Биографии

Найти уравнение линейного тренда временного ряда. Линия тренда в Excel на разных графиках. Уравнение линии тренда в Excel

  • 6.Статистическая сводка и группировка. Виды группировок.
  • 7.Абсолютные статистические величины: понятия, виды.
  • 8.Относительные статистические величины: понятия, виды.
  • 9.Средние величины: понятия, виды. (степенные, структурные) Средние величины.
  • Степенные средние
  • Структурные средние
  • 10.Средняя арифметическая и средняя гармоническая величины. Средняя арифметическая
  • Средняя гармоническая.
  • 11.Основные свойства средней арифметической.
  • 12.Показатели вариации признака и способы их расчета.
  • Абсолютные и средние показатели вариации и способы их расчета.
  • 13.Экономические индексы: понятия, виды. Индивидуальные индексы цен, физического объема реализации, товарооборота. Понятие индексов
  • Индивидуальные индексы
  • Сводные индексы
  • Индекс цены товарооборота Индекс физического объема товарооборота Проблема выбора весов
  • Цепные и базисные индексы с постоянными и переменными весами
  • Индексы постоянного состава, переменного состава и структурных сдвигов
  • Территориальные индексы
  • 14.Агрегатные индексы цен, физического объема, товарооборота, их взаимосвязь. Агрегатные индексы.
  • 15.Средние арифметический и средние гармонический индексы физического объема продукции. Средние индексы.
  • 16.Выборочное наблюдение, виды выработки (повторная, бесповторная).
  • 17.Средняя и предельная ошибки выборки. Расчет доверительного интервала.
  • 18.Расчет необходимой численности выборки, обеспечивающий с определенной вероятностью заданную точность наблюдения.
  • 19.Ряды динамики: понятия, виды (моментальные, интервальные). Показатели ряда
  • 20.Среднии показатели ряда динамики. Определение среднего уровня ряда динамики.
  • 21.Методы сглаживания рядов динамики.
  • 22.Виды взаимосвязей между явлениями (функциональные, корреляционные). Классификация корреляционных взаимосвязей.
  • 23.Расчет параметров линейного тренда.
  • 24.Линейный коэффициент корреляции.
  • 25.Расчет параметров линейной парной регрессии.
  • 26.Понятие и формирование снс.
  • 27.Система национальных счетов: стандартный набор счетов для секторов экономики.
  • 28.Основные макроэкономические показатели снс.
  • 29.Методы расчета валового внутреннего продукта.
  • 30.Показатели естественного движения населения и методы их расчета.
  • 31.Показатели миграции населения и методы их расчета.
  • 32.Расчет перспективной численности населения.
  • 33.Система показателей уровня жизни. Индекс развития человеческого потенциала.
  • 34.Категория людей, относящимся к занятым. Расчет коэффициента занятости и нагрузке на оного занятого в экономике.
  • 35.Категория людей, относящимся к безработным. Расчет коэффициента безработицы.
  • 36.Статистика численности работников предприятия.
  • 37.Фонды рабочего времени и методы их расчета.
  • 38Коэффициенты использования фондов рабочего времени и методы их расчета.
  • 39.Статистика национального богатства: состав нефинансовых производственных активов.
  • 40.Статистика национального богатства: состав нефинансовых непроизводственных активов.
  • 41.Статистика национального богатства: состав финансовых активов.
  • Структура национального богатства. Элементы национального богатства* (на начало года; без учета стоимости земли, недр и лесов)
  • 42.Статистика международной торговли.
  • 43.Статистика госбюджета.
  • 44.Статистика основных фондов.
  • 45.Статистика оборотных фондов.
  • 46.Статистика производительности труда.
  • 47.Статистика заработной платы.
  • 48.Статистика себестоимости продукции.
  • 49.Расчет индексов, используемых для изучения динамики средних цен, индекса постоянного состава, индекса структурных сдвигов, индекса переменного состава.
  • 50.Агрегатные индексы цен ласпейреса, пааше, фишера, маршалла.
  • Индексы Пааше, Ласпейреса и "идеальный индекс" Фишера
  • 23.Расчет параметров линейного тренда.

    Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.

    Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различ­ных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения ин­тервалов, скользящей средней и аналитического выравнивания.

    *Одним из наиболее простых методов изучения основной тенденции в рядах динамики является укрупнение интервалов. Он основан на укрупнении периодов времени, к которым отно­сятся уровни ряда динамики (одновременно уменьшается коли­чество интервалов). Например, ряд ежесуточного выпуска про­дукции заменяется рядом месячного выпуска продукции и т.д. Средняя, исчисленная по укрупненным^ интервалам, позволяет выявлять направление и характер (ускорение или замедление роста) основной тенденции развития.

