методом электрофореза на бумаге или методом хроматографии на бумаге). За одну единицу действия (ЕД), или интернациональную единицу (ИЕ), принимают активность 0,04082 мг кристаллического инсулина.

Метаболические эффекты инсулина

  1. Улучшает поглощение клетками глюкозы и других веществ;
  2. Активирует основные ферменты гликолиза;
  3. Увеличивает интенсивность синтеза гликогена – инсулин форсирует запасание глюкозы клетками печени и мышц с помощью полимеризации её в гликоген;
  4. Снижает интенсивность глюконеогенеза – уменьшается создание в печени глюкозы из различных веществ неуглеводной природы (белков и жиров).

Анаболическое действие инсулина

  • Влияет на усиление поглощения клетками аминокислот (особенно лейцина и валина);
  • Улучшает передвижение в клетку ионов калия, а также магния и фосфата;
  • Влияет на усиление репликации ДНК и биосинтеза белка;
  • Усиливает синтез жирных кислот и дальнейшую их этерификацию – в жировой ткани и в печени
  • Стимулирует превращение глюкозы в триглицериды; при нехватке инсулина происходит обратное – мобилизация жиров.

Антикатаболическое действие инсулина

  1. Угнетает гидролиз белков – снижает деградацию белков;
  2. Уменьшает липолиз – снижает поступление жирных кислот в кровь.

Виды используемого инсулина в бб

Инсулин короткого действия

Короткий инсулин начинает действовать в случае подкожного ввода через 30 минут (в связи с этим вводят за 30-40 минут до еды), максимум действия приходится через 2 часа, исчезает из организма через 5-6 часов.

Лучший выбор

  • Хумулин Регуляр
  • Актрапид HМ

Инсулин ультракороткого действия

Ультракороткий инсулин начинает действовать через 15 минут, максимум через 2 часа, исчезают из организма через 3-4 часа. Он физиологичнее, его можно вводить прямо перед приёмом пищи (за 5-10 минут) или сразу после еды.

Лучший выбор

  • Инсулин лизпро (Хумалог) – полусинтетический аналог человеческого инсулина.
  • Инсулин аспарт (НовоРапид Пенфилл, НовоРапид ФлексПен).
  • Инсулин глулизин (Хумалог)

Преимущества и недостатки инсулина

Преимущества

  • Маленькая стоимость курса
  • Широкая доступность - препарат можно без проблем купить в аптеке
  • Высокое качество – подделки почти на встречаются, в отличии от стероидов
  • Отсутствует токсичность, малая вероятность возникновения побочных эффектов, почти полное отсутствие последствий курса
  • Малый феномен отката
  • Обладает выраженным анаболическим действием
  • Можно комбинировать с анаболическими стероидами и другими средствами
  • Отсутствует андрогенное воздействие

Недостатки

  • Сложная схема приема
  • Происходит значительная прибавка жира
  • Гипогликемия

Приём инсулина

  1. Данный курс идеален для набора 5-10 кг мышечной массы на протяжении 1-2 месяцев, далее необходимо сделать перерыв не меньше двух месяцев, чтобы восстановить собственную секрецию.
  2. Изучите механизм действия инсулина, в том числе меры борьбы с гипогликемией.
  3. Начинать курс следует с дозы 10 ЕД подкожно, со временем (1 раз в день или через день) увеличивайте дозировку на 2 ЕД.
  4. С особой внимательностью отслеживайте реакцию организма на увеличение дозы!
  5. Далее можно увеличить дозу до 15-20 ЕД, большие дозы не рекомендуются (стоит отметить, что это зависит от чувствительности тканей к инсулину, некоторые спортсмены отлично переносят 50-60 ЕД инсулина и только при приеме таких доз растут, но это можно выяснять только постепенно увеличивая дозы).
  6. Следует отметить, что инсулиновые шприцы имеют различные шкалы. Шприцы U-40 используют для инъекций инсулина, содержащего 40 единиц в 1 мл. Шприцы U-100 внешне очень напоминают U-40, но их применяют для препаратов с содержанием 100 единиц инсулина в 1 мл.
  7. Частоту инъекций можно изменять, но наиболее щадящим считают прием через день. Лучше выполнять инъекции сразу после тренировки (но только тогда, когда тренировка заканчивается не поздно вечером в случае потребления инсулина короткого действия, если необходимо принять инсулин после тренировки вечером, это должен быть инсулин ультракороткого действия, в связи с тем, что он работает всего 3 часа и успеет перестать работать до сна), так как сразу после нее должен следовать обильный прием пищи, для обеспечения поставки углеводов в кровь. Помимо этого, инсулин имеет свойство угнетать катаболические процессы, вызванные физическим стрессом во время тренинга. Продолжительность курса при таком режиме составляет 2-2,5 месяца.
  8. Можно выполнять инъекции каждый день и даже 2 раза в день, но тогда продолжительность курса следует сократить до 1,5-2 месяцев.
  9. Если применяете инсулин ультракороткого действия, то делать инъекцию надо непосредственно после обильного приема пищи, богатого углеводами.
  10. Если применяете инсулин короткого действия, делать инъекцию надо за 30 минут до обильного приема пищи, богатого углеводами.
  11. На 1 ЕД инсулина, следует принимать 6 г углеводов.
  12. Делайте инъекции в разные места, чтобы избежать липодистрофии (неровности в подкожно-жировой клетчатке).
  13. Для успешного прохождения курса следует соблюдать высококалорийную диету, проводить силовые тренировки, а также употреблять спортивное питание для набора массы.

Меры предосторожности

  1. Начинать курс следует с небольшой дозы - 5-10 ЕД, для проверки реакции организма.
  2. Выполняйте только подкожные инъекции
  3. Не делайте инъекции перед тренировкой
  4. Не делайте инъекции сразу перед сном
  5. После инъекции следует обеспечить организм углеводами (у здорового человека сахар в крови натощак колеблется от 3 до 5,5 ммоль/л. Каждая единица инсулина снижает сахар крови на 2,2 ммоль/л. Если уколоть 20 единиц инсулина ультракороткого действия, может развиться гипогликемия.
  6. В эндокринологии (куда относится инсулин) есть такое понятие, как "хлебная единица". Вне зависимости от вида и количества продукта, не важно, что это, одна хлебная единица содержит 12-15 граммов усвояемых углеводов. Она повышает уровень сахара в крови на одну и ту же величину - 2,8 ммоль/л – ей надо для усвоения организмом примерно 1,5-2 единицы инсулина. Более широко об этой мере исчисления можно узнать в интернете.
  7. Теперь посчитаем. На 20 единиц инсулина следует принять 10-15 хлебных единиц, это равно 120-150 г чистых углеводов. К примеру, пусть будет 300-450 грамм белого хлеба.

Побочные действия инсулина

  • Гипогликемия или уменьшение содержания глюкозы в крови, это приводит ко всем остальным проявлениям. Гипогликемию можно без проблем предотвратить
  • Зуд в области укола
  • Аллергия наблюдается очень редко
  • Уменьшение эндогенной секреции инсулина бывает только на длительных курсах, когда используют высокие дозы инсулина
  • Инсулин НЕ ОКАЗЫВАЕТ токсического влияния на печень или почки, он НЕ ВЫЗЫВАЕТ нарушений половой функции (потенции).

Показания к лекарственному применению инсулина

Сахарный диабет.

В небольших дозах (5–10 ЕД) инсулин применяют при заболеваниях печени (гепатиты, начальные стадии цирроза), при ацидозе, истощении, упадке питания, фурункулёзе, при тиреотоксикозе.

В психоневрологической практике инсулин используют при алкоголизме, при истощении нервной системы (в дозах, которые влекут гипогликемическое состояние).

В психиатрии – для инсулинокоматозной терапии (при лечении некоторых форм шизофрении вводят раствор инсулина в больших количествах, которые при постепенном увеличении доз вызывают гипогликемический шок).

В дерматологии инсулин применяется при диабетической токсидермии, как неспецифическое средство – при экземе, угревой сыпи, крапивнице, псориазе, хронических пиодермиях и дрожжевых поражениях.

Противопоказания к медицинскому применению

Острый гепатит, панкреатит, нефрит, почечнокаменная болезнь, язвенная болезнь желудка и двенадцатиперстной кишки, декомпенсированный порок сердца.

Свернуть

Всё об инсулине. Какую функцию призван выполнять инсулин в организме человека и как этот препарат теперь может помочь справиться с таким грозным заболеванием, как сахарный диабет.

Что это такое – инсулин, и почему он столь необходим человеку? Ответ на этот вопрос лежит буквально на поверхности в приведенной ниже статье.

Инсулин – произошедший от латинского слова Insula (остров), является неким веществом белковой природы, синтезирующимся определёнными клетками поджелудочной железы, а точнее, её образованиями. В медицинской терминологии они обозначены, как островки Лангерганса–Соболева.

Этот гормон поджелудочной железы оказывает огромнейшее влияние на все происходящие обменные процессы, в тканях которые присущи человеческому организму. Принадлежащий к пептидному ряду, он качественно насыщает клетки человека всеми необходимыми для него веществами, перенося по системе кроветворения калий, разнообразные аминокислоты и, конечно же, глюкозу. Так как именно благодаря глюкозе в организме человека поддерживается некий баланс углеводов.

Вот как это происходит: при поглощении пищи в организме человека увеличивается количество глюкозы, что влияет на уровень описываемого вещества в крови и его повышение.

Химическая и структурная формула

Конструктивное действие этого вещества связано с его молекулярным строением. Именно это вызывало интерес у учёных с самого начала открытия этого гормона. Так как точная химическая формула этого синтезированного вещества позволила бы выделить его химическим путём.

Естественно, что только химической формулы недостаточно для описания его строения. Но также верно, то, что наука не стоит на месте и на сегодняшний день его химическая природа уже известна. И это позволяет совершенствовать всё новые и новые разработки лекарственных средств направленных, на излечение у человека сахарного диабета.

Строение, его химическое начало включает в себя аминокислоты и представляет собой некий пептидный гормон. Его молекулярная структура имеет две полипептидные цепи, в образовании которых и участвуют аминокислотные остатки, число которых в целом — 51. Эти цепи соединённые, дисульфидными мостиками условно определили, как «А» и «В». Группа «А» имеет 21 аминокислотный остаток, «В» 30.

Сама же структура и действенность на примерах разнообразных биологических видов отличается друг от друга. У людей эта структура больше напоминает не ту, которая образуется в организме обезьяны, а ту, что обустроена у свиньи. Различия промеж структурами свиньи и человека лишь в единственном аминокислотном остатке, который расположен в цепи В. Последующий же близкий по структуре биологический вид – это бык, с отличием строения в трёх аминокислотных остатках. У млекопитающих же молекулы этого вещества по аминокислотным остаткам отличаются ещё больше.

Функции и на что влияет гормон

При приёме пищи белок инсулин, являясь пептидным гормоном, не переваривается как любой другой в кишечнике, а выполняет массу функций. Итак, что делает это вещество, главным образом инсулин, играет на понижение концентрированности глюкозы в крови. А также на повышение проницаемости клеточных мембран для глюкозы.

Хотя выполняет инсулин и другие не менее важные функции в организме:

  • Он стимулирует появление в печени и мышечной структуре гликогена – некой формы сохранности глюкозы в животных клетках;
  • Увеличивает синтез гликогена;
  • Снижает некую ферментную активность расщепляющую, жиры и гликогены;
  • Даёт возможность инсулин увеличивать синтез белка и жиров;
  • Держит под контролем иные системы человека и воздействует на правильное усвоение аминокислот клетками;
  • Подавляет появление кетоновых тел;
  • Подавляет расщепление липидов.

Инсулин — это гормон, который регулирует в организме человека углеводный обмен. Его роль в качестве белкового вещества при поступлении в кровь, это снижение уровня сахара в крови.

Сбой секреции инсулина в организме человека, вызванный распадом бета-клеток зачастую, ведёт к полному инсулиновому дефициту и к постановке диагноза – сахарный диабет 1 го типа. Нарушение же взаимодействия этого вещества на ткани приводит к развитию сахарного диабета 2 го типа.

Запах

Чем пахнет это вещество? Симптом диабета, который, прежде всего, обращает на себя внимание – это запах ацетона изо рта. Ввиду недостаточности описываемого гормона, глюкоза не проникает в клетки. В связи, с чем у клеток начинается самый настоящий голод. А скопившаяся глюкоза приступает к образованию кетоновых тел, в связи, с чем усиливается запах ацетона от кожи и мочи. Поэтому при появлении такого запаха необходимо сразу же обратиться к врачу.

Выявление и производство этого вещества в 20 веке в виде лекарственного средства для диабетиков, дало шанс многим людям не только продлить свою жизнь с таким заболеванием, но и полноценно наслаждаться ею.

Образование гормона в организме

Только «В» клетки ответственны за производство этого вещества в человеческом организме. Гормон инсулин занимается регулированием сахара и действием на жировые процессы. При нарушении этих процессов и начинает развиваться диабет. В связи, с чем перед учёными умами стоит задачка в такой области, как медицина, биохимия, биология и генная инженерия осмыслить все нюансы биосинтеза и действия инсулина на организм для дальнейшего контроля над этими процессами.

Итак, за что отвечают «В» клетки – за выработку инсулина двух категорий, один из которых давний, а другой усовершенствованный, новый. В первом случае образуется проинсулин – он не активен и не исполняет гормонной функции. Количество этого вещества определено в 5% и какую роль в организме оно играет пока что до конца неясно.

Гормон инсулин выделяется «В» клетками сначала, как и вышеописанный гормон, с той лишь разницей, что в дальнейшем он отправляется в комплекс Гольджи, где дальше и перерабатывается. Изнутри этой клеточной составляющей, которая предназначена для синтеза и скопления различных веществ с помощью ферментов происходит отделение С-пептида.

А дальше, как итог образуется инсулин и его накопление, упаковывание для лучшей сохранности в секреторные вместилища. Потом если появляется потребность инсулина в организме, что связано с поднятием глюкозы, «В» клетки этот гормон быстро выбрасывают в кровь.

Так организм человека и образует описываемый гормон.

Необходимость и роль описываемого гормона

Для чего нужен инсулин в организме человеку, зачем и какая этому веществу отведена в нём роль? Организм человека для правильной и нормальной работы всегда подсказывает, что для каждой его клеточки необходимо в определённый момент:

  • Насыщаться кислородом;
  • Нужными ему питательными веществами;
  • Глюкозой.

Именно так поддерживается его жизнедеятельность.

А глюкоза в виде некого источника энергии вырабатываемая печенью и, поступая в организм с пищей, нуждается в помощи для попадания в каждую клеточку из крови. В этом процессе инсулин для попадания глюкозы в клетки и играет роль в организме человека некоего проводника, обеспечивая тем самым транспортную функцию.

И, конечно же, недостаток этого вещества буквально смертелен для организма и его клеток, но и избыток может вызвать такие заболевания, как диабет 2 го типа, ожирение, нарушить работу сердца, сосудов и даже привести к развитию онкологических недугов.

В связи свыше сказанным уровень инсулина у человека больным диабетом необходимо как можно чаще проверять, сдавая анализы и обращаясь при этом за врачебной помощью.

Производство и составляющая вещества

Образуется в поджелудочной железе естественный инсулин. Лекарство же описываемое в этой статье, являясь жизненно необходимым препаратом, произвело настоящую революцию среди тех людей, которые страдают и мучаются от сахарного диабета.

Так что это такое и как инсулин производится в фармацевтике?

Препараты инсулина для диабетиков отличаются друг от друга:

  • Очисткой в той или иной мере;
  • Происхождением (бывает инсулин — бычий, свиной, человеческий);
  • Второстепенными компонентами;
  • Концентрированностью;
  • pH – раствором;
  • Возможностью перемешивания препаратов (короткого и продлённого действия).

Введение инсулина производится специальными шприцами, калибровка которых представлена следующим процессом: при заборе шприцем 0,5 мл лекарства, пациент забирает 20 единиц, 0,35 мл равняется 10 единицам и так дальше.

  • Лекарственным средством животного происхождения;
  • Биосинтетическим;
  • Генно-инженерным;
  • Генно-инженерным модифицированным;
  • Синтетическим.

Дольше всего применяли свиной гормон. Но такой инсулин состав, которого полностью не походил на естественные гормоны не имели абсолютного действенного результата. В связи, с чем настоящим успехом и эффектом в лечении диабета стал механизм действия инсулина рекомбинантного, свойства которого практически на 100 % удовлетворили людей, страдающих диабетом, причём разной возрастной категории.

Инсулин – это основное лекарство для лечения больных сахарным диабетом 1 типа. Иногда он также используется для стабилизации состояния пациента и улучшения его самочувствия при втором типе заболевания. Это вещество по своей природе является гормоном, который способен в малых дозах влиять на обмен углеводов.

В норме поджелудочная железа вырабатывает достаточное количество инсулина, который помогает поддерживать физиологический уровень сахара в крови. Но при серьезных эндокринных нарушениях единственным шансом помочь больному часто становятся именно инъекции инсулина. Принимать его перорально (в виде таблеток), к сожалению, нельзя, поскольку он полностью разрушается в пищеварительном тракте и утрачивает биологическую ценность.

Многие диабетики наверняка хоть раз задавались вопросом, из чего делают инсулин, который применяется в медицинских целях? В настоящее время чаще всего это лекарство получают с помощью методов генной инженерии и биотехнологии, но иногда его извлекают из сырья животного происхождения.

Препараты, получаемые из сырья животного происхождения

Получение этого гормона из поджелудочной железы свиней и крупного рогатого скота – старая технология, которая сегодня используется довольно редко. Это связано с невысоким качеством получаемого лекарства, его склонностью вызывать аллергические реакции и недостаточной степенью очистки. Дело в том, что, поскольку гормон – это белковое вещество, оно состоит из определенного набора аминокислот.

Инсулин, вырабатываемый в организме свиньи, отличается по аминокислотному составу от инсулина человека на 1 аминокислоту, а инсулин быка – на 3.

В начале и середине 20 столетия, когда аналогичных препаратов не существовало, даже такой инсулин стал прорывом в медицине и позволил вывести лечение диабетиков на новый уровень. Гормоны, полученные таким методом, снижали сахар крови, правда, при этом они часто вызывали побочные эффекты и аллергию. Отличия в составе аминокислот и примеси в лекарстве сказывались на состоянии пациентов, особенно это проявлялось у более уязвимых категорий больных (детей и пожилых людей). Еще одна причина плохой переносимости такого инсулина – наличие его неактивного предшественника в лекарстве (проинсулина), избавиться от которого в данной вариации лекарства было невозможно.

В наше время существуют усовершенствованные свиные инсулины, которые лишены этих недостатков. Их получают из поджелудочной железы свиньи, но после этого поддают дополнительной обработке и очистке. Они являются многокомпонентными и содержат в своем составе вспомогательные вещества.


Модифицированный свиной инсулин практически ничем не отличается от человеческого гормона, поэтому его до сих пор используют на практике

Такие лекарства переносятся пациентами гораздо лучше и практически не вызывают побочных реакций, они не угнетают иммунитет и эффективно снижают сахар в крови. Бычий инсулин на сегодняшний день в медицине не используется, так как из-за своей чужеродной структуры он отрицательно влияет на иммунную и другие системы организма человека.

Генноинженерный инсулин

Человеческий инсулин, который применяется для диабетиков, в промышленном масштабе получают двумя способами:

  • с помощью ферментативной обработки свиного инсулина;
  • с использованием генномодифицированных штаммов кишечной палочки или дрожжей.

При физико-химическом изменении молекулы свиного инсулина под действием специальных ферментов становятся идентичными инсулину человека. Аминокислотный состав полученного препарата ничем не отличается от состава натурального гормона, который вырабатывается в организме людей. В процессе производства лекарство проходит высокую очистку, поэтому не вызывает аллергических реакций и других нежелательных проявлений.

Но чаще всего инсулин получают с помощью модифицированных (генетически измененных) микроорганизмов. Бактерии или дрожжи с помощью биотехнологических методов изменены таким образом, что могут сами производить инсулин.

Помимо самого получения инсулина, важную роль играет его очистка. Чтобы препарат не вызывал никаких аллергических и воспалительных реакций, на каждой стадии необходимо следить за чистотой штаммов микроорганизмов и всех растворов, а также используемых ингредиентов.

Существует 2 методики подобного получения инсулина. Первая из них основана на использовании двух разных штаммов (видов) какого-то одного микроорганизма. Каждый из них синтезирует только одну цепь молекулы ДНК гормона (всего их две, и они спирально закручены между собой). Затем эти цепи соединяются, и в полученном растворе уже можно отделить активные формы инсулина от тех, которые не несут никакого биологического значения.

Второй способ получения лекарства с помощью кишечной палочки или дрожжей основан на том, что микроб сначала производит неактивный инсулин (то есть его предшественник – проинсулин). Потом с помощью ферментативной обработки эту форму активируют и используют в медицине.


Персонал, который имеет доступ в определенные производственные помещения, всегда должен быть одет в стерильный защитный костюм, благодаря чему контакт препарата с биологическими жидкостями человека исключается

Все эти процессы обычно автоматизированы, воздух и все соприкасающиеся поверхности с ампулами и флаконами стерильны, а линии с оборудованием герметично закрыты.

Методы биотехнологии дают возможность ученым думать об альтернативных решениях проблемы сахарного диабета. Например, на сегодняшний день проводятся доклинические исследования производства искусственных бета-клеток поджелудочной железы, которые могут быть получены с помощью методов генной инженерии. Возможно, в будущем их будут использовать для улучшения функционирования этого органа у больного человека.


Производство современных – сложный технологический процесс, который предусматривает автоматизацию и минимальное вмешательство человека

Дополнительные компоненты

Производство инсулина без вспомогательных веществ в современном мире практически невозможно представить, ведь они позволяют улучшить его химические свойства, продлить время действия и достичь высокой степени чистоты.

По своим свойствам все дополнительные ингредиенты можно разделить на такие классы:

  • пролонгаторы (вещества, которые используются для обеспечения более длительного действия лекарства);
  • дезинфицирующие компоненты;
  • стабилизаторы, благодаря которым в растворе лекарства поддерживается оптимальная кислотность.

Пролонгирующие добавки

Существуют инсулины продленного действия, биологическая активность которых продолжается в течение 8 – 42 часов (в зависимости от группы препарата). Такой эффект достигается, благодаря добавлению в инъекционный раствор специальных веществ – пролонгаторов. Чаще всего с этой целью применяется одно из таких соединений:

  • белки;
  • хлористые соли цинка.

Белки, которые продлевают действие лекарства, проходят детальную очистку и являются низкоаллергенными (например, протамин). Соли цинка также не оказывают отрицательного влияния ни на активность инсулина, ни на самочувствие человека.

Антимикробные составляющие

Дезинфекторы в составе инсулина необходимы для того, чтобы при хранении и использовании в нем не размножалась микробная флора. Эти вещества являются консервантами и обеспечивают сохранность биологической активности лекарства. К тому же, если пациент вводит гормон из одного флакона только самому себе, то лекарства ему может хватить на несколько дней. За счет качественных антибактериальных компонентов у него не будет потребности выбрасывать неиспользованный препарат из-за теоретической возможности размножения в растворе микробов.

В качестве дезинфицирующих составляющих при производстве инсулина могут использоваться такие вещества:

  • метакрезол;
  • фенол;
  • парабены.


Если в растворе содержатся ионы цинка, они также выступают дополнительным консервантом из-за своих антимикробных свойств

Для производства каждого вида инсулина подходят определенные дезинфицирующие компоненты. Их взаимодействие с гормоном обязательно исследуют на этапе доклинических испытаний, поскольку консервант не должен нарушать биологическую активность инсулина или как-то по-другому отрицательно влиять на его свойства.

Использование консервантов в большинстве случаев позволяет вводить гормон под кожу без ее предварительной обработки спиртом или другими антисептиками (производитель обычно упоминает об этом в инструкции). Это упрощает введение лекарства и сокращает количество подготовительных манипуляций перед самой инъекцией. Но данная рекомендация работает только в случае введения раствора с помощью индивидуального инсулинового шприца с тонкой иглой.

Стабилизаторы

Стабилизаторы необходимы для того, чтобы pH раствора поддерживался на заданном уровне. От уровня кислотности зависит сохранность лекарства, его активность и стабильность химических свойств. При производстве инъекционного гормона для больных диабетом с этой целью обычно используют фосфаты.

Для инсулинов с цинком стабилизаторы растворов нужны не всегда, поскольку ионы металла помогают поддерживать необходимый баланс. Если же они все-таки применяются, то вместо фосфатов используют другие химические соединения, так как комбинация этих веществ приводит к выпадению осадка и непригодности лекарства. Важное свойство, предъявляемое ко всем стабилизаторам – безопасность и отсутствие возможности вступать в любые реакции с инсулином.

Подбором инъекционных лекарств при диабете для каждого конкретного пациента должен заниматься компетентный эндокринолог. Задача инсулина – не только удерживать нормальный уровень сахара в крови, но и не вредить другим органам и системам. Препарат должен быть нейтральным в химическом плане, низкоаллергенным и желательно доступным по цене. Довольно удобно также, если подобранный инсулин можно будет смешивать с другими его версиями по длительности действия.

Последнее обновление: Июнь 1, 2019

д.м.н., проф. Лобанова Е.Г., к.м.н. Чекалина Н.Д.

Инсулин (от лат. insula — островок) является белково-пептидным гормоном, вырабатываемым β-клетками островков Лангерганса поджелудочной железы. В физиологических условиях в β-клетках инсулин образуется из препроинсулина — одноцепочечного белка-предшественника, состоящего из 110 аминокислотных остатков. После переноса через мембрану шероховатого эндоплазматического ретикулума от препроинсулина отщепляется сигнальный пептид из 24 аминокислот и образуется проинсулин. Длинная цепь проинсулина в аппарате Гольджи упаковывается в гранулы, где в результате гидролиза отщепляются четыре основных аминокислотных остатка с образованием инсулина и С-концевого пептида (физиологическая функция С-пептида неизвестна).

Молекула инсулина состоит из двух полипептидных цепей. Одна из них содержит 21 аминокислотный остаток (цепь А), вторая — 30 аминокислотных остатков (цепь В). Цепи соединены двумя дисульфидными мостиками. Третий дисульфидный мостик сформирован внутри цепи А. Общая молекулярная масса молекулы инсулина — около 5700. Аминокислотная последовательность инсулина считается консервативной. У большинства видов имеется один ген инсулина, кодирующий один белок. Исключение составляют крысы и мыши (имеют по два гена инсулина), у них образуются два инсулина, отличающиеся двумя аминокислотными остатками В-цепи.

Первичная структура инсулина у разных биологических видов, в т.ч. и у различных млекопитающих, несколько различается. Наиболее близкий к структуре инсулина человека — свиной инсулин, который отличается от человеческого одной аминокислотой (у него в цепи В вместо остатка аминокислоты треонина содержится остаток аланина). Бычий инсулин отличается от человеческого тремя аминокислотными остатками.

Историческая справка. В 1921 г. Фредерик Г. Бантинг и Чарльз Г. Бест, работая в лаборатории Джона Дж. Р. Маклеода в Университете Торонто, выделили из поджелудочной железы экстракт (как позже выяснилось, содержащий аморфный инсулин), который снижал уровень глюкозы в крови у собак с экспериментальным сахарным диабетом. В 1922 г. экстракт поджелудочной железы ввели первому пациенту — 14-летнему Леонарду Томпсону, больному диабетом, и тем самым спасли ему жизнь. В 1923 г. Джеймс Б. Коллип разработал методику очистки экстракта, выделяемого из поджелудочной железы, что в дальнейшем позволило получать из поджелудочных желез свиней и крупного рогатого скота активные экстракты, дающие воспроизводимые результаты. В 1923 г. Бантинг и Маклеод за открытие инсулина были удостоены Нобелевской премии по физиологии и медицине. В 1926 г. Дж. Абель и В. Дю-Виньо получили инсулин в кристаллическом виде. В 1939 г. инсулин был впервые одобрен FDA (Food and Drug Administration). Фредерик Сэнгер полностью расшифровал аминокислотную последовательность инсулина (1949-1954 гг.) В 1958 г. Сэнгеру была присуждена Нобелевская премия за работы по расшифровке структуры белков, особенно инсулина. В 1963 г. был синтезирован искусственный инсулин. Первый рекомбинантный человеческий инсулин был одобрен FDA в 1982 г. Аналог инсулина ультракороткого действия (инсулин лизпро) был одобрен FDA в 1996 г.

Механизм действия. В реализации эффектов инсулина ведущую роль играет его взаимодействие со специфическими рецепторами, локализующимися на плазматической мембране клетки, и образование инсулин-рецепторного комплекса. В комплексе с инсулиновым рецептором инсулин проникает в клетку, где оказывает влияние на процессы фосфорилирования клеточных белков и запускает многочисленные внутриклеточные реакции.

У млекопитающих инсулиновые рецепторы находятся практически на всех клетках — как на классических клетках-мишенях инсулина (гепатоциты, миоциты, липоциты), так и на клетках крови, головного мозга и половых желез. Число рецепторов на разных клетках колеблется от 40 (эритроциты) до 300 тыс. (гепатоциты и липоциты). Рецептор инсулина постоянно синтезируется и распадается, время его полужизни составляет 7-12 ч.

Рецептор инсулина представляет собой крупный трансмембранный гликопротеин, состоящий из двух α-субъединиц с молекулярной массой 135 кДа (каждая содержит 719 или 731 аминокислотный остаток в зависимости от сплайсинга мРНК) и двух β-субъединиц с молекулярной массой 95 кДа (по 620 аминокислотных остатков). Субъединицы соединены между собой дисульфидными связями и образуют гетеротетрамерную структуру β-α-α-β. Альфа-субъединицы расположены внеклеточно и содержат участки, связывающие инсулин, являясь распознающей частью рецептора. Бета-субъединицы образуют трансмембранный домен, обладают тирозинкиназной активностью и выполняют функцию преобразования сигнала. Связывание инсулина с α-субъединицами инсулинового рецептора приводит к стимуляции тирозинкиназной активности β-субъединиц путем аутофосфорилирования их тирозиновых остатков, происходит агрегация α,β-гетеродимеров и быстрая интернализация гормон-рецепторных комплексов. Активированный рецептор инсулина запускает каскад биохимических реакций, в т.ч. фосфорилирование других белков внутри клетки. Первой из таких реакций является фосфорилирование четырех белков, называемых субстратами рецептора инсулина (insulin receptor substrate), — IRS-1, IRS-2, IRS-3 и IRS-4.

Фармакологические эффекты инсулина. Инсулин оказывает влияние практически на все органы и ткани. Однако его главными мишенями служат печень, мышечная и жировая ткань.

Эндогенный инсулин — важнейший регулятор углеводного обмена, экзогенный — специфическое сахаропонижающее средство. Влияние инсулина на углеводный обмен связано с тем, что он усиливает транспорт глюкозы через клеточную мембрану и ее утилизацию тканями, способствует превращению глюкозы в гликоген в печени. Инсулин, кроме того, угнетает эндогенную продукцию глюкозы за счет подавления гликогенолиза (расщепление гликогена до глюкозы) и глюконеогенеза (синтез глюкозы из неуглеводных источников — например из аминокислот, жирных кислот). Помимо гипогликемического, инсулин оказывает ряд других эффектов.

Влияние инсулина на жировой обмен проявляется в угнетении липолиза, что приводит к снижению поступления свободных жирных кислот в кровоток. Инсулин препятствует образованию кетоновых тел в организме. Инсулин усиливает синтез жирных кислот и их последующую эстерификацию.

Инсулин участвует в метаболизме белков: увеличивает транспорт аминокислот через клеточную мембрану, стимулирует синтез пептидов, уменьшает расход тканями белка, тормозит превращение аминокислот в кетокислоты.

Действие инсулина сопровождается активацией или ингибированием ряда ферментов: стимулируются гликогенсинтетаза, пируват-дегидрогеназа, гексокиназа, ингибируются липазы (и гидролизующая липиды жировой ткани, и липопротеин-липаза, уменьшающая «помутнение» сыворотки крови после приема богатой жирами пищи).

В физиологической регуляции биосинтеза и секреции инсулина поджелудочной железой главную роль играет концентрация глюкозы в крови: при повышении ее содержания секреция инсулина усиливается, при снижении — замедляется. На секрецию инсулина, кроме глюкозы, оказывают влияние электролиты (особенно ионы Ca 2+), аминокислоты (в т.ч. лейцин и аргинин), глюкагон, соматостатин.

Фармакокинетика. Препараты инсулина вводят п/к, в/м или в/в (в/в вводят только инсулины короткого действия и только при диабетической прекоме и коме). Нельзя вводить в/в суспензии инсулина. Температура вводимого инсулина должна соответствовать комнатной, т.к. холодный инсулин всасывается медленнее. Наиболее оптимальным способом для постоянной инсулинотерапии в клинической практике является п/к введение.

Полнота всасывания и начало эффекта инсулина зависят от места введения (обычно инсулин вводят в область живота, бедра, ягодицы, верхнюю часть рук), дозы (объема вводимого инсулина), концентрации инсулина в препарате и др.

Скорость всасывания инсулина в кровь из места п/к введения зависит от ряда факторов — типа инсулина, места инъекции, скорости местного кровотока, местной мышечной активности, количества вводимого инсулина (в одно место рекомендуется вводить не более 12-16 ЕД препарата). Быстрее всего инсулин поступает в кровь из подкожной клетчатки передней брюшной стенки, медленнее — из области плеча, передней поверхности бедра и еще медленнее — из подлопаточной области и ягодицы. Это связано со степенью васкуляризации подкожной жировой клетчатки перечисленных областей. Профиль действия инсулина подвержен значительным колебаниям как у различных людей, так и у одного и того же человека.

В крови инсулин связывается с альфа- и бета-глобулинами, в норме — 5-25%, но связывание может возрастать при лечении из-за появления сывороточных антител (выработка антител к экзогенному инсулину приводит к инсулинорезистентности; при использовании современных высокоочищенных препаратов инсулинорезистентность возникает редко). T 1/2 из крови составляет менее 10 мин. Большая часть поступившего в кровоток инсулина подвергается протеолитическому распаду в печени и почках. Быстро выводится из организма почками (60%) и печенью (40%); менее 1,5% выводится с мочой в неизмененном виде.

Препараты инсулина, применяемые в настоящее время, отличаются по ряду признаков, в т.ч. по источнику происхождения, длительности действия, pH раствора (кислые и нейтральные), наличием консервантов (фенол, крезол, фенол-крезол, метилпарабен), концентрацией инсулина — 40, 80, 100, 200, 500 ЕД/мл.

Классификация. Инсулины обычно классифицируют по происхождению (бычий, свиной, человеческий, а также аналоги человеческого инсулина) и продолжительности действия.

В зависимости от источников получения различают инсулины животного происхождения (главным образом препараты свиного инсулина), препараты инсулина человека полусинтетические (получают из свиного инсулина методом ферментативной трансформации), препараты инсулина человека генно-инженерные (ДНК-рекомбинантные, получаемые методом генной инженерии).

Для медицинского применения инсулин ранее получали в основном из поджелудочных желез крупного рогатого скота, затем из поджелудочных желез свиней, учитывая, что свиной инсулин более близок к инсулину человека. Поскольку бычий инсулин, отличающийся от человеческого тремя аминокислотами, достаточно часто вызывает аллергические реакции, на сегодняшний день он практически не применяется. Свиной инсулин, отличающийся от человеческого одной аминокислотой, реже вызывает аллергические реакции. В лекарственных препаратах инсулина при недостаточной очистке могут присутствовать примеси (проинсулин, глюкагон, соматостатин, белки, полипептиды), способные вызывать различные побочные реакции. Современные технологии позволяют получать очищенные (монопиковые — хроматографически очищенные с выделением «пика» инсулина), высокоочищенные (монокомпонентные) и кристаллизованные препараты инсулина. Из препаратов инсулина животного происхождения предпочтение отдается монопиковому инсулину, получаемому из поджелудочной железы свиней. Получаемый методами генной инженерии инсулин полностью соответствует аминокислотному составу инсулина человека.

Активность инсулина определяют биологическим методом (по способности понижать содержание глюкозы в крови у кроликов) или физико-химическим методом (путем электрофореза на бумаге или методом хроматографии на бумаге). За одну единицу действия, или международную единицу, принимают активность 0,04082 мг кристаллического инсулина. Поджелудочная железа человека содержит до 8 мг инсулина (примерно 200 ЕД).

Препараты инсулина по длительности действия подразделяют на препараты короткого и ультракороткого действия — имитируют нормальную физиологическую секрецию инсулина поджелудочной железой в ответ на стимуляцию, препараты средней продолжительности и препараты длительного действия — имитируют базальную (фоновую) секрецию инсулина, а также комбинированные препараты (сочетают оба действия).

Различают следующие группы:

(гипогликемический эффект развивается через 10-20 мин после п/к введения, пик действия достигается в среднем через 1-3 ч, длительность действия составляет 3-5 ч):

Инсулин лизпро (Хумалог);

Инсулин аспарт (НовоРапид Пенфилл, НовоРапид ФлексПен);

Инсулин глулизин (Апидра).

Инсулины короткого действия (начало действия обычно через 30-60 мин; максимум действия через 2-4 ч; продолжительность действия до 6-8 ч):

Инсулин растворимый [человеческий генно-инженерный] (Актрапид HМ, Генсулин Р, Ринсулин Р, Хумулин Регуляр);

Инсулин растворимый [человеческий полусинтетический] (Биогулин Р, Хумодар Р);

Инсулин растворимый [свиной монокомпонентный] (Актрапид МС, Монодар, Моносуинсулин МК).

Препараты инсулина пролонгированного действия — включают в себя препараты средней продолжительности действия и препараты длительного действия.

(начало через 1,5-2 ч; пик спустя 3-12 ч; продолжительность 8-12 ч):

Инсулин-изофан [человеческий генно-инженерный] (Биосулин Н, Гансулин Н, Генсулин Н, Инсуман Базал ГТ, Инсуран НПХ, Протафан НМ, Ринсулин НПХ, Хумулин НПХ);

Инсулин-изофан [человеческий полусинтетический] (Биогулин Н, Хумодар Б);

Инсулин-изофан [свиной монокомпонентный] (Монодар Б, Протафан МС);

Инсулин-цинк суспензия составная (Монотард МС).

Инсулины длительного действия (начало через 4-8 ч; пик спустя 8-18 ч; общая продолжительность 20-30 ч):

Инсулин гларгин (Лантус);

Инсулин детемир (Левемир Пенфилл, Левемир ФлексПен).

Препараты инсулина комбинированного действия (бифазные препараты) (гипогликемический эффект начинается через 30 мин после п/к введения, достигает максимума через 2-8 ч и продолжается до 18-20 ч):

Инсулин двухфазный [человеческий полусинтетический] (Биогулин 70/30, Хумодар K25);

Инсулин двухфазный [человеческий генно-инженерный] (Гансулин30Р, Генсулин М 30, Инсуман Комб 25 ГТ, Микстард 30 НМ, Хумулин М3);

Инсулин аспарт двухфазный (НовоМикс 30 Пенфилл, НовоМикс 30 ФлексПен).

Инсулины ультракороткого действия — аналоги инсулина человека. Известно, что эндогенный инсулин в β-клетках поджелудочной железы, а также молекулы гормона в выпускаемых растворах инсулина короткого действия полимеризованы и представляют собой гексамеры. При п/к введении гексамерные формы всасываются медленно и пик концентрации гормона в крови, аналогичный таковому у здорового человека после еды, создать невозможно. Первым коротко действующим аналогом инсулина, который всасывается из подкожной клетчатки в 3 раза быстрее, чем человеческий инсулин, был инсулин лизпро. Инсулин лизпро — производное человеческого инсулина, полученное путем перестановки двух аминокислотных остатков в молекуле инсулина (лизин и пролин в положениях 28 и 29 В-цепи). Модификация молекулы инсулина нарушает образование гексамеров и обеспечивает быстрое поступление препарата в кровь. Почти сразу после п/к введения в тканях молекулы инсулина лизпро в виде гексамеров быстро диссоциируют на мономеры и поступают в кровь. Другой аналог инсулина — инсулин аспарт — был создан путем замены пролина в положении В28 на отрицательно заряженную аспарагиновую кислоту. Подобно инсулину лизпро, после п/к введения он также быстро распадается на мономеры. В инсулине глулизине замещение аминокислоты аспарагин человеческого инсулина в позиции В3 на лизин и лизина в позиции В29 на глутаминовую кислоту также способствует более быстрой абсорбции. Аналоги инсулина ультракороткого действия можно вводить непосредственно перед приемом пищи или после еды.

Инсулины короткого действия (их называют также растворимыми) — это растворы в буфере с нейтральными значениями pH (6,6-8,0). Они предназначены для подкожного, реже — внутримышечного введения. При необходимости их вводят также внутривенно. Они оказывают быстрое и относительно непродолжительное гипогликемическое действие. Эффект после подкожной инъекции наступает через 15-20 мин, достигает максимума через 2 ч; общая продолжительность действия составляет примерно 6 ч. Ими пользуются в основном в стационаре в ходе установления необходимой для больного дозы инсулина, а также когда требуется быстрый (ургентный) эффект — при диабетической коме и прекоме. При в/в введении T 1/2 составляет 5 мин, поэтому при диабетической кетоацидотической коме инсулин вводят в/в капельно. Препараты инсулина короткого действия применяют также в качестве анаболических средств и назначают, как правило, в малых дозах (по 4-8 ЕД 1-2 раза в день).

Инсулины средней длительности действия хуже растворимы, медленнее всасываются из подкожной клетчатки, вследствие чего обладают более длительным эффектом. Продолжительное действие этих препаратов достигается наличием специального пролонгатора — протамина (изофан, протафан, базал) или цинка. Замедление всасывания инсулина в препаратах, содержащих инсулин цинк суспензию составную, обусловлено наличием кристаллов цинка. НПХ-инсулин (нейтральный протамин Хагедорна, или изофан) представляет собой суспензию, состоящую из инсулина и протамина (протамин — белок, изолированный из молок рыб) в стехиометрическом соотношении.

К инсулинам длительного действия относится инсулин гларгин — аналог человеческого инсулина, полученный методом ДНК-рекомбинантной технологии — первый препарат инсулина, который не имеет выраженного пика действия. Инсулин гларгин получают путем двух модификаций в молекуле инсулина: заменой в позиции 21 А-цепи (аспарагин) на глицин и присоединением двух остатков аргинина к С-концу В-цепи. Препарат представляет собой прозрачный раствор с рН 4. Кислый рН стабилизирует гексамеры инсулина и обеспечивает длительное и предсказуемое всасывание препарата из подкожной клетчатки. Однако из-за кислого рН инсулин гларгин нельзя комбинировать с инсулинами короткого действия, которые имеют нейтральный рН. Однократное введение инсулина гларгина обеспечивает 24-часовой беспиковый гликемический контроль. Большинство препаратов инсулина обладают т.н. «пиком» действия, отмечающимся, когда концентрация инсулина в крови достигает максимума. Инсулин гларгин не обладает выраженным пиком, поскольку высвобождается в кровоток с относительно постоянной скоростью.

Препараты инсулина пролонгированного действия выпускаются в различных лекарственных формах, оказывающих гипогликемический эффект разной продолжительности (от 10 до 36 ч). Пролонгированный эффект позволяет уменьшить число ежедневных инъекций. Выпускаются они обычно в виде суспензий, вводимых только подкожно или внутримышечно. При диабетической коме и прекоматозных состояниях пролонгированные препараты не применяют.

Комбинированные препараты инсулина представляют собой суспензии, состоящие из нейтрального растворимого инсулина короткого действия и инсулина-изофан (средней длительности действия) в определенных соотношениях. Такое сочетание инсулинов разной продолжительности действия в одном препарате позволяет избавить пациента от двух инъекций при раздельном использовании препаратов.

Показания. Основным показанием к применению инсулина является сахарный диабет типа 1, однако в определенных условиях его назначают и при сахарном диабете типа 2, в т.ч. при резистентности к пероральным гипогликемическим средствам, при тяжелых сопутствующих заболеваниях, при подготовке к оперативным вмешательствам, диабетической коме, при диабете у беременных. Инсулины короткого действия применяют не только при сахарном диабете, но и при некоторых других патологических процессах, например, при общем истощении (в качестве анаболического средства), фурункулезе, тиреотоксикозе, при заболеваниях желудка (атония, гастроптоз), хроническом гепатите, начальных формах цирроза печени, а также при некоторых психических заболеваниях (введение больших доз инсулина — т.н. гипогликемическая кома); иногда он используется как компонент «поляризующих» растворов, используемых для лечения острой сердечной недостаточности.

Инсулин является основным специфическим средством терапии сахарного диабета. Лечение сахарного диабета проводится по специально разработанным схемам с использованием препаратов инсулина разной продолжительности действия. Выбор препарата зависит от тяжести и особенностей течения заболевания, общего состояния больного и от скорости наступления и продолжительности сахароснижающего действия препарата.

Все препараты инсулина применяются при условии обязательного соблюдения диетического режима с ограничением энергетической ценности пищи (от 1700 до 3000 ккал).

При определении дозы инсулина руководствуются уровнем гликемии натощак и в течение суток, а также уровнем глюкозурии в течение суток. Окончательный подбор дозы проводится под контролем снижения гипергликемии, глюкозурии, а также общего состояния больного.

Противопоказания. Инсулин противопоказан при заболеваниях и состояниях, протекающих с гипогликемией (например инсулинома), при острых заболеваниях печени, поджелудочной железы, почек, язве желудка и двенадцатиперстной кишки, декомпенсированных пороках сердца, при острой коронарной недостаточности и некоторых других заболеваниях.

Применение при беременности. Основным медикаментозным методом лечения сахарного диабета во время беременности является инсулинотерапия, которая проводится под тщательным контролем. При сахарном диабете типа 1 продолжают лечение инсулином. При сахарном диабете типа 2 отменяют пероральные гипогликемические средства и проводят диетотерапию.

Гестационный сахарный диабет (диабет беременных) — это нарушение углеводного обмена, впервые возникшее во время беременности. Гестационный сахарный диабет сопровождается повышенным риском перинатальной смертности, частоты врожденных уродств, а также риском прогрессирования диабета через 5-10 лет после родов. Лечение гестационного сахарного диабета начинают с диетотерапии. При неэффективности диетотерапии применяют инсулин.

Для пациенток с ранее имевшимся или гестационным сахарным диабетом важно в течение всей беременности поддерживать адекватную регуляцию метаболических процессов. Потребность в инсулине может уменьшаться в I триместре беременности и увеличиваться во II-III триместрах. Во время родов и непосредственно после них потребность в инсулине может резко снизиться (возрастает риск развития гипогликемии). В этих условиях существенное значение имеет тщательный контроль содержания глюкозы в крови.

Инсулин не проникает через плацентарный барьер. Однако материнские IgG-антитела к инсулину проходят через плаценту и, вероятно, могут вызывать гипергликемию у плода за счет нейтрализации секретируемого у него инсулина. С другой стороны, нежелательная диссоциация комплексов инсулин-антитело может привести к гиперинсулинемии и гипогликемии у плода или новорожденного. Показано, что переход с препаратов бычьего/свиного инсулина на монокомпонентные препараты сопровождается снижением титра антител. В связи с этим при беременности рекомендуют использовать только препараты инсулина человека.

Аналоги инсулина (как и другие недавно разработанные средства) с осторожностью назначают при беременности, хотя достоверных данных о неблагоприятном воздействии нет. В соответствии с общепризнанными рекомендациями FDA (Food and Drug Administration), определяющими возможность применения ЛС при беременности, препараты инсулинов по действию на плод относятся к категории B (изучение репродукции на животных не выявило неблагоприятного действия на плод, а адекватных и строго контролируемых исследований у беременных женщин не проведено), либо к категории C (изучение репродукции на животных выявило неблагоприятное действие на плод, а адекватных и строго контролируемых исследований у беременных женщин не проведено, однако потенциальная польза, связанная с применением ЛС у беременных, может оправдывать его использование, несмотря на возможный риск). Так, инсулин лизпро относится к классу B, а инсулин аспарт и инсулин гларгин — к классу C.

Осложнения инсулинотерапии. Гипогликемия. Введение слишком высоких доз, а также недостаток поступления с пищей углеводов могут вызвать нежелательное гипогликемическое состояние, может развиться гипогликемическая кома с потерей сознания, судорогами и угнетением сердечной деятельности. Гипогликемия может также развиться в связи с действием дополнительных факторов, которые увеличивают чувствительность к инсулину (например надпочечниковая недостаточность, гипопитуитаризм) или увеличивают захват глюкозы тканями (физическая нагрузка).

К ранним симптомам гипогликемии, которые в значительной степени связаны с активацией симпатической нервной системы (адренергическая симптоматика) относятся тахикардия, холодный пот, дрожь, с активацией парасимпатической системы — сильный голод, тошнота, а также ощущение покалывания в области губ и языка. При первых признаках гипогликемии необходимо проведение срочных мероприятий: больной должен выпить сладкий чай или съесть несколько кусков сахара. При гипогликемической коме в вену вводят 40% раствор глюкозы в количестве 20-40 мл и более, пока больной не выйдет из коматозного состояния (обычно не более 100 мл). Снять гипогликемию можно также внутримышечным или подкожным введением глюкагона.

Увеличение массы тела при инсулинотерапии связано с устранением глюкозурии, увеличением реальной калорийности пищи, повышением аппетита и стимуляцией липогенеза под действием инсулина. При соблюдении принципов рационального питания этого побочного эффекта можно избежать.

Применение современных высокоочищенных препаратов гормона (особенно генно-инженерных препаратов человеческого инсулина) относительно редко приводит к развитию инсулинорезистентности и явлениям аллергии , однако такие случаи не исключены. Развитие острой аллергической реакции требует проведения немедленной десенсибилизирующей терапии и замены препарата. При развитии реакции на препараты бычьего/свиного инсулина следует заменить их препаратами инсулина человека. Местные и системные реакции (зуд, локальная или системная сыпь, образование подкожных узелков в месте инъекции) связаны с недостаточной очисткой инсулина от примесей или с применением бычьего или свиного инсулина, отличающихся по аминокислотной последовательности от человеческого.

Самые частые аллергические реакции — кожные, опосредуемые IgE-антителами. Изредка наблюдаются системные аллергические реакции, а также инсулинорезистентность, опосредуемые IgG-антителами.

Нарушение зрения. Преходящие нарушения рефракции глаза возникают в самом начале инсулинотерапии и проходят самостоятельно через 2-3 недели.

Отеки. В первые недели терапии возникают также преходящие отеки ног в связи с задержкой жидкости в организме, т.н. инсулиновые отеки.

К местным реакциям относят липодистрофию в месте повторных инъекций (редкое осложнение). Выделяют липоатрофию (исчезновение отложений подкожного жира) и липогипертрофию (увеличение отложения подкожного жира). Эти два состояния имеют разную природу. Липоатрофия — иммунологическая реакция, обусловленная главным образом введением плохо очищенных препаратов инсулина животного происхождения, в настоящее время практически не встречается. Липогипертрофия развивается и при использовании высокоочищенных препаратов человеческого инсулина и может возникать при нарушении техники введения (холодный препарат, попадание спирта под кожу), а также вследствие анаболического местного действия самого препарата. Липогипертрофия создает косметический дефект, что является проблемой для пациентов. Кроме того, из-за этого дефекта нарушается всасывание препарата. Для предупреждения развития липогипертрофии рекомендуется постоянно менять места инъекций в пределах одной области, оставляя расстояние между двумя проколами не менее 1 см.

Могут отмечаться такие местные реакции, как боль в месте введения.

Взаимодействие. Препараты инсулина можно комбинировать друг с другом.

Многие ЛС могут вызывать гипо- или гипергликемию, либо изменять реакцию больного сахарным диабетом на лечение. Следует учитывать взаимодействие, возможное при одновременном применении инсулина с другими лекарственными средствами. Альфа-адреноблокаторы и бета-адреномиметики увеличивают секрецию эндогенного инсулина и усиливают действие препарата. Гипогликемическое действие инсулина усиливают пероральные гипогликемические средства, салицилаты, ингибиторы МАО (включая фуразолидон, прокарбазин, селегилин), ингибиторы АПФ, бромокриптин, октреотид, сульфаниламиды, анаболические стероиды (особенно оксандролон, метандиенон) и андрогены (повышают чувствительность тканей к инсулину и увеличивают резистентность тканей к глюкагону, что и приводит к гипогликемии, особенно в случае инсулинорезистентности; может понадобиться снижение дозы инсулина), аналоги соматостатина, гуанетидин, дизопирамид, клофибрат, кетоконазол, препараты лития, мебендазол, пентамидин, пиридоксин, пропоксифен, фенилбутазон, флуоксетин, теофиллин, фенфлурамин, препараты лития, препараты кальция, тетрациклины. Хлорохин, хинидин, хинин снижают деградацию инсулина и могут повышать концентрацию инсулина в крови и увеличивать риск гипогликемии.

Ингибиторы карбоангидразы (особенно ацетазоламид), стимулируя панкреатические β-клетки, способствуют высвобождению инсулина и повышают чувствительность рецепторов и тканей к инсулину; хотя одновременное использование этих ЛС с инсулином может повышать гипогликемическое действие, эффект может быть непредсказуемым.

Целый ряд ЛС вызывают гипергликемию у здоровых людей и усугубляют течение заболевания у больных сахарным диабетом. Гипогликемическое действие инсулина ослабляют: антиретровирусные ЛС, аспарагиназа, пероральные гормональные контрацептивы, глюкокортикоиды, диуретики (тиазидные, этакриновая кислота), гепарин, антагонисты Н 2 -рецепторов, сульфинпиразон, трициклические антидепрессанты, добутамин, изониазид, кальцитонин, ниацин, симпатомиметики, даназол, клонидин, БКК, диазоксид, морфин, фенитоин, соматотропин, тиреоидные гормоны, производные фенотиазина, никотин, этанол.

Глюкокортикоиды и эпинефрин оказывают на периферические ткани эффект, противоположный инсулину. Так, длительный прием системных глюкокортикоидов может вызывать гипергликемию, вплоть до сахарного диабета (стероидный диабет), который может наблюдаться примерно у 14% пациентов, принимающих системные кортикостероиды в течение нескольких недель или при длительном применении топических кортикостероидов. Некоторые ЛС ингибируют секрецию инсулина непосредственно (фенитоин, клонидин, дилтиазем) либо за счет уменьшения запасов калия (диуретики). Тиреоидные гормоны ускоряют метаболизм инсулина.

Наиболее значимо и часто влияют на действие инсулина бета-адреноблокаторы, пероральные гипогликемические средства, глюкокортикоиды, этанол, салицилаты.

Этанол ингибирует глюконеогенез в печени. Этот эффект наблюдается у всех людей. В связи с этим следует иметь в виду, что злоупотребление алкогольными напитками на фоне инсулинотерапии может привести к развитию тяжелого гипогликемического состояния. Небольшие количества алкоголя, принимаемого вместе с едой, обычно не вызывают проблем.

Бета-адреноблокаторы могут ингибировать секрецию инсулина, изменять метаболизм углеводов и увеличивать периферическую резистентность к действию инсулина, что приводит к гипергликемии. Однако они могут также ингибировать действие катехоламинов на глюконеогенез и гликогенолиз, что сопряжено с риском тяжелых гипогликемических реакций у больных сахарным диабетом. Более того, любой из бета-адреноблокаторов может маскировать адренергическую симптоматику, вызванную снижением уровня глюкозы в крови (в т.ч. тремор, сердцебиение), нарушая тем самым своевременное распознавание пациентом гипогликемии. Селективные бета 1 -адреноблокаторы (в т.ч. ацебутолол, атенолол, бетаксолол, бисопролол, метопролол) проявляют эти эффекты в меньшей степени.

НПВС и салицилаты в высоких дозах ингибируют синтез простагландина Е (который ингибирует секрецию эндогенного инсулина) и усиливают таким образом базальную секрецию инсулина, повышают чувствительность β-клеток поджелудочной железы к глюкозе; гипогликемический эффект при одновременном применении может потребовать корректировки дозы НПВС или салицилатов и/или инсулина, особенно при длительном совместном использовании.

В настоящее время выпускается значительное число инсулиновых препаратов, в т.ч. полученных из поджелудочных желез животных и синтезированных методами генной инженерии. Препаратами выбора для проведения инсулинотерапии являются генно-инженерные высокоочищенные человеческие инсулины, обладающие минимальной антигенностью (иммуногенной активностью), а также аналоги человеческого инсулина.

Препараты инсулина выпускаются в стеклянных флаконах, герметически укупоренных резиновыми пробками с алюминиевой обкаткой, в специальных т.н. инсулиновых шприцах или шприц-ручках. При использовании шприц-ручек препараты находятся в специальных флаконах-картриджах (пенфиллах).

Разрабатываются интраназальные формы инсулина и препараты инсулина для приема внутрь. При комбинации инсулина с детергентом и введении в виде аэрозоля на слизистую оболочку носа эффективный уровень в плазме достигается так же быстро, как и при в/в болюсном введении. Препараты инсулина для интраназального и перорального применения находятся на стадии разработки или проходят клинические испытания.

Литература

Базисная и клиническая фармакология/ Под ред. Б.Г. Катцунга; пер. с англ. под ред. Э.Э. Звартау: в 2 т.- М.-СПб.: Бином-Невский диалект, 1998.- Т. 2.- С. 181-194.

Балаболкин М.И., Клебанова Е.М., Креминская В.М. Сахарный диабет: современные аспекты диагностики и лечения/ Доктор; под ред. Г.Л. Вышковского.-2005.- М.: РЛС-2005, 2004.- 960 с. (Серия Регистр лекарственных средств России РЛС).

Балаболкин М.И., Петунина Н.А., Тельнова М.Э., Клебанова Е.М., Антонова К.В. Роль инсулиновой терапии в компенсации сахарного диабета// РМЖ.- 2007.- Т. 15.- №27 (308).- С. 2072-2077.

Виноградов В.М., Каткова Е.Б., Мухин Е.А. Фармакология с рецептурой/ Под ред. В.М. Виноградова.- 4-е изд, испр.- СПб.: СпецЛит, 2006.- С. 684-692.

Клиническая фармакология по Гудману и Гилману/ Под общ. ред. А.Г. Гилмана, ред. Дж. Хардман и Л. Лимберд. Пер. с англ.- М.: Практика, 2006.- С. 1286-1305.

Машковский М.Д. Лекарственные средства: в 2 т.- 14-е изд.- М.: Новая Волна, 2000.- Т. 2.- С. 13-17.

Михайлов И.Б. Настольная книга врача по клинической фармакологии: Руководство для врачей.- СПб.: Фолиант, 2001.- С. 562-570.

Рациональная фармакотерапия заболеваний эндокринной системы и нарушений обмена веществ: Рук. для практикующих врачей/ И.И. Дедов, Г.А. Мельниченко, Е.Н. Андреева, С.Д. Арапова и др.; под общ. ред. И.И. Дедова, Г.А. Мельниченко.- М.: Литтерра, 2006.- С. 30-39. (Рациональная фармакотерапия: Сер. руководство для практикующих врачей; Т. 12).

Регистр лекарственных средств России Пациент/ Под ред. Г.Л. Вышковского.- М.: РЛС-2006, 2005.- С. 68-72.

Сергеев П.В., Шимановский Н.Л., Петров В.И. Рецепторы физиологически активных веществ: Монография.- М.-Волгоград: Семь ветров, 1999.- С. 497-504.

Федеральное руководство по использованию лекарственных средств (формулярная система)/ Под ред. А.Г. Чучалина, Ю.Б. Белоусова, В.В. Яснецова.- Вып. VIII.- М.: ЭХО, 2007.- С. 354-363.

Харкевич Д.А. Фармакология: Учебник.- 7-е изд., перераб. и доп.- М.: Гэотар-Медицина, 2003.- С. 433-438.

USP dispensing information. V. 1.- 23th ed.- Micromedex, Inc., USA, 2003.- Р. 1546-1569.

О сахарном диабете слышали все. К счастью, многие люди не имеют такого заболевания. Хотя часто бывает и так, что болезнь развивается очень тихо, незаметно, лишь при плановом обследовании или же в экстренной ситуации показывая свое лицо. Зависит диабет от уровня определенного гормона, вырабатываемого и усваиваемого организмом человека. О том, что такое инсулин, как он работает, и какие проблемы может вызвать его избыток или недостаток, будет рассказано ниже.

Гормоны и здоровье

Эндокринная система - один из компонентов организма человека. Многие органы продуцируют сложные по своему составу вещества - гормоны. Они важны для качественного обеспечения всех процессов, от которых зависит жизнедеятельность человека. Одно из таких веществ - гормон инсулин. Его избыток сказывается на только на работе многих органов, но и на самой жизни, ведь резкое падение или повышение уровня этого вещества может стать причиной комы или даже смерти человека. Поэтому определенная группа людей, страдающих от нарушения уровня этого гормона, постоянно носят с собой шприц с инсулином, чтобы иметь возможность сделать себе жизненно важную инъекцию.

Гормон инсулин

Что такое инсулин? Этот вопрос интересен тем, кто знаком с его избытком или недостатком не понаслышке, и тем, кого проблема инсулинового дисбаланса не коснулась. Гормон, вырабатываемый поджелудочной железой и получивший свое название от латинского слова "insula", что в переводе означает "остров". Свое название этот вещество получило за счет области образования - островков Лангерганса, расположенных в тканях поджелудочной железы. В настоящее время учеными именно этот гормон изучен наиболее полно, ведь он оказывает влияние на все процессы, протекающие во всех тканях и органах, хотя основная его задача состоит в понижении уровня сахара крови.

Инсулин как структура

Строение инсулина уже не секрет для ученых. Изучение этого важного для всех органов и систем гормона началось еще в конце XIX века. Примечательно, что клетки поджелудочной железы, продуцирующие инсулин, - островки Лангерганса, получили свое название по имени студента-медика, первого обратившего внимание на скопления клеток в ткани изучаемого под микроскопом органа пищеварительной системы. Прошло почти столетие с 1869 года, прежде чем фармацевтическая промышленность наладила массовое производство препаратов с инсулином, чтобы люди, страдающие диабетом, смогли значительно улучшить качество своей жизни.

Структура инсулина - это сочетание двух полипептидных цепочек, состоящих из аминокислотных остатков, соединенных так называемыми дисульфидными мостиками. Молекула инсулина содержит 51 остаток аминокислот, условно разделенных на две группы - 20 под индексом "А" и 30 под индексом "В". Отличия инсулина человека и свиньи, например, присутствует лишь в одном остатке под индексом "В", человеческий инсулин и гормон поджелудочной быка отличается тремя остатками индекса "В". Поэтому природный инсулин из поджелудочной железы этих животных - один из самых распространенных компонентов для лекарств при диабете.

Научные исследования

Взаимозависимость некачественной работы поджелудочной и развитие диабета - заболевания, сопровождающегося повышением уровня глюкозы крови и моче, было подмечено врачами достаточно давно. Но лишь в 1869 году студентом-медиком из Берлина 22-х летним Паулем Лангергансом были открыты группы клеток поджелудочной железы, ранее не известные ученым. И именно по имени молодого исследователя они получили свое название - островки Лангерганса. Спустя некоторое время при проведении опытов учеными было доказано, что секрет этих клеток влияет на пищеварение, а его отсутствие резко повышает уровень сахара крови и моче, что оказывает негативное влияние на состояние пациента.

Начало ХХ века ознаменовалось открытием российским ученым Иваном Петровичем Соболевым зависимости углеводного обмена от активности продуцирования секрета островков Лангерганса. Еще достаточно длительное время биологи расшифровывали формулу этого гормона, чтобы получить возможность синтезировать его искусственным путем, ведь больных сахарным диабетом очень и очень много, и количество людей с таким заболеванием постоянно растет.

Лишь в 1958 году была определена последовательность аминокислот, из которых образуется молекула инсулина. За это открытие молекулярный биолог из Великобритании Фредерик Сенгер был удостоен Нобелевской премии. А вот пространственную модель молекулы этого гормона в 1964 году при помощи метода рентгеновской дифракции определила Дороти Кроуфут-Ходжкин, за что также получила высшую научную награду. Инсулин в крови является одним основных показателей здоровья человека, а его колебание за пределы определенных нормативных показателей служит поводом тщательного обследования и постановки определенного диагноза.

Где продуцируется инсулин?

Для того чтобы понять, что такое инсулин, необходимо уяснить - для чего человеку необходима поджелудочная железа, ведь именно она является тем органом, относящимся к эндокринной и пищеварительной системам, который вырабатывает этот гормон.

Структура каждого органа сложна, ведь помимо отделов органа, в нем работают и различные ткани, состоящие из разных клеток. Особенностью поджелудочной железы являются островки Лангерганса. Это особые скопления гормонпродуцирующих клеток, расположенных по всему телу органа, хотя основное их расположение - хвост поджелудочной железы. У взрослого человека, по подсчетам биологов, насчитывается порядка одного миллиона таких клеток, а их общая масса составляет всего около 2 % от массы самого органа.

Как вырабатывается "сладкий" гормон?

Инсулин в крови, содержащийся в определенном количестве, является одним из показателей здоровья. Чтобы прийти к такому явному для современного человека понятию, ученым понадобился не один десяток лет кропотливых исследований.

Поначалу были выделены два типа клеток, из которых состоят островки Лангерганса, - клетки А типа и клетки В типа. Их разница состоит в продуцировании разного по своей функциональной направленности секрета. Клетки типа А производят глюкагон - гормон пептидного характера, который способствует распаду гликогена в печени и поддержанию постоянного уровня глюкозы крови. Бета-клетки секретируют инсулин - пептидный гормон поджелудочной железы, который понижает уровень глюкозы, тем самым влияя на все ткани и, соответственно, органы организма человека или животного. Здесь прослеживается четкая взаимосвязь - А-клетки поджелудочной железы потенцируют появление глюкозы, которая в свою очередь заставляет работать Б-клетки, секретируя инсулин, снижающий уровень сахара. Из островков Лангерганса "сладкий" гормон продуцируется и попадает в кровь в несколько этапов. Препроинсулин, который является пептидом-предшественником инсулина, синтезируется на рибосомах короткого плеча 11 хромосомы. Этот начальный элемент состоит из 4 видов аминокислотных остатков - A-пептид, B-пептид, C-пептид и L-пептид. Он попадает в эндоплазматическую сеть эукариотической сетки, где от него отщепляется L-пептид.

Таким образом препроинсулин превращается в проинсулин, проникающий в так называемый аппарат Гольджи. Именно там происходит созревание инсулина: проинсулин теряет С-пептид, разделяясь на инсулин и биологически неактивный пептидный остаток. Из островков Лангерганса инсулин секретируется под воздействием глюкозы в крови, которая попадает в В-клетки. Там в следствии цикла химических реакций из секреторных гранул выделяется ранее секретированный инсулин.

В чем роль инсулина?

Действие инсулина изучалось учеными-физиологами, патофизиологами длительное время. В настоящий момент это наиболее изученный гормон человеческого организма. Инсулин важен практически для всех органов и тканей, участвуя в абсолютном большинстве обменных процессов. Особая роль отведена взаимодействию гормона поджелудочной железы и углеводов.

Глюкоза является производным веществом при метаболизме углеводов и жиров. Она попадет в В-клетки островков Лангерганса и заставляет их активно секретировать инсулин. Максимальную работу этот гормон осуществляет при транспортировке глюкозы в жировую и мышечную ткани. Что такое инсулин для обмена веществ и энергии в организме человека? Он потенцирует или блокирует многие процессы, тем самым влияя на работу практически всех органов и систем.

Путь гормона в организме

Один из важнейших гормонов, оказывающих влияние на все системы организма -инсулин. Его уровень в тканях и жидкостях организма служит показателем состояния здоровья. Путь, который проходит этот гормон от продуцирования до элиминации, очень сложен. В основном выводится он почками и печенью. Но ученые-медики проводят исследование клиренса инсулина в печени, почках и тканях. Так в печени, проходя через воротную вену, так называемую портальную систему, распадается около 60 % инсулина, выработанного поджелудочной железой. Остальное количество, а это оставшиеся 35-40 %, выводится почками. Если инсулин вводится парентерально, то он не проходит воротную вену, а значит, основная элиминация осуществляется почками, что сказывается на их работоспособности и, если можно так сказать, износе.

Главное - баланс!

Инсулин можно назвать динамическим регулятором процессов образования и утилизации глюкозы. Повышают уровень сахара крови несколько гормонов, например, глюкагон, соматотропин (гормон роста), адреналин. А вот снижает уровень глюкозы только лишь инсулин и в этом он уникален и чрезвычайно важен. Именно поэтому его еще называют гипогликемическим гормоном. Характерный показатель определенных проблем со здоровьем - сахар крови, который напрямую зависит от продуцирования секрета островков Лангерганса, ведь уменьшает глюкозу в крови именно инсулин.

Норма сахара в крови, определяемая натощак у здорового взрослого человека, составляет от 3,3 до 5,5 ммоль/литр. В зависимости от того, как давно человек употреблял пищу, этот показатель варьируется в пределах 2,7 - 8,3 ммоль/литр. Учеными выяснено, что прием пищи провоцирует скачок уровня глюкозы в несколько раз. Длительное устойчивое повышение количества сахара в крови (гипергликемия) свидетельствует о развитии сахарного диабета.

Гипогликемия - понижение этого показателя, может стать причиной не только комы, но и летального исхода. Если уровень сахара (глюкозы) падает ниже физиологически допустимого значения, в работу включаются гипергликемические (контринсулиновые) гормоны, высвобождающие глюкозу. А вот адреналин и другие гормоны стресса сильно подавляют выделение инсулина даже на фоне повышенного уровня сахара.

Гипогликемия может развиться при понижении количества глюкозы в крови из-за избытка инсулинсодержащих препаратов или из-за избыточной выработки инсулина. Гипергликемия, наоборот, запускает продуцирование инсулина.

Инсулинзависимые болезни

Повышенный инсулин провоцирует понижение уровня сахара крови, что при отсутствии экстренных мер может привести к гипогликемической коме и летальному исходу. Такое состояние возможно при не выявленном доброкачественном новообразовании из бета-клеток островков Лангерганса в поджелудочной железе - инсулиноме. Однократная избыточная доза инсулина, введенная преднамеренно, использовалась некоторое время в терапии шизофрении для потенцирования инсулинового шока. А вот длительное введение больших доз препаратов инсулина вызывает симптомокомплекс под названием синдром Сомоджи.

Устойчивое повышение уровня глюкозы крови носит название сахарного диабета. Специалистами это заболевание делится на несколько типов:

  • диабет 1 типа основан на недостаточности продуцирования инсулина клетками поджелудочной железы, инсулин при диабете 1 типа является жизненно необходимым препаратом;
  • диабет 2 типа характеризуется понижением порога чувствительности инсулинзависимых тканей к этому гормону;
  • MODY-диабет - это целый комплекс генетических дефектов, в совокупности дающих снижение количества секрета В-клеток островков Лангерганса;
  • гестационный сахарный диабет развивается только у беременных, после родов он или исчезает, или в значительной степени снижается.

Характерным признаком любого типа этого заболевания является не только повышение уровня глюкозы крови, но и нарушение всех обменных процессов, что приводит к тяжелым последствиям.

С диабетом нужно жить!

Еще не так давно сахарный диабет в инсулинзависмой форме считался чем-то, серьезно ухудшающим качество жизни пациента. Но сегодня для таких людей разработано немало приборов, значительно упрощающих ежедневные рутинные обязанности для поддержания здоровья. Так, например, шприц-ручка для инсулина стала незаменимым и удобным атрибутом для регулярного приема необходимой дозы инсулина, а глюкометр позволяет не выходя из дома, самостоятельно контролировать уровень сахара в крови.

Виды современных препаратов инсулина

Люди, которые вынуждены принимать лекарственные препараты с инсулином, знают, что фармацевтическая промышленность выпускает их в трех разных позициях, характеризующихся длительностью и типом работы. Это так называемые типы инсулина.

  1. Ультракороткие инсулины - новинка фармакологии. Они действуют в течение всего 10-15 минут, но за это время успевают сыграть роль естественного инсулина и запустить все обменные реакции, которые нужны организму.
  2. Короткие или быстродействующие инсулины принимаются непосредственно перед приемом пищи. такой препарат начинает работать спустя 10 минут после введения внутрь, а продолжительность его действия составляет максимум 8 часов с момента введения. Для этого типа характерна прямая зависимость от количества активного вещества и длительности его работы - чем больше доза, тем дольше она работает. Инъекции короткого инсулина вводятся или подкожно, или внутривенно.
  3. Средние инсулины представляют самую большую группу гормонов. Они начинают работать спустя 2-3 часа после введения в организм и действуют в течение 10-24 часов. У разных препаратов среднего инсулина могут быть разные пики активности. Зачастую врачи назначают комплексные препараты, включающие в себя короткий и средний инсулины.
  4. Инсулины длительного действия считаются базовыми препаратами, которые принимаются 1 раз за сутки, а потому называют базовыми. Работать инсулин пролонгированного действия начинает спустя лишь 4 часа, поэтому при тяжелых формах заболевания пропускать его прием не рекомендуется.

Решить вопрос о том, какой инсулин выбрать для конкретного случая сахарного диабета, может лечащий врач с учетом многих обстоятельств и течения заболевания.

Что такое инсулин? Жизненно важный, наиболее подробно изученный гормон поджелудочной железы, отвечающий за снижение уровня сахара в крови и участвующий практически во всех обменных процессах, протекающих в абсолютном большинстве тканей организма.