Семья

Найти коэффициенты для сглаживания временного ряда. Расчет показателей динамики экономических процессов. Механическое сглаживание по скользящим средним

Перейдем к вопросу о сглаживании временных рядов экономических показателей. Очень часто уровни рядов динамики колеблются, при этом тенденция развития экономического явления во времени скрыта случайными отклонениями уровней в ту или иную сторону. С целью четко выявить тенденцию развития исследуемого процесса, в том числе для дальнейшего применения методов прогнозирования на основе трендовых моделей, производят сглаживание (выравнивание) временных рядов. Таким образом, сглаживание можно рассматривать как устранение случайной составляющей t из модели временного ряда.

Самым простым методом механического сглаживания является метод простой скользящей средней. Сначала для временного ряда y 1 , y 2 , y 3 ,…, y n определяется интервал сглаживания т (т < п). Если необходимо сгладить мелкие беспорядочные колебания, то интервал сглаживания берут по возможности большим; интервал сглаживания уменьшают, если нужно сохранить более мелкие колебания. При прочих равных условиях интервал сглаживания рекомендуется брать нечетным. Для первых т уровней временного ряда вычисляется их средняя арифметическая; это будет сглаженное значение уровня ряда, находящегося в середине интервала сглаживания. Затем интервал сглаживания сдвигается на один уровень вправо, повторяется вычисление средней арифметической и т.д.

Для вычисления сглаженных уровней ряда применяется формула

при нечетном m ;

для четных т формула усложняется.

В результате такой процедуры получаются п - т + 1 сглаженных значений уровней ряда; при этом первые р и последние р уровней ряда теряются (не сглаживаются).

Особенность метода экспоненциального сглаживания заключается в том, что в процедуре нахождения сглаживания i -го уровня используются значения только предшествующих уровней ряда (i -1, i -2,…), взятые с определенным весом, причем вес наблюдения уменьшается по мере удаления его от момента времени, для которого определяется сглаженное значение уровня ряда.

Если для исходного временного ряда y 1 , y 2 , y 3 ,…, y n соответствующие сглаженные значения уровней обозначить через S t , t = 1,2, …, п, то экспоненциальное сглаживание осуществляется по формуле

здесь S 0 – величина, характеризующая начальные условия.

В практических задачах обработки экономических временных рядов рекомендуется выбирать величину параметра сглаживания в интервале от 0,1 до 0,3.

Пример 4.4. Вернемся к примеру 1, в котором рассматриваются квартальные объемы продаж компании «Lewplan». Мы уже выяснили, что этим данным отвечает аддитивная модель, т.е. фактически объемы продаж можно выразить следующим образом:

Y = U + V + E.

Для того чтобы элиминировать влияние сезонной компоненты, воспользуемся методом скользящей средней. Просуммировав первые четыре значения, получим общий объем продаж в 1998 г. Если поделить эту сумму на четыре, можно найти средний балл продаж в каждом квартале 1998 г., т.е.

(239 + 201 +182 + 297)/4 = 229,75;
(201+182+297+324)/4 и т. д.

Полученное значение уже не содержит сезонной компоненты, поскольку представляет собой среднюю величину за год. У нас появилась оценка значения тренда для середины года, т.е. для точки, лежащей в середине между кварталами II и III. Если последовательно передвигаться вперед с интервалом в три месяца, можно рассчитать средние квартальные значения на промежутке апрель – март 1998 (251), июль – июнь 1998 (270,25) и т.д. Данная процедура позволяет генерировать скользящие средние по четырем точкам для исходного множества данных. Получаемое таким образом множество скользящих средних представляет наилучшую оценку искомого тренда.

Теперь полученные значения тренда можно использовать для нахождения оценок сезонной компоненты. Мы рассчитываем:

Y U = V + E .

К сожалению, оценки значений тренда, полученные в результате расчета средних по четырем точкам, относятся к нескольким иным моментам времени, чем фактические данные. Первая оценка, равная 229,75, представляет собой точку, совпадающую с серединой 1998 г., т.е. лежит в центре промежутка фактических значений объемов продаж во II и III кварталах. Вторая оценка, равная 251, лежит между фактическими значениями в III и IV кварталах. Нам же требуются десезонализированные средние значения, соответствующие тем же интервалам времени, что и фактические значения за квартал. Положение десезонализированных средних во времени сдвигается путем дальнейшего расчета средних для каждой пары значений. Найдем среднюю из первой оценок, центрируя их на июль – сентябрь 1998 г., т.е.

(229,75 + 251)/2 = 240,4.

