Биогафии

Укажите что относится к понятию физическая величина. Выражение производной единицы. Через основные и дополнительные единицы СИ

  • 9. Классификация измерений по зависимости измеряемой величины от времени и по совокупностям измеряемых величин.
  • 13. Классификация систематических погрешностей измерений по причине возникновения.
  • 14. Классификация систематических погрешностей измерений по характеру проявления.
  • 15. Классификация методов измерений, определение методов, входящих в классификацию.
  • 16. Определения терминов: мера, измерительный прибор, измерительный преобразователь, измерительная установка, измерительная система.
  • 17. Классификация измерительных приборов.
  • 18. Классификация измерительных преобразователей.
  • Вопрос 19. Структура измерительных приборов прямого действия
  • Вопрос 20. Структура измерительных приборов сравнения
  • Вопрос 21. Метрологические характеристики средств измерений
  • 26. Динамические характеристики средств измерений: Дифференциальные уравнения, передаточные функции.
  • 27. Частотные характеристики средств измерений.
  • 28. Классификация погрешностей измерительных устройств.
  • 29) Определение аддитивной, мультипликативной, гистерезисной погрешности и вариации
  • 30) Определение основной, дополнительной, абсолютной, относительной и приведенной погрешностей измерений
  • 31) Нормирование метрологических характеристик средств измерений
  • 32. Нормирование метрологических характеристик средств измерений.
  • 34 Способы нормирования характеристик, определяющих точность измерений. Характеристики статистических распределений.
  • 35 Выявление и исключение грубых погрешностей измерений.
  • 36. Структура измерительных систем и их характеристики
  • 8. Истинное, действительное и измеренное значение физической величины.

    Физической величиной называется одно из свойств физического объекта (явления, процесса), которое является общим в качественном отношении для многих - физических объектов, отличаясь при этом количественным значением.

    Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.).

    В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины.

    Истинное значение физической величины - это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению.

    Действительное значение физической величины - это значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

    Измеренное значение физической величины - это значение, полученное при измерении с применением конкретных методов и средств измерений.

    9. Классификация измерений по зависимости измеряемой величины от времени и по совокупностям измеряемых величин.

    По характеру изменения измеряемой величины - статические и динамические измерения.

    Динамическое измерение - измерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени. Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени.

    Статическое измерение - измерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения. Например, измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений - не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений. Поэтому эти измерения следует проводить по методике динамических измерений.

    По сложившимся совокупностям измеряемых величин на электрические (сила тока, напряжение, мощность), механические (масса, количество изделий, усилия);, теплоэнергетические (температура, давление);, физические (плотность, вязкость, мутность); химические (состав, химические свойства, концентрация) , радиотехнические и т. д.

      Классификация измерений по способу получения результата (по виду).

    По способу получения результатов измерений различают: прямые, косвенные, совокупные и совместные измерения.

    Прямыми называют измерения, при которых искомое значение измеряемой величины находят непосредственно из опытных данных.

    Косвенными называют измерения, при которых искомое значение измеряемой величины находят на основании известной зависимости между измеряемой величиной и величинами, определяемыми с помощью прямых измерений.

    Совокупными называют измерения, при которых одновременно измеряются несколько одноименных величин и определяемое значение находят, решая систему уравнений, которую получают на основании прямых измерений одноименных величин.

    Совместными называют измерения двух или более неодноименных величин для нахождения зависимости между ними.

      Классификация измерений по условиям, определяющим точность результата и по количеству измерений для получения результата.

    По условиям, определяющим точность результата, измерения делятся на три класса:

    1. Измерения максимально возможной точности, достижимой при существующем уровне техники.

    К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения, гиромагнитного отношения протона и др.).

    К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.

    2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения.

    К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

    3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

    Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

    По количеству измерений измерения делятся на однократные и многократные.

    Однократное измерение - это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

    Многократные измерения - это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, - четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

      Классификация случайных погрешностей измерений.

    Случайная погрешность - составляющая погрешности измерения, изменяющаяся при повторных измерениях одной и той же величины случайным образом.

    1)Грубая- не превышает допустимую погрешность

    2)Промах- грубая погрешность, зависит от человека

    3)Ожидаемая- полученная в результате эксперимента при созд. условиях

    Объектом метрологии являются физические величины. Существуют различные физические объекты, обладающие разнообразными физическими свойствами, количество которых неограниченно. Человек в своем стремлении познать физические объекты - объекты познания - выделяет некоторое ограниченное количество свойств, общих для ряда объектов в качественном отношении, но индивидуальных для каждого из них в количественном отношении. Такие свойства получили название физических величин. Понятие «физическая величина» в метрологии, как и в физике, физическая величина трактуется как свойство физических объектов (систем), общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого объекта, т.е. как свойство, которое может быть для одного объекта в то или иное число раз больше или меньше, чем для другого (например, длина, масса, плотность, температура, сила, скорость). Количественное содержание свойства, соответствующего понятию «физическая величина», в данном объекте - размер физической величины. Размер физической величины существует объективно, вне зависимости от того, что мы знаем о нем.

    Совокупность величин, связанных между собой зависимостями, образуют систему физических величин. Объективно существующие зависимости между физическими величинами представляют рядом независимых уравнений. Число уравнений т всегда меньше числа величин п. Поэтому т величин данной системы определяют через другие величины, а я величин - независимо от других. Последние величины принято называть основными физическими величинами, а остальные - производными физическими величинами.

    Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовали унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе.

    Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений. При этом она должна была сохранить принцип когерентности (равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами).

    В 1954 г. X Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, кельвин и свеча) практической системы единиц. Система, основанная на утвержденных в 1954 г. шести основных единицах, была названа Международной системой единиц, сокращенно СИ (SI- начальные буквы французского наименования Systeme International di Unites). Был утвержден перечень шести основных, двух дополнительных и первый список 27 производных единиц, а также приставки для образования кратных и дольных единиц.

    В России действует ГОСТ 8.417-2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные, либо русские обозначения (но не те и другие одновременно).

    Основные единицы СИ с указанием сокращенных обозначений русскими и латинскими буквами приведены в табл. 9.1.

    Определения основных единиц, соответствующие решениям Генеральной конференции по мерам и весам, следующие.

    Метр равен длине пути, проходимого светом в вакууме за

    /299792458 Д° лю СеКуНДЫ.

    Килограмм равен массе международного прототипа килограмма.

    Секунда равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

    Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия, равную 2-10- 7 Н.

    Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

    Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.

    Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540-10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

    Таблица 9.1 Основные единицы СИ

    Производные единицы Международной системы единиц образуются с помощью простейших уравнений между величинами, в которых числовые коэффициенты равны единице. Так, для линейной скорости в качестве определяющего уравнения можно воспользоваться выражением для скорости равномерного прямолинейного движения v = l/t.

    При длине пройденного пути (в метрах) и времени t, за которое пройден этот путь (в секундах), скорость выражается в метрах в секунду (м/с). Поэтому единица скорости СИ - метр в секунду - это скорость прямолинейно и равномерно движущейся точки, при которой она за время t перемещается на расстояние 1 м.

    Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице.

    Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

    В табл. 9.2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.

    Таблица 9.2 Образование десятичных кратных и дольных единиц измерения

    10^-18_________________|атто _______________|____________а ____________|_____________а _____________

    Следует учитывать, что при образовании кратных и дольных единиц площади и объема с помощью приставок может возникнуть двойственность прочтения в зависимости от того, куда добавляется приставка. Так, сокращенное обозначение I км 2 можно трактовать и как 1 квадратный километр и как 1000 квадратных метров, что, очевидно, не одно и то же (1 квадратный километр = 1 000 000 квадратных метров). В соответствии с международными правилами кратные и дольные единицы площади и объема следует образовывать, присоединяя приставки к исходным единицам. Таким образом, степени относятся к тем единицам, которые получены в результате присоединения приставок. Поэтому 1 км 2 - 1 (км) -= (10 3 м) 2 = 10 6 м 2 .

    Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в системе СИ присвоены собственные названия.

    Физические величины в зависимости от множества размеров, которые они могут иметь при изменении в ограниченном диапазоне, подразделяют на непрерывные (аналоговые) и квантованные (дискретные) по размеру (уровню).

    Аналоговая величина может иметь в заданном диапазоне бесконечное множество размеров. Таким является подавляющее число физических величин (напряжение, сила тока, температура, длина и т.д.). Квантованная величина имеет в заданном диапазоне только счетное множество размеров. Примером такой величины может быть малый электрический заряд, размер которого определяется числом входящих в него зарядов электронов. Размеры квантованной величины могут соответствовать только определенным уровням - уровням квантования. Разность двух соседних уровней квантования называют ступенью квантования (квантом). Значение аналоговой величины определяют путем измерения с неизбежной погрешностью. Квантованная величина может быть определена путем счета ее квантов, если они постоянны.

    Физические величины могут быть постоянными или переменными во времени. При измерении постоянной во времени величины достаточно определить одно ее мгновенное значение. Переменные во времени величины могут иметь квазиде-терминированный или случайный характер изменения. Ква-зидетерминированная физическая величина - величина, для которой известен вид зависимости от времени, но неизвестен измеряемый параметр этой зависимости. Случайная физическая величина - величина, размер которой изменяется во времени случайным образом. Как частный случай переменных во времени величин можно выделить дискретные во времени величины, т.е. величины, размеры которых отличны от нуля только в определенные моменты времени.

    Физические величины делят на активные и пассивные. Активные величины (например, механическая сила, ЭДС источника электрического тока) способны без вспомогательных источников энергии создавать сигналы измерительной информации. Пассивные величины (например, масса, элек-тоическое сопротивление, индуктивность) сами не могут

    создавать сигналы измерительной информации. Для этого их нужно активизировать с помощью вспомогательных источников энергии, например при измерении сопротивления резистора через него должен протекать ток. В зависимости от объектов исследования говорят об электрических, магнитных или неэлектрических величинах.

    Физическую величину, которой по определению присвоено числовое значение, равное единице, называют единицей физической величины. Размер единицы физической величины может быть любым. Однако измерения должны выполняться в общепринятых единицах. Общность единиц в международном масштабе устанавливают международными соглашениями.

    Физика, как мы уже установили, изучает общие закономерности в окружающем нас мире. Для этого ученые проводят наблюдения физических явлений. Однако при описании явлений принято использовать не повседневный язык, а специальные слова, имеющие строго определенный смысл, - термины. Некоторые физические термины уже встречались вам в предыдущем параграфе. Многие термины вам только предстоит узнать и запомнить их значения.

    Кроме того, физикам необходимо описывать различные свойства (характеристики) физических явлений и процессов, причем характеризовать их не только качественно, но и количественно. Приведем пример.

    Исследуем зависимость времени падения камня с высоты, с которой он падает. Опыт показывает: чем больше высота, тем больше время падения. Это качественное описание, оно не позволяет подробно описать результат эксперимента. Чтобы понять закономерность такого явления, как падение, нужно знать, например, что при увеличении высоты в четыре раза время падения камня обычно увеличивается в два раза. Это и есть пример количественных характеристик свойств явления и взаимосвязи между ними.

    Для того чтобы количественно описывать свойства (характеристики) физических объектов, процессов или явлений, используют физические величины. Примеры известных вам физических величин - длина, время, масса, скорость.

    Физические величины количественно описывают свойства физических тел, процессов, явлений.

    С некоторыми величинами вам доводилось сталкиваться раньше. На уроках математики, решая задачи, вы измеряли длины отрезков, определяли пройденный путь. При этом вы пользовались одной и той же физической величиной - длиной. В других случаях вы находили продолжительность движения различных объектов: пешехода, автомобиля, муравья - и также использовали для этого только одну физическую величину - время. Как вы уже заметили, для разных объектов одна и та же физическая величина принимает различные значения. Например, длины разных отрезков могут быть неодинаковы. Поэтому одна и та же величина может принимать разные значения и быть использована для характеристики самых разных объектов и явлений.

    Необходимость введения физических величин заключается еще и в том, что с их помощью записывают законы физики.

    В формулах и при расчетах физические величины обозначают буквами латинского и греческого алфавитов. Есть общепринятые обозначения, например длина - l или L, время - t, масса - m или M, площадь - S, объем - V и т. п.

    Если вы запишете значение физической величины (ту же самую длину отрезка, получив ее в результате измерения), то заметите: это значение - не просто число. Сказав, что длина отрезка равна 100, обязательно нужно уточнить, в каких единицах она выражена: в метрах, сантиметрах, километрах или в чем-то еще. Поэтому говорят, что значение физической величины - именованное число. Его можно представить как число, за которым указано наименование единицы этой величины.

    Значение физической величины = Число * Единица величины.

    Единицы многих физических величин (например, длины, времени, массы) первоначально возникли из потребностей обыденной жизни. Для них в разные времена разными народами были придуманы различные единицы. Интересно, что названия многих единиц величин у разных народов совпадают, потому что при выборе этих единиц использовались размеры тела человека. Например, единица длины, называемая «локоть», использовалась в Древнем Египте, Вавилоне, арабском мире, Англии, России.

    Но длину измеряли не только локтями, но и в вершках, футах, лье и т. п. Следует сказать, что даже при одинаковых названиях единицы одной и той же величины у разных народов были разными. В 1960 г. ученые разработали Международную систему единиц (СИ, или SI). Эта система принята многими странами, в том числе и Россией. Поэтому использование единиц этой системы является обязательным.
    Принято различать основные и производные единицы физических величин. В СИ основные механические единицы - длина, время и масса. Длину измеряют в метрах (м), время - в секундах (с), массу - в килограммах (кг). Производные единицы образуют из основных, используя соотношения между физическими величинами. Например, единица площади - квадратный метр (м 2) - равна площади квадрата с длиной стороны один метр.

    При измерениях и вычислениях часто приходится иметь дело с физическими величинами, численные значения которых во много раз отличаются от единицы величины. В таких случаях к названию единицы добавляют приставку, означающую умножение или деление единицы на некоторое число. Очень часто используют умножение принятой единицы на 10, 100, 1000 и т. д. (кратные величины), а также деление единицы на 10, 100, 1000 и т. д. (дольные величины, т. е. доли). Например, тысяча метров - это один километр (1000 м = 1 км), приставка - кило-.

    Приставки, означающие умножение и деление единиц физических величин на десять, сто и тысячу, приведены в таблице 1.
    Итоги

    Физическая величина является количественной характеристикой свойств физических объектов, процессов или явлений.

    Физическая величина характеризует одно и то же свойство самых разных физических объектов и процессов.

    Значение физической величины - именованное число.
    Значение физической величины = Число * Единица величины.

    Вопросы

    1. Для чего служат физические величины? Приведите примеры физических величин.
    2. Какие из перечисленных ниже терминов являются физическими величинами, а какие - нет? Линейка, автомобиль, холод, длина, скорость, температура, вода, звук, масса.
    3. Как записывают значения физических величин?
    4. Что такое СИ? Для чего она нужна?
    5. Какие единицы называют основными, а какие производными? Приведите примеры.
    6. Масса тела равна 250 г. Выразите массу этого тела в килограммах (кг) и миллиграммах (мг).
    7. Выразите расстояние 0,135 км в метрах и в миллиметрах.
    8. На практике часто используют внесистемную единицу объема - литр: 1 л = 1 дм 3 . В СИ единица объема носит название кубический метр. Сколько литров в одном кубическом метре? Найдите, какой объем воды содержит кубик с ребром 1 см, и выразите этот объем в литрах и кубических метрах, используя необходимые приставки.
    9. Назовите физические величины, которые необходимы для описания свойств такого физического явления, как ветер. Используйте сведения, полученные на уроках естествознания, а также результаты ваших наблюдений. Запланируйте физический эксперимент с целью измерения этих величин.
    10. Какие старинные и современные единицы длины и времени вы знаете?

    Физические величины

    Физическая величина это характеристика физических объектов или явлений материального мира, общая для множества объектов или явлений в качественном отношении, но индивидуальная в количественном отношении для каждого из них . Например, масса, длина, площадь, температура и т.д.

    Каждая физическая величина имеет свои качественную и количественную характеристики .

    Качественная характеристика определяется тем, какое свойство материального объекта или какую особенность материального мира эта величина характеризует. Так, свойство "прочность" в количественном отношении характеризует такие материалы, как сталь, дерево, ткань, стекло и многие другие, в то время как количественное значение прочности для каждого из них совершенно разное

    Для выявления количественного различия содержания свойства в каком-либо объекте, отображаемого физической величиной, вводится понятие размера физической величины . Этот размер устанавливается в процессе измерения - совокупность операций, выполняемых для определения количественного значения величины (ФЗ «Об обеспечении единства измерений»

    Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.). Между размерами каждой физической величины существуют отношения в виде числовых форм (типа «больше», «меньше», «равенства», «суммы» и т.п.), которые могут служить моделью этой величины.

    В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины .

    Истинное значение физической величины - это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению.

    Действительное значение физической величины - это значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

    Измеренное значение физической величины - это значение, полученное при измерении с применением конкретных методов и средств измерений.

    При планировании измерений следует стремиться к тому, чтобы номенклатура измеряемых величин соответствовала требованиям измерительной задачи (например, при контроле измеряемые величины должны отражать соответствующие показатели качества продукции).

    Для каждого параметра продукции должны соблюдаться требования:

    Корректность формулировки измеряемой величины, исключающая возможность различного толкования (например, необходимо четко определять, в каких случаях определяется "масса" или "вес" изделия, "объем" или "вместимость" сосуда и т.д.);

    Определенность подлежащих измерению свойств объекта (например, "температура в помещении не более...°С " допускает возможность различного толкования. Необходимо так изменить формулировку требования, чтобы было ясно, установлено ли это требование к максимальной или к средней температуре помещения, что будет в дальнейшем учтено при выполнении измерений);

    Использование стандартизованных терминов.

    Физические единицы

    Физическая величина, которой по определению присвоено числовое значение, равное единице, называетсяединицей физической величины.

    Многие единицы физических величин воспроизводятся мерами, применяемыми для измерений (например, метр, килограмм). На ранних стадиях развития материальной культуры (в рабовладельческих и феодальных обществах) существовали единицы для небольшого круга физических величин - длины, массы, времени, площади, объёма. Единицы физических величин выбирались вне связи друг с другом, и притом различные в разных странах и географических районах. Так возникло большое количество часто одинаковых по названию, но различных по размеру единиц - локтей, футов, фунтов.

    По мере расширения торговых связей между народами и развития науки и техники количество единиц физических величин увеличивалось и всё более ощущалась потребность в унификации единиц и в создании систем единиц. О единицах физических величин и их системах стали заключать специальные международные соглашения. В 18 в. во Франции была предложена метрическая система мер, получившая в дальнейшем международное признание. На её основе был построен целый ряд метрических систем единиц. В настоящее время происходит дальнейшее упорядочение единиц физических величин на базе Международной системы единиц (СИ).

    Единицы физических величин делятся на системные, т. е. входящие в какую-либо систему единиц, и внесистемные единицы (например, мм рт. ст., лошадиная сила, электрон-вольт).

    Системные единицы физических величин подразделяются на основные , выбираемые произвольно (метр, килограмм, секунда и др.), и производные , образуемые по уравнениям связи между величинами (метр в секунду, килограмм на кубический метр, ньютон, джоуль, ватт и т. п.).

    Для удобства выражения величин, во много раз больших или меньших единиц физических величин, применяются кратные единицы (например, километр - 10 3 м, киловатт - 10 3 Вт) и дольные единицы (например, миллиметр - 10 -3 м, миллисекунда - 10-3 с)..

    В метрических системах единиц кратные и дельные единицы физических величин (за исключением единиц времени и угла) образуются умножением системной единицы на 10 n , где n - целое положительное или отрицательное число. Каждому из этих чисел соответствует одна из десятичных приставок, принятых для образования кратных и дельных единиц.

    В 1960 г. на XI Генеральной конференции по мерам и весам Международной организации мер и весов (МОМВ) была принята Международная системаединиц (SI).

    Основными единицами в международной системе единиц являются: метр (м) – длина, килограмм (кг) – масса, секунда (с) – время, ампер (А) – сила электрического тока, кельвин (К) – термодинамическая температура, кандела (кд) – сила света, моль – количество вещества.

    Наряду с системами физических величин в практике измерений по-прежнему используются так называемые внесистемные единицы. К их числу относятся, например: единицы давления – атмосфера, миллиметр ртутного столба, единица длины – ангстрем, единица количество теплоты – калория, единицы акустических величин – децибел, фон, октава, единицы времени – минута и час и т. п. Однако в настоящее время наметилась тенденция к их сокращению до минимума.

    Международная система единиц имеет целый ряд достоинств: универсальность, унификация единиц для всех видов измерений, когерентность (согласованность) системы (коэффициенты пропорциональности в физических уравнениях безразмерны), лучшее взаимопонимание между различными специалистами в процессе научно-технических и экономических связей между странами.

    В настоящее время применение единиц физических величин в России узаконено Конституцией РФ (ст. 71) (стандарты, эталоны, метрическая система и исчисление времени находятся в ведении Российской Федерации) и федеральным законом "Об обеспечении единства измерений". Статья 6 Закона определяет применение в Российской Федерации единиц величин Международной системы единиц, принятых Генеральной конференцией по мерам и весам и рекомендованные к применению Международной организацией законодательной метрологии. В то же время в Российской Федерации могут быть допущены к применению наравне с единицами величин СИ внесистемные единицы величин, наименование, обозначения, правила написания и применения которых устанавливаются Правительством Российской Федерации.

    В практической деятельности следует руководствоваться единицами физических величин, регламентированных ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин».

    Стандартом наряду с обязательным применением основных и производных единиц Международной системы единиц, а также десятичных кратных и дольных этих единиц допускается применять некоторые единицы, не входящие в СИ, их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные перечисленных единиц.

    Стандарт определяет правила образования наименований и обозначений десятичных кратных и дольных единиц СИ с помощью множителей (от 10 –24 до 10 24) и приставок, правила написания обозначений единиц, правили образования когерентных производных единиц СИ

    Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ приведены в табл.

    Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ

    Десятичный множитель Приставка Обозначение приставки Десятичный множитель Приставка Обозначение приставки
    межд. рус межд. русс
    10 24 иотта Y И 10 –1 деци d д
    10 21 зетта Z З 10 –2 санти c с
    10 18 экса E Э 10 –3 милли m м
    10 15 пета P П 10 –6 микро µ мк
    10 12 тера T Т 10 –9 нано n н
    10 9 гига G Г 10 –12 пико p п
    10 6 мега M М 10 –15 фемто f ф
    10 3 кило k к 10 –18 атто a а
    10 2 гекто h г 10 –21 зепто z з
    10 1 дека da да 10 –24 иокто y и

    Когерентные производные единицы Международной системы единиц, как правило, образуют с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц обозначения величин в уравнениях связи заменяют обозначениями единиц СИ.

    Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют обозначения величин со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное 1.

    Физическая величина

    Физи́ческая величина́ - физическое свойство материального объекта, физического явления , процесса, которое может быть охарактеризовано количественно.

    Значение физической величины - одно или несколько (в случае тензорной физической величины) чисел, характеризующих эту физическую величину, с указанием единицы измерения , на основе которой они были получены.

    Размер физической величины - значения чисел, фигурирующих в значении физической величины .

    Например, автомобиль может быть охарактеризован с помощью такой физической величины , как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером - число 1, или же значением будет 1000 килограмм, а размером - число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины - скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером - число 100.

    Размерность физической величины - единица измерения , фигурирующая в значении физической величины . Как правило, у физической величины много различных размерностей: например, у длины - нанометр, миллиметр, сантиметр, метр, километр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц - СИ , СГС и др.

    Часто физическая величина может быть выражена через другие, более основополагающие физические величины. (Например, сила может быть выражена через массу тела и его ускорение). А значит, соответственно, и размерность такой физической величины может быть выражена через размерности этих более общих величин. (Размерность силы может быть выражена через размерности массы и ускорения). (Часто такое представление размерности некоторой физической величины через размерности других физических величин является самостоятельной задачей, которая в некоторых случаях имеет свой смысл и назначение.) Размерности таких более общих величин часто уже являются основными единицами той или другой системы физических единиц, то есть такими, которые сами уже не выражаются через другие, ещё более общие величины.

    Пример.
    Если физическая величина мощность записывается как

    P = 42,3 × 10³ Вт = 42,3 кВт, Р - это общепринятое литерное обозначение этой физической величины, 42,3 × 10³ Вт - значение этой физической величины, 42,3 × 10³ - размер этой физической величины.

    Вт - это сокращённое обозначение одной из единиц измерения этой физической величины (ватт). Литера к является обозначением десятичного множителя «кило » Международной системы единиц (СИ) .

    Размерные и безразмерные физические величины

    • Размерная физическая величина - физическая величина, для определения значения которой нужно применить какую-то единицу измерения этой физической величины. Подавляющее большинство физических величин являются размерными.
    • Безразмерная физическая величина - физическая величина, для определения значения которой достаточно только указания её размера. Например, относительная диэлектрическая проницаемость - это безразмерная физическая величина.

    Аддитивные и неаддитивные физические величины

    • Аддитивная физическая величина - физическая величина, разные значения которой могут быть суммированы, умножены на числовой коэффициент, разделены друг на друга. Например, физическая величина масса - аддитивная физическая величина.
    • Неаддитивная физическая величина - физическая величина, для которой суммирование, умножение на числовой коэффициент или деление друг на друга её значений не имеет физического смысла. Например, физическая величина температура - неаддитивная физическая величина.

    Экстенсивные и интенсивные физические величины

    Физическая величина называется

    • экстенсивной, если величина её значения складывается из величин значений этой физической величины для подсистем, из которых состоит система (например, объём , вес);
    • интенсивной , если величина её значения не зависит от размера системы (например, температура , давление).

    Некоторые физические величины, такие как момент импульса , площадь , сила , длина , время , не относятся ни к экстенсивным, ни к интенсивным.

    От некоторых экстенсивных величин образуются производные величины:

    • удельная величина - это величина, делённая на массу (например, удельный объём);
    • молярная величина - это величина, делённая на количество вещества (например, молярный объём).

    Скалярные, векторные, тензорные величины

    В самом общем случае можно сказать, что физическая величина может быть представлена посредством тензора определённого ранга (валентности) .

    Система единиц физических величин

    Система единиц физических величин - совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. Примеры систем физических единиц - Международная система единиц (СИ) , СГС .

    Символы физических величин

    Литература

    • РМГ 29-99 Метрология. Основные термины и определения.
    • Бурдун Г. Д., Базакуца В. А. Единицы физических величин . - Харьков : Вища школа, .