    * Выявление основной тенденции может осуществляться также методом скользящи (подвижной) средней. Сущность его заключается в том, что исчисляется средний уровень из опреде­ленного числа, обычно нечетного (3, 5, 7 и т.д.), первыхтю сче­ту уровней ряда, затем - из такого же числа уровней, но начи­ная со второго по счету, далее - начиная с третьего и т.д. Таким образом, средняя как бы «скользит» по ряду динамики, пере­двигаясь на один срок.

    на два члена в начале и конце ряда. Он меньше, чем фактиче­ский подвержен колебаниям из-за случайных причин, и четче, в виде некоторой плавной линии на графике, выражает основную тенденцию роста урожайности за изучаемый период, связанную с действием долговременно существующих причин и условий развития.

    Недостатком сглаживания ряда является «укорачивание» сглаженного ряда по сравнению с фактическим, а следователь­но, потеря информации.

    Рассмотренные приемы сглаживания динамических рядов (укрупнение интервалов и метод скользящей средней) дают воз­можность определить лишь общую тенденцию развития явле­ния, более или менее освобожденную от случайных и волнооб­разных колебаний. Однако получить обобщенную статистиче­скую модель тренда посредством этих методов нельзя.

    *Для того чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во вре­мени, используется аналитическое выравнивание ряда динамики.

    где yt - уровни динамического ряда, вычисленные по соответст­вующему аналитическому уравнению на момент времени t.

    Определение теоретических (расчетных) уровней yt произ­водится на основе так называемой адекватной математической модели, которая наилучшим образом отображает (аппроксимиру­ет) основную тенденцию ряда динамики. Выбор типа модели зависит от цели исследования и должен быть основан на теоретическом анализе, выявляющем характер развития явления, а также на графическом изображении ряда динамики (линейной диаграмме).

    Например, простейшими моделями (формулами), выражаю­щими тенденцию развития, являются:

    линейная функция - прямая yt = a0 + a1t,

    где a0,a1 - параметры уравнения; t - время;

    показательная функция yt = A0A1t

    степенная функция - кривая второго порядка (парабола)

    В тех случаях, когда требуется особо точное изучение тен­денции развития (например, модели тренда для прогнозирова­ния), при выборе вида адекватной функции можно использовать специальные критерии математической статистики.

    Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принима­ется точка минимума суммы квадратов отклонений между тео­ретическими и эмпиричесими уровнями:

    где yt - выравненные (расчетные) уровни; yt - фактические уровни.

    Параметры уравнения а,-, удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выравненные уровни. Таким образом, выравнивание ряда динамики заключается в замене фактических уровней у,- плавно изменяю­щимися уровнями У(, наилучшим образом аппроксимирующилми статистические данные.

    Выравнивание по прямой используется, как правило, в тех случаях, когда абсолютные приросты практически постоянны, т. е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

    Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометриче­ской прогрессии, т. е. когда цепные коэффициенты рос­та практически постоянны.

    Рассмотрим «технику» выравнивания ряда динамики по прямой: yt=a0+a1t

    Параметры а0, а1 согласно методу наименьших квадратов находятся решением следующей системы нор­мальных уравнений, полученной путем алгебраического преобразования условия

    где у - фактические (эмпирические) уровни ряда; t - время (порядковый номеа периода или момента времени).

    Покажем пример подробного расчета параметров уравнения тренда на основе следующих данных (см. таблицу) с использованием калькулятора .

    Линейное уравнение тренда имеет вид y = at + b.
    1. Находим параметры уравнения методом наименьших квадратов .
    Система уравнений МНК:
    a 0 n + a 1 ∑t = ∑y
    a 0 ∑t + a 1 ∑t 2 = ∑y t

    t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2 (t-t p) 2 (y-y(t)) : y
    1 17.4 1 302.76 17.4 12.26 895.01 26.47 30.25 0.3
    2 26.9 4 723.61 53.8 18.63 416.84 68.39 20.25 0.31
    3 23 9 529 69 25 591.3 4.02 12.25 0.0872
    4 23.7 16 561.69 94.8 31.38 557.75 58.98 6.25 0.32
    5 27.2 25 739.84 136 37.75 404.68 111.4 2.25 0.39
    6 34.5 36 1190.25 207 44.13 164.27 92.72 0.25 0.28
    7 50.7 49 2570.49 354.9 50.5 11.45 0.0383 0.25 0.0039
    8 61.4 64 3769.96 491.2 56.88 198.34 20.44 2.25 0.0736
    9 69.3 81 4802.49 623.7 63.25 483.27 36.56 6.25 0.0872
    10 94.4 100 8911.36 944 69.63 2216.84 613.62 12.25 0.26
    11 61.1 121 3733.21 672.1 76 189.98 222.11 20.25 0.24
    12 78.2 144 6115.24 938.4 82.38 953.78 17.46 30.25 0.0534
    78 567.8 650 33949.9 4602.3 567.8 7083.5 1272.21 143 2.41

    Для наших данных система уравнений имеет вид:
    12a 0 + 78a 1 = 567.8
    78a 0 + 650a 1 = 4602.3
    Из первого уравнения выражаем а 0 и подставим во второе уравнение
    Получаем a 0 = 6.37, a 1 = 5.88

    Примечание: значения столбца №6 y(t) рассчитываются на основе полученного уравнения тренда. Например, t = 1: y(1) = 6.37*1 + 5.88 = 12.26

    Уравнение тренда

    y = 6.37 t + 5.88

    Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации.


    Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве тренда.

    Средние значения:


    Дисперсия

    Среднеквадратическое отклонение

    Коэффициент эластичности


    Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами - влияние Х на Y не существенно.

    Коэффициент детерминации

    т.е. в 82.04 % случаев влияет на изменение данных. Другими словами - точность подбора уравнения тренда - высокая

    2. Анализ точности определения оценок параметров уравнения тренда .
    Дисперсия ошибки уравнения.

    где m = 1 - количество влияющих факторов в модели тренда.

    Стандартная ошибка уравнения.



    3. Проверка гипотез относительно коэффициентов линейного уравнения тренда .
    1) t-статистика. Критерий Стьюдента.
    По таблице Стьюдента находим Tтабл
    T табл (n-m-1;α/2) = (10;0.025) = 2.228

    >
    Статистическая значимость коэффициента a 0 подтверждается. Оценка параметра a 0 является значимой и тренд у временного ряда существует..


    Статистическая значимость коэффициента a 1 не подтверждается.

    Доверительный интервал для коэффициентов уравнения тренда .
    Определим доверительные интервалы коэффициентов тренда, которые с надежность 95% будут следующими:
    (a 1 - t набл S a 1 ;a 1 + t набл S a 1)
    (6.375 - 2.228*0.943; 6.375 + 2.228*0.943)
    (4.27;8.48)
    (a 0 - t набл S a 0 ;a 0 + t набл S a 0)
    (5.88 - 2.228*6.942; 5.88 + 2.228*6.942)
    (-9.59;21.35)
    Так как точка 0 (ноль) лежит внутри доверительного интервала, то интервальная оценка коэффициента a 0 статистически незначима.
    2) F-статистика. Критерий Фишера.


    Fkp = 4.84
    Поскольку F > Fkp, то коэффициент детерминации статистически значим

    Проверка на наличие автокорреляции остатков .
    Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
    Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
    В экономических задачах значительно чаще встречается положительная автокорреляция , нежели отрицательная автокорреляция . В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
    Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
    Среди основных причин, вызывающих автокорреляцию , можно выделить следующие:
    1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
    2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
    3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
    4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
    Последствия автокорреляции схожи с последствиями гетероскедастичности : выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.

    Обнаружение автокорреляции
    1. Графический метод
    Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения e i с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения e i (либо оценки отклонений).
    Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии автокорреляции.
    Автокорреляция становится более наглядной, если построить график зависимости e i от e i-1
    Критерий Дарбина-Уотсона .
    Этот критерий является наиболее известным для обнаружения автокорреляции.
    При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой. При этом проверяется некоррелированность соседних величин e i .

    y y(x) e i = y-y(x) e 2 (e i - e i-1) 2
    17.4 12.26 5.14 26.47 0
    26.9 18.63 8.27 68.39 9.77
    23 25 -2 4.02 105.57
    23.7 31.38 -7.68 58.98 32.2
    27.2 37.75 -10.55 111.4 8.26
    34.5 44.13 -9.63 92.72 0.86
    50.7 50.5 0.2 0.0384 96.53
    61.4 56.88 4.52 20.44 18.71
    69.3 63.25 6.05 36.56 2.33
    94.4 69.63 24.77 613.62 350.63
    61.1 76 -14.9 222.11 1574.09
    78.2 82.38 -4.18 17.46 115.03
    1272.21 2313.98

    Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона :


    Критические значения d 1 и d 2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 12 и количества объясняющих переменных m=1.
    Автокорреляция отсутствует, если выполняется следующее условие:
    d 1 < DW и d 2 < DW < 4 - d 2 .
    Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1.5 < DW < 2.5. Поскольку 1.5 < 1.82 < 2.5, то автокорреляция остатков отсутствует .
    Для более надежного вывода целесообразно обращаться к табличным значениям.
    По таблице Дарбина-Уотсона для n=12 и k=1 (уровень значимости 5%) находим: d 1 = 1.08; d 2 = 1.36.
    Поскольку 1.08 < 1.82 и 1.36 < 1.82 < 4 - 1.36, то автокорреляция остатков отсутствует .

    Проверка наличия гетероскедастичности .
    1) Методом графического анализа остатков .
    В этом случае по оси абсцисс откладываются значения объясняющей переменной X, а по оси ординат либо отклонения e i , либо их квадраты e 2 i .
    Если имеется определенная связь между отклонениями, то гетероскедастичность имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии гетероскедастичности.
    2) При помощи теста ранговой корреляции Спирмена .
    Коэффициент ранговой корреляции Спирмена .
    Присвоим ранги признаку Y и фактору X. Найдем сумму разности квадратов d 2 .
    По формуле вычислим коэффициент ранговой корреляции Спирмена.

    t табл (n-m-1;α/2) = (10;0.05/2) = 2.228
    Поскольку Tнабл < tтабл, то принимаем гипотезу о равенстве 0 коэффициента ранговой корреляции. Другими словами, коэффициент ранговой корреляции статистически - не значим.
    Проверим гипотезу H 0: гетероскедастичность отсутствует.
    Поскольку 2.228 > 0.45, то гипотеза об отсутствии гетероскедастичности принимается.
    t e i ранг X, d x ранг e i , d y (d x - d y) 2
    1 -5.14 1 4 9
    2 -8.27 2 2 0
    3 2 3 7 16
    4 7.68 4 9 25
    5 10.55 5 11 36
    6 9.63 6 10 16
    7 -0.2 7 6 1
    8 -4.52 8 5 9

    Приняв в качестве гипотетической функции теоретических уровней прямую , определим параметры последней:

    Решение этой системы можно осуществить по формулам:

    Отсюда искомое уравнение тренда: . Подставляя в полученное уравнении значения 1, 2, 3, 4, 5, определяем теоретические уровни ряда (см. предпоследнюю графу табл. 4.3). Сравнивая значения эмпирических и теоретических уровней, видим, что они близки, т.е. можно сказать, что найденное уравнение весьма удачно характеризует основную тенденцию изменения уровней именно как линейную функцию.

    Система нормальных уравнений упрощается, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно -1, -2, -3 и т.д., а следующие за средним – соответственно +1, +2, +3 и т.д. При четном числе уровней два срединных момента (периода) времени обозначают −1 и +1, а все последующие и предыдущие, соответственно, через два интервала: и т.д.

    При таком порядке отсчета времени (от середины ряда) , система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:

    Важное значение при построении модели временного ряда имеет учет сезонных и циклических колебаний. Простейшим подходом, позволяющим учесть в модели сезонные и циклические колебания, является расчет значений сезонной/циклической компоненты и построение аддитивной и мультипликативной модели временного ряда.

    Общий вид аддитивной модели следующий: Y=T+S+E . Эта модель предполагает, что каждый уровень временного уровня ряда может быть представлен как сумма трендовой T , сезонной S и случайной компонент. Общий вид мультипликативной модели выглядит как: Y=T∙S∙E .

    Выбор одной из двух моделей проводится на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

    Построение аддитивной и мультипликативной моделей сводится к расчету T, S, E для каждого уровня ряда. Этапы построения модели включают в себя следующие шаги:



    1. Выравнивание исходного ряда методом скользящей средней

    2. Расчет значений сезонной компоненты S .

    3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной (T+E) или мультипликативной (T∙E) модели.

    4. Аналитическое выравнивание уровней (T+E) или (T∙E) и расчет значений T с использованием полученного уравнения тренда.

    5. Расчет полученных по модели значений (T+E) или (T∙E) .

    6. Расчет абсолютных и/или относительных ошибок. Если полученные значения не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

    Рассмотрим другие методы анализа взаимосвязи, предположив что изучаемые временные ряды не содержат периодических колебаний. Допустим, что изучается зависимость между рядами х и у . Для количественной характеристики этой зависимости используется линейный коэффициент корреляции. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким. Однако это не говорит о том, что х причина у . Высокий коэффициент корреляции в данном случае – это результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью. Например, коэффициент корреляции между численностью выпускников вузов и числом домов отдыха в РФ в период с 1970-1990 г. составил 0,8. Однако, это не говорит о том, что количество домов отдыха способствует росту числа выпускников или наоборот.

    Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряду, которую устраняют одним из методов.

    Предположим, что по двум временным рядам х t и у t строится уравнение парной регрессии линейной регрессии вида: . наличие тенденции в каждом из этих временных рядов означает, что на зависимую у t и независимую х t переменные модели оказывает воздействие фактор времени, который непосредственно в модели не учтен. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков за текущий и предыдущие моменты времени, которая получила название автокорреляции в остатках.

    Автокорреляция в остатках – это нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении обобщенного МНК.

    Для устранения тенденции используются две группы методов:

    Методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции (метод последовательных разностей и метод отклонения от трендов);

    Методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимую переменные модели (включение в модель регрессии по временным рядам фактора времени).

    Пусть имеются два временных ряда и , каждый из которых содержит трендовую компоненту Т и случайную составляющую . Аналитическое выравнивание каждого из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни и соответственное. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели. Дальнейший анализ взаимосвязи рядов проводят с использованием не исходных уровней, а отклонений от тренда и . Именно в этом и заключается метод отклонений от тренда.

    В ряде случаев вместо аналитического выравнивания временного ряда с целью устранения тенденции можно применить более простой метод – метод последовательных разностей. Если временной ряд содержит ярко выраженную линейную тенденцию, ее можно устранить путем замены исходных уровней ряда цепными абсолютными приростами (первыми разностями).

    Коэффициент b – константа, которая не зависит от времени. При наличии сильной линейной тенденции отставки достаточно малы и в соответствии с предпосылками МНК носят случайный характер. Поэтому первые разности уровней ряда не зависят от переменной времени, их можно использовать для дальнейшего анализа.

    Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности: .

    Если тенденции временного ряда соответствует экспоненциальной, или степенной, тренд, метод последовательных разностей следует применять не к исходным уровням ряда, а к их логарифмам.

    Модель вида: также относится к группе моделей, включающих фактор времени. Преимущество данной модели перед методами отклонений от трендов и последовательных разностей состоит в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, поскольку значения и – это уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры этой модели определяются обычным МНК.

    Пример. Построим уравнение тренда по исходным данным таблицы 4.4.

    Таблица 4.4

    Расходы на конечное потребление и совокупный доход (усл. ед.)

    Система нормальных уравнений имеет вид:

    По исходным данным рассчитаем необходимые величины и подставим в систему:

    Уравнение регрессии имеет вид: .

    Интерпретация параметров уравнения следующая: характеризует, что при увеличении совокупного дохода на 1 д.е. расходы на конечное потребление возрастут в среднем на 0,49 д.е в условиях существования неизменной тенденции. Параметр означает, что воздействие всех факторов, кроме совокупного дохода, на расходы на конечное потребление приведет к его среднегодовому абсолютному приросту на 0,63 д.е.

    Рассмотрим уравнение регрессии вида: . Для каждого момента времени значение компоненты определяются как или . Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными (рис. 4.4).


    Рис. 4.4 Случайные остатки

    Однако при моделировании временных рядов нередко встречаются ситуации, когда остатки содержат тенденцию или циклические колебания (рис. 4.5). Это говорит о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции в остатках.



    а) б)

    Рис. 4.5 Убывающая тенденция (а ) и циклические колебания (б )

    в остатках

    Автокорреляция случайной составляющей - корреляционная зависимость текущих и предыдущих значений случайной составляющей. Последствия автокорреляции случайной составляющей:

    Коэффициенты регрессии становятся неэффективными;

    Стандартные ошибки коэффициентов регрессии становятся заниженными, а значения t –критерия завышенными.

    Для определения автокорреляции остатков известны два наиболее распространенных метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – это использование критерия Дарбина-Уотсона, который сводится к проверке гипотезы:

    Н0 (основная гипотеза): автокорреляция отсутствует;

    Н1 и Н2 (альтернативные гипотезы): присутствует положительная или отрицательная автокорреляция в остатках соответственно.

    Для проверки основной гипотезы используется статистика критерия Дарбина-Уотсона:

    где .

    На больших выборках d≈2(1- ), где - коэффициент автокорреляции 1-го порядка.

    .

    Если в остатках существует полная положительная автокорреляция и =1, то d=0; если в остатках есть полная отрицательная автокорреляция, то = -1 и d=4; если автокорреляция остатков отсутствует, то = 0, то d=2. Следовательно, 0.

    Существуют специальные статистические таблицы для определения нижней и верхней критических границ d -статистики – d L и d U . Они определяются в зависимости от n, числа независимых переменных k и уровня значимости .

    Если d набл ‹d L , то принимается гипотеза Н1: положительная автокорреляция.

    Если d и ‹d набл ‹2,

    Если 2‹d набл ‹4-d и, то принимается гипотеза Н0: автокорреляции нет.

    Если d набл ›4-d L , то принимается гипотеза Н2: отрицательная автокорреляция.

    Если 4-d и ‹d набл ‹4-d L , и d L ‹d набл ‹d и, то имеет место случай неопределенности.


    0 d L d U 2 4- d U 4- d L 4

    Рис. 4.6 Алгоритм проверки гипотезы о наличии автокорреляции остатков

    Для применения критерия Дарбина-Уотсона есть ограничения. Он неприменим для моделей, включающих в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии. Методика направлена только на выявление автокорреляции остатков первого порядка. Результаты являются более достоверными при работе с большими выборками.

    В тех случаях, когда имеет место автокорреляция остатков, для определения оценок параметров a, b используют обобщенный метод МНК, который заключается в последовательности следующих шагов:

    1. Преобразовать исходные переменные y t и x t к виду

    2. Применив обычный МНК к уравнению , где определить оценки параметров и b.

    4. Выписать исходное уравнение .

    Среди эконометрических моделей, построенных по временным данным, выделяют динамические модели.

    Эконометрическая модель является динамической , если в данный момент времени t она учитывает значения входящих в нее переменных, относящихся как к текущему, так и к предыдущим моментам времени, т.е. эта модель отражает динамику исследуемых переменных в каждый момент времени.

    Существует два основных типа динамических эконометрических моделей. К моделям первого типа относятся модели авторегрессии и модели с распределенным лагом, в которых значение переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде. В эти модели включены переменные, характеризующие ожидаемый и желаемый уровень результата, или один из факторов в момент времени t.

    Модель с распределенным лагом имеет вид:

    Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей распределенным лагом не может быть проведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в третьих, между моделями с распределенным лагом и моделями авторегрессии имеется определенная взаимосвязь, и в некоторых случаях необходимо осуществить переход от одноного типа моделей к другому.

    Рассмотрим модель с распределенным лагом в предположении, что максимальная величина лага конечна:

    Даная модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной x , то это изменение будет влиять на значения переменной y в течение l следующих моментов времени.

    Коэффициент регрессии b 0 при переменной x t характеризует среднее абсолютное изменение y t при изменении x t на 1 ед. своего измерения в некоторый фиксированный момент времени t , без учета воздействия лаговых значений фактора x. Этот коэффициент называется краткосрочным мультипликатором.

    В момент t+1 воздействие факторной переменной x t на результат y t составит (b 0 +b 1) условных единиц; в момент времени t+2 это воздействие можно охарактеризовать суммой (b 0 +b 1 +b 2) и т.д. Полученные таким образом суммы называются промежуточными мультипликаторами .

    С учетом конечной величины лага можно сказать, что изменение переменной x t в момент времени t на 1 условную единицу приведет к общему изменению результата через l моментов времени (b 0 +b 1 +b 2 +…+b l ).

    Введем следующее обозначение: b=(b 0 +b 1 +b 2 +…+b l ). Величину b называется долгосрочным мультипликатором , который показывает абсолютное изменение в долгосрочном периоде t+l результата y под влиянием изменения на 1 ед. фактора x .

    Величины называются относительными коэффициентами модели с распределенным лагом. Если все коэффициенты b j имеют одинаковые знаки, то . Относительные коэффициенты являются весами для соответствующих коэффициентов b j . Каждый из них измеряет долю общего изменения результативного признака в момент времени t+j .

    Зная величины , с помощью стандартных формул можно определить еще две важные характеристики модели множественной регрессии: величину среднего и медианного лагов.

    Средний лаг рассчитывается по формуле средней арифметической взвешенной:

    и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора x в момент t. Если значение среднего лага небольшое, то это говорит о довольно быстром реагировании y на изменение x. Высокое значение среднего лага говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени.

    Медианный лаг (L Me) – это величина лага, для которого период, в течение которого . Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.

    Изложенные выше приемы анализа параметров модели с распределенным лагом действительны только в предположении, что все коэффициенты при текущем и лаговых значениях исследуемого фактора имеют одинаковые знаки. Это предположение вполне оправдано с экономической точки зрения: воздействие одного и того же фактора на результат должно быть однонаправленным независимо от того, с каким временным лагом измеряется сила или теснота связи между этими признаками. Однако на практике получить статистически значимую модель, параметры которой имели бы одинаковые знаки, особенно при большой величине лага l , чрезвычайно сложно.

    Применение обычного МНК к таким моделям в большинстве случаев затруднительно по следующим причинам:

    Текущие и лаговые значения независимой переменной, как правило, тесно связаны друг с другом, тем самым оценка параметров модели проводится в условиях высокой мультиколлинеарности;

    При большой величине лага снижается число наблюдений, по которому строится модель, и увеличивается число ее факторных признаков, что ведет к потере числа степеней свободы в модели;

    В моделях с распределенным лагом часто возникает проблема автокорреляции остатков.

    Как и в модели с распределенным лагом, b 0 в этой модели характеризует краткосрочное изменение y t под воздействием изменения x t на 1 ед. Однако промежуточные и долгосрочный мультипликаторы в модели авторегрессии несколько иные. К моменту времени t+1 результат y t изменился под воздействием изменения изучаемого фактора в момент времени t на b 0 единиц, а y t +1 – под воздействием своего изменения в непосредственно предшествующим момент времени на с 1 единиц. Таким образом, общее абсолютное изменение результата в момент t+1 составит b 0 с 1 . Аналогично в момент времени t+2 абсолютное изменение результата составит b 0 с 1 2 единиц и т.д. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточного мультипликаторов:

    Такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.

    Пример. Предположим, по данным о динамике показателей потребления и дохода в регионе была получена модель авторегрессии, описывающая зависимость среднедушевого объема потребления за год (С, млн. руб.) от среднедушевого совокупного годового дохода (Y, млн. руб.) и объема потребления предшествующего года:

    .

    Краткосрочный мультипликатор равен 0,85. В этой модели он представляет собой предельную склонность к потреблению в краткосрочном периоде. Следовательно, увеличение среднедушевого совокупного дохода на 1 млн. руб. приводит к росту объема потребления в тот же год в среднем на 850 тыс. руб. Долгосрочную предельную склонность к потреблению в данной модели можно определить как

    .

    В долгосрочной перспективе рост среднедушевого совокупного дохода на 1 млн. руб. приведет к росту объема потребления в среднем на 944 тыс. руб. Промежуточные показатели предельной склонности к потреблению можно определить, рассчитав необходимые частные суммы за соответствующие периоды времени. Например, для момента времени t+1 получим:

    Это означает, что увеличение среднедушевого совокупного дохода в текущем периоде на 1 млн. руб. ведет к увеличению объема потребления в среднем на 935 тыс. руб. в ближайшем следующем периоде.

    Назначение сервиса . Сервис используется для расчета параметров тренда временного ряда y t онлайн с помощью метода наименьших квадратов (МНК) (см. пример нахождения уравнения тренда), а также способом от условного нуля. Для этого строится система уравнений:
    a 0 n + a 1 ∑t = ∑y
    a 0 ∑t + a 1 ∑t 2 = ∑y t

    и таблица следующего вида:

    t y t 2 y 2 t y y(t)
    1
    ... ... ... ... ... ...
    N
    ИТОГО

    Инструкция . Укажите количество данных (количество строк). Полученное решение сохраняется в файле Word и Excel .

    Количество строк (исходных данных)
    Использовать способ отсчета времени от условного начала (перенос начала координат в середину ряда динамики)
    ",1);">

    Тенденция временного ряда характеризует совокупность факторов, оказывающих долговременное влияние и формирующих общую динамику изучаемого показателя.

    Способ отсчета времени от условного начала

    Для определения параметров математической функции при анализе тренда в рядах динамики используется способ отсчета времени от условного начала. Он основан на обозначении в ряду динамики показаний времени таким образом, чтобы ∑t i . При этом в ряду динамики с нечетным числом уровней порядковый номер уровня, находящегося в середине ряда, обозначают через нулевое значение и принимают его за условное начало отсчета времени с интервалом +1 всех последующих уровней и –1 всех предыдущих уровней. Например, при обозначения времени будут: –2, –1, 0, +1, +2 . При четном числе уровней порядковые номера верхней половины ряда (от середины) обозначаются числами: –1, –3, –5 , а нижней половины ряда обозначаются +1, +3, +5 .

    Пример . Статистическое изучение динамики численности населения.

    1. С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.
    2. С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.
    3. Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.
    1990 1996 2001 2002 2003 2004 2005 2006 2007 2008
    1249 1133 1043 1030 1016 1005 996 985 975 968
    Метод аналитического выравнивания

    а) Линейное уравнение тренда имеет вид y = bt + a
    1. Находим параметры уравнения методом наименьших квадратов . Используем способ отсчета времени от условного начала.
    Система уравнений МНК для линейного тренда имеет вид:
    a 0 n + a 1 ∑t = ∑y
    a 0 ∑t + a 1 ∑t 2 = ∑y t

    t y t 2 y 2 t y
    -9 1249 81 1560001 -11241
    -7 1133 49 1283689 -7931
    -5 1043 25 1087849 -5215
    -3 1030 9 1060900 -3090
    -1 1016 1 1032256 -1016
    1 1005 1 1010025 1005
    3 996 9 992016 2988
    5 985 25 970225 4925
    7 975 49 950625 6825
    9 968 81 937024 8712
    0 10400 330 10884610 -4038

    Для наших данных система уравнений примет вид:
    10a 0 + 0a 1 = 10400
    0a 0 + 330a 1 = -4038
    Из первого уравнения выражаем а 0 и подставим во второе уравнение
    Получаем a 0 = -12.236, a 1 = 1040
    Уравнение тренда:
    y = -12.236 t + 1040

    Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации.

    Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

    б) выравнивание по параболе
    Уравнение тренда имеет вид y = at 2 + bt + c
    1. Находим параметры уравнения методом наименьших квадратов.
    Система уравнений МНК:
    a 0 n + a 1 ∑t + a 2 ∑t 2 = ∑y
    a 0 ∑t + a 1 ∑t 2 + a 2 ∑t 3 = ∑yt
    a 0 ∑t 2 + a 1 ∑t 3 + a 2 ∑t 4 = ∑yt 2

    t y t 2 y 2 t y t 3 t 4 t 2 y
    -9 1249 81 1560001 -11241 -729 6561 101169
    -7 1133 49 1283689 -7931 -343 2401 55517
    -5 1043 25 1087849 -5215 -125 625 26075
    -3 1030 9 1060900 -3090 -27 81 9270
    -1 1016 1 1032256 -1016 -1 1 1016
    1 1005 1 1010025 1005 1 1 1005
    3 996 9 992016 2988 27 81 8964
    5 985 25 970225 4925 125 625 24625
    7 975 49 950625 6825 343 2401 47775
    9 968 81 937024 8712 729 6561 78408
    0 10400 330 10884610 -4038 0 19338 353824

    Для наших данных система уравнений имеет вид
    10a 0 + 0a 1 + 330a 2 = 10400
    0a 0 + 330a 1 + 0a 2 = -4038
    330a 0 + 0a 1 + 19338a 2 = 353824
    Получаем a 0 = 1.258, a 1 = -12.236, a 2 = 998.5
    Уравнение тренда:
    y = 1.258t 2 -12.236t+998.5

    Ошибка аппроксимации для параболического уравнения тренда.

    Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

    Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R 2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

    Интервальный прогноз.
    Определим среднеквадратическую ошибку прогнозируемого показателя.

    m = 1 - количество влияющих факторов в уравнении тренда.
    Uy = y n+L ± K
    где

    L - период упреждения; у n+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; T табл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2 .
    По таблице Стьюдента находим Tтабл
    T табл (n-m-1;α/2) = (8;0.025) = 2.306
    Точечный прогноз, t = 10: y(10) = 1.26*10 2 -12.24*10 + 998.5 = 1001.89 тыс. чел.

    1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02
    Интервальный прогноз:
    t = 9+1 = 10: (930.76;1073.02)

    ПРИМЕР . Статистическое изучение динамики численности населения.

      С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.

      С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.

      Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.

    Метод аналитического выравнивания а) Линейное уравнение тренда имеет вид y = bt + a 1. Находим параметры уравнения методом наименьших квадратов . Используем способ отсчета времени от условного начала. Система уравнений МНК для линейного тренда имеет вид: a 0 n + a 1 ∑t = ∑y a 0 ∑t + a 1 ∑t 2 = ∑y t

    Для наших данных система уравнений примет вид: 10a 0 + 0a 1 = 10400 0a 0 + 330a 1 = -4038 Из первого уравнения выражаем а 0 и подставим во второе уравнение Получаем a 0 = -12.236, a 1 = 1040 Уравнение тренда: y = -12.236 t + 1040

    Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации. Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

    б) выравнивание по параболе Уравнение тренда имеет вид y = at 2 + bt + c 1. Находим параметры уравнения методом наименьших квадратов. Система уравнений МНК: a 0 n + a 1 ∑t + a 2 ∑t 2 = ∑y a 0 ∑t + a 1 ∑t 2 + a 2 ∑t 3 = ∑yt a 0 ∑t 2 + a 1 ∑t 3 + a 2 ∑t 4 = ∑yt 2

    Для наших данных система уравнений имеет вид 10a 0 + 0a 1 + 330a 2 = 10400 0a 0 + 330a 1 + 0a 2 = -4038 330a 0 + 0a 1 + 19338a 2 = 353824 Получаем a 0 = 1.258, a 1 = -12.236, a 2 = 998.5 Уравнение тренда: y = 1.258t 2 -12.236t+998.5

    Ошибка аппроксимации для параболического уравнения тренда. Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

    Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R 2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

    Интервальный прогноз. Определим среднеквадратическую ошибку прогнозируемого показателя. m = 1 - количество влияющих факторов в уравнении тренда. Uy = y n+L ± K где L - период упреждения; у n+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; T табл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2 . По таблице Стьюдента находим Tтабл T табл (n-m-1;α/2) = (8;0.025) = 2.306 Точечный прогноз, t = 10: y(10) = 1.26*10 2 -12.24*10 + 998.5 = 1001.89 тыс. чел. 1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02 Интервальный прогноз: t = 9+1 = 10: (930.76;1073.02)