Это и есть десезонализированная средняя за июль – сентябрь 1999 г. Эту десезонализированную величину, которая называется центрированной скользящей средней , можно непосредственно сравнивать с фактическим значением за июль – сентябрь 1998 г., равным 182. Отметим, что это означает отсутствие оценок тренда за первые два или последние два квартала временного ряда. Результаты этих расчетов приведены в табл.4.5.

Для каждого квартала мы имеем оценки сезонной компоненты, которые включают в себя ошибку или остаток. Прежде чем мы сможем использовать сезонную компоненту, нужно пройти два следующих этапа. Найдем средние значения сезонных оценок для каждого сезона года. Эта процедура позволит уменьшить некоторые значения ошибок. Наконец, скорректируем средние значения, увеличивая или уменьшая их на одно и тоже число таким образом, чтобы общая их сумма была равна нулю. Это необходимо, чтобы усреднить значения сезонной компоненты в целом за год.

Таблица 4.5. Оценка сезонной компоненты

Объем продаж Y , тыс. шт.

за четыре

квартала

Скользящая

средняя за четыре

квартала

Центрированная скользящая средняя U

сезонной компоненты

Y - U = V + E

Январь-март 1998

Апрель-июнь

Июль-сентябрь

Октябрь-декабрь

Январь-март 1999

Апрель-июнь

Июль-сентябрь

Октябрь-декабрь

Январь-март 2000

Апрель-июнь

Июль-сентябрь

Октябрь-декабрь

Январь-март 2001

Таблица 4.6. Расчет средних значений сезонной компоненты

Рассчитываемые

компоненты

Номер квартала

Среднее значение

Оценка сезонной

компоненты

Сумма = -0,2

Скорректированная

сезонная компонента 1

Корректирующий фактор рассчитывается следующим образом: сумма оценок сезонных компонент делится на 4. В последнем столбце табл. 4.5 эти оценки записаны под соответствующими квартальными значениями. Сама процедура приведена в табл. 4.6.

Значение сезонной компоненты еще раз подтверждает наши выводы, сделанные в примере 4.1 на основе анализа диаграммы. Объемы продаж за два зимних квартала превышают среднее трендовое значение приблизительно на 40 тыс. шт., а объемы продаж за два летних периода ниже средних на 21 и 62 тыс.шт. соответственно.

Аналогичная процедура применима при определении сезонной вариации за любой промежуток времени. Если, например, в качестве сезона выступают дни недели, для элиминирования влияния ежедневной сезонной компоненты также рассчитывают скользящую среднюю, но уже не по четырем, а по семи точкам. Эта скользящая средняя представляет собой значение тренда в середине недели, т.е. в четверг; таким образом, необходимость в процедуре центрирования отпадает.

Экстраполяция - это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. К методам экстраполяции относятся метод скользящей средней, метод экспоненциального сглаживания, метод наименьших квадратов.

Метод скользящих средних является одним из широко известных методов сглаживания временных рядов. Применяя этот метод, можно элиминировать случайные колебания и получить значения, соответствующие влиянию главных факторов.

Сглаживание с помощью скользящих средних основано на том, что в средних величинах взаимно погашаются случайные отклонения. Это происходит вследствие замены первоначальных уровней временного ряда средней арифметической величиной внутри выбранного интервала времени. Полученное значение относится к середине выбранного интервала времени (периода).

Затем период сдвигается на одно наблюдение, и расчет средней повторяется. При этом периоды определения средней берутся все время одинаковыми. Таким образом, в каждом рассматриваемом случае средняя центрирована, т.е. отнесена к серединной точке интервала сглаживания и представляет собой уровень для этой точки.

При сглаживании временного ряда скользящими средними в расчетах участвуют все уровни ряда. Чем шире интервал сглаживания, тем более плавным получается тренд. Сглаженный ряд короче первоначального на (n–1) наблюдений, где n – величина интервала сглаживания.

При больших значениях n колеблемость сглаженного ряда значительно снижается. Одновременно заметно сокращается количество наблюдений, что создает трудности.

Выбор интервала сглаживания зависит от целей исследования. При этом следует руководствоваться тем, в какой период времени происходит действие, а следовательно, и устранение влияния случайных факторов.

Данный метод используется при краткосрочном прогнозировании. Его рабочая формула:

Пример применения метода скользящей средней для разработки прогноза

Задача . Имеются данные, характеризующие уровень безработицы в регионе, %

  • Постройте прогноз уровня безработицы в регионе на ноябрь, декабрь, январь месяцы, используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.
  • Рассчитайте ошибки полученных прогнозов при использовании каждого метода.
  • Сравните полученные результаты, сделайте выводы.

Решение методом скользящей средней

Для расчета прогнозного значения методом скользящей средней необходимо:

1. Определить величину интервала сглаживания, например равную 3 (n = 3).

2. Рассчитать скользящую среднюю для первых трех периодов
m фев = (Уянв + Уфев + У март)/ 3 = (2,99+2,66+2,63)/3 = 2,76
Полученное значение заносим в таблицу в средину взятого периода.
Далее рассчитываем m для следующих трех периодов февраль, март, апрель.
m март = (Уфев + Умарт + Уапр)/ 3 = (2,66+2,63+2,56)/3 = 2,62
Далее по аналогии рассчитываем m для каждых трех рядом стоящих периодов и результаты заносим в таблицу.

3. Рассчитав скользящую среднюю для всех периодов, строим прогноз на ноябрь по формуле:

где t + 1 – прогнозный период; t – период, предшествующий прогнозному периоду (год, месяц и т.д.); Уt+1 – прогнозируемый показатель; mt-1 – скользящая средняя за два периода до прогнозного; n – число уровней, входящих в интервал сглаживания; Уt – фактическое значение исследуемого явления за предшествующий период; Уt-1 – фактическое значение исследуемого явления за два периода, предшествующих прогнозному.

У ноябрь = 1,57 + 1/3 (1,42 – 1,56) = 1,57 – 0,05 = 1,52
Определяем скользящую среднюю m для октября.
m = (1,56+1,42+1,52) /3 = 1,5
Строим прогноз на декабрь.
У декабрь = 1,5 + 1/3 (1,52 – 1,42) = 1,53
Определяем скользящую среднюю m для ноября.
m = (1,42+1,52+1,53) /3 = 1,49
Строим прогноз на январь.
У январь = 1,49 + 1/3 (1,53 – 1,52) = 1,49
Заносим полученный результат в таблицу.

Рассчитываем среднюю относительную ошибку по формуле:

ε = 9,01/8 = 1,13% точность прогноза высокая.

Далее решим данную задачу методами экспоненциального сглаживания и наименьших квадратов . Сделаем выводы.

Углубленный анализ временных рядов требует использования более сложных методик математической статистики. При наличии в динамических рядах значительной случайной ошибки (шума) применяют один из двух простых приемов - сглаживание или выравнивание путем укрупнения интервалови вычисления групповых средних. Этот метод позволяет повысить наглядность ряда, если большинство «шумовых» составляющих находятся внутри интервалов. Однако, если «шум» не согласуется с периодичностью, распределение уровней показателей становится грубым, что ограничивает возможности детального анализа изменения явления во времени.

Более точные характеристики получаются, если используют скользящие средние - широко применяемый способ для сглаживания показателей среднего ряда. Он основан на переходе от начальных значений ряда к средним в определенном интервале времени. В этом случае интервал времени при вычислении каждого последующего показателя как бы скользит по временному ряду.

Применение скользящего среднего полезно при неопределенных тенденциях динамического ряда или при сильном воздействии на показатели циклически повторяющихся выбросов (резко выделяющиеся варианты или интервенция).

Чем больше интервал сглаживания, тем более плавный вид имеет диаграмма скользящих средних. При выборе величины интервала сглаживания необходимо исходить из величины динамического ряда и содержательного смысла отражаемой динамики. Большая величина динамического ряда с большим числом исходных точек позволяет использовать более крупные временные интервалы сглаживания (5, 7, 10 и т.д.). Если процедура скользящего среднего используется для сглаживания не сезонного ряда, то чаще всего величину интервала сглаживания принимают равной 3 или 5. https://tvoipolet.ru/iz-moskvi-v-nyu-jork/ - отличная возможность выбрать авиакомпанию на перелет из Москвы в Нью-Йорк

Приведем пример вычисления скользящего среднего числа хозяйств с высокой урожайностью (более 30 ц/га) (табл. 10.3).

Таблица 10.3 Сглаживание динамического ряда укрупнением интервалов искользящим средним

Учетный год

Число хозяйств с высокой урожайностью

Суммы за три года

Скользящие за три года

Скользящие средние

90,0

89,7

1984

88,7

87,3

87,3

87,0

86,7

83,0

83,0

82,3

82,3

82,6

82,7

82,7

Примеры вычисления скользящего среднего:

1982 г.(84 + 94 + 92) / 3 = 90,0;

1983 г. (94 + 92 + 83) / 3 = 89,7;

1984 г.(92 + 83 + 91) / 3 = 88,7;

1985 г.(83 + 91 + 88) / 3 = 87,3.

Составляется график. На оси абсцисс указываются годы, на оси ординат - число хозяйств с высокой урожайностью. Указываются координаты числа хозяйств на графике и соединяют полученные точки ломаной линией. Затем указываются координаты скользящей средней по годам на графике и соединяются точки плавной полужирной линией.

Более сложным и результативным методом является сглаживание (выравнивание) рядов динамики с помощью различных функций аппроксимации. Они позволяют формировать плавный уровень общей тенденции и основную ось динамики.

Наиболее эффективным методом сглаживания с помощью математических функций является простое экспоненциальное сглаживание. Этим методом учитываются все предшествующие наблюдения ряда по формуле:

S t = α∙X t + (1 - α ) ∙S t - 1 ,

где S t - каждое новое сглаживание в момент времени t ; S t - 1 - сглаженное значение в предыдущий момент времени t -1; X t - фактическое значение ряда в момент времени t ; α - параметр сглаживания.

Если α = 1, то предыдущие наблюдения полностью игнорируются; при величине α = 0 игнорируются текущие наблюдения; значения α между 0 и 1 дают промежуточные результаты. Изменяя значения этого параметраможно подобрать наиболее приемлемый вариант выравнивания. Выбор оптимального значения α осуществляется путем анализа полученных графических изображений исходной и выравненной кривых, либо на основе учета суммы квадратов ошибок (погрешностей) вычисленных точек. Практическое использование этого метода следует проводить с использованием ЭВМ в программе MS Excel . Математическое выражение закономерности динамики данных можно получить с помощью функции экспоненциального сглаживания.

Распространенным приемом при выявлении тенденции развития является сглаживание временного ряда. Суть различных приемов сглаживания сводится к замене фактических уровней временного ряда расчетными уровнями, которые подвержены колебаниям в меньшей степени. Это способствует более четкому проявлению тенденци и развития. Иногда сглаживание применяют как предварительный этап перед использованием других методов выделения тенденции

Скользящие средние позволяют сгладить как случайные, так и периодические колебания, выявить имеющуюся тенденцию в развитии процесса, и поэтому, являются важным инструментом при фильтрации компонент временного ряда.

Если рассматриваемое явление носит линейный характер, то применяется простая скользящая средняя. Алгоритм сглаживания по простой скользящей средней может быть представлен в виде следующей последовательности шагов:

1. Определяют длину интервала сглаживания g, включающего в себя g последовательных уровней ряда (g

2. Разбивают весь период наблюдений на участки, при этом интервал сглаживания как бы скользит по ряду с шагом, равным 1.

3. Рассчитывают арифметические средние из уровней ряда, образующих каждый участок.

4. Заменяют фактические значения ряда, стоящие в центре каждого участка, на соответствующие средние значения.

При этом удобно брать длину интервала сглаживания g в виде нечетного числа: g=2p+1, т.к. в этом случае полученные значения скользящей средней приходятся на средний член интервала.

Наблюдения, которые берутся для расчета среднего значения, называются активным участком сглаживания.

При нечетном значении g все уровни активного участка могут быть представлены в виде: yt-p, yt-p+1, ... , yt-1, yt, yt+1, ... , yt+p-1, yt+p,

а скользящая средняя определена по формуле:

Процедура сглаживания приводит к полному устранению периодических колебаний во временном ряду, если длина интервала сглаживания берется равной или кратной циклу, периоду колебаний.

Для устранения сезонных колебаний желательно было бы использовать четырех- и двенадцатичленную скользящие средние, но при этом не будет выполняться условие нечетности длины интервала сглаживания. Поэтому при четном числе уровней принято первое и последнее наблюдение на активном участке брать с половинными весами:

Тогда для сглаживания сезонных колебаний при работе с временными рядами квартальной или месячной динамики можно использовать следующие скользящие средние:

При использовании скользящей средней с длиной активного участка g=2p+1 первые и последние p уровней ряда сгладить нельзя, их значения теряются. Очевидно, что потеря значений последних точек является существенным недостатком, т.к. для исследователя последние "свежие" данные обладают наибольшей информационной ценностью. Рассмотрим один из приемов, позволяющих восстановить потерянные значения временного ряда . Для этого необходимо:

1.Вычислить средний прирост на последнем активном участке yt-p, yt-p+1, ... , yt, ... , yt+p-1, yt+p

2.Получить P сглаженных значений в конце временного ряда путем последовательного прибавления среднего абсолютного прироста к последнему сглаженному значению.

Аналогичную процедуру можно реализовать для оценивания первых уровней временного ряда.

Метод простой скользящей средней применим, если графическое изображение динамического ряда напоминает прямую. Когда тренд выравниваемого ряда имеет изгибы, и для исследователя желательно сохранить мелкие волны, применение простой скользящей средней нецелесообразно.

Если для процесса характерно нелинейное развитие, то простая скользящая средняя может привести к существенным искажениям. В этих случаях более надежным является использование взвешенной скользящей средней.

При построении взвешенной скользящей средней на каждом участке сглаживания значение центрального уровня заменяется на расчетное, определяемое по формуле средней арифметической взвешенной, т.е. уровни ряда взвешивают.

Взвешенная скользящая средняя приписывает каждому уровню вес, зависящий от удаления данного уровня до уровня, стоящего в середине участка сглаживания.

При сглаживании по взвешенной скользящей средней используются полиномы второго (парабола) или третьего порядка.

Сглаживание с помощью взвешенной скользящей средней осуществляется следующим образом: для каждого участка сглаживания подбирается полином вида:

Y i = a j + a 1 t

Y i = a o + a 1 t + a 2 t 2 +… a p t p

Параметры полинома находятся по методу наименьших квадратов.

При этом начало отсчета переносится в середину участка сглаживания, например, если длина интервалов сглаживания = 5, то индексы уровней участка сглаживания будут равны: -2, -1, 0, 1, 2.

у t t t
у1 -2
у2 -1
у3
у4
у5
t=0

Тогда сглаживающим значением для уровня, стоящего в середине участка сглаживания, будет значение параметра а 0 .

Нет необходимости каждый раз заново вычислять весовые коэффициенты при уровнях ряда, входящих в участок сглаживания, поскольку они будут одинаковыми для каждого участка сглаживания, например, если в интервал сглаживания входит 5 последующих уровней ряда и выравнивание производится по параболе, то коэффициенты параболы находят по методу наименьших квадратов, учитывая, что t = 0.

Метод наименьших квадратов в этой ситуации дает следующую систему уравнений:

Для нахождения параметра а0 используют 1 и 3 уравнение

-

34-=5*34а0-10*10а0

34-=а0(170-100)

а0=

Если длина интервала сглаживания равна 7, весовые коэффициенты следующие:

Отметим важные свойства приведенных весов:

1) Они симметричны относительно центрального уровня.

2) Сумма весов с учетом общего множителя, вынесенного за скобки, равна единице.

3) Наличие как положительных, так и отрицательных весов, позволяет сглаженной кривой сохранять различные изгибы кривой тренда.

Существуют приемы, позволяющие с помощью дополнительных вычислений получить сглаженные значения для Р начальных и конечных уровней ряда при длине интервала сглаживания g=2p+1.

Весовые коэффициенты при сглаживании по полиномам второго и третьего порядка


Тема 5: Методы измерения и изучения устойчивости временного ряда.

o устойчивость уровней ряда;

o устойчивость тренда.

Согласно статистической теории, статистический показатель содержит в себе элементы необходимого и случайного. Необходимость проявляется в форме тенденции временных рядов, а случайность в форме колебаний уровней относительно тренда. Тенденцией характеризуется процесс эволюции.

Расчленение временных рядов на составляющие элементы – условный описательный прием. Тем не менее, решающим фактором, обусловливающим тенденцию является целенаправленная деятельность человека, а главной причиной колеблемости – изменение условий жизнедеятельности.

Отсюда следует, что устойчивость не означает обязательного повторения одинакового уровня из года в год. Слишком узким было понятие устойчивости ряда как полное отсутствие любых колебаний уровней.

Сокращение колебаний уровней ряда – одна из главных задач при повышении устойчивости.

Устойчивость временных рядов - это наличие необходимой тенденции изучаемого показателя с минимальным влиянием на него неблагоприятных условий.

Для измерения устойчивости уровней временных рядов используют следующие показатели:

1) размах колеблемости - определяется как разница средних уровней за благоприятные и неблагоприятные по отношению к изучаемому явлению периоды времени:

R=y благопр – унеблагопр

К благоприятным периодам времени относятся все периоды с уровнями выше тренда, а к неблагоприятным – ниже тренда.

3)среднее линейное отклонение:

1) среднее квадратическое отклонение:

S(t)=

Уменьшение колеблемости во времени будет равнозначно устойчивости уровней.

Для характеристики устойчивости рекомендуются также следующие показатели:

1) процентный размах (PR):

Wmax/min – max/min относительный прирост.

W=

2) Скользящая средняя (МА) оценивает величину среднего отклонения от уровня скользящих средних (хt):

3) Среднее процентное изменение (АРС) оценивает среднее значение абсолютных величин, относительных приростов и квадратов относительных приростов:

АРС=

Для оценки устойчивости уровней временных рядов применяются относительные показатели колеблемости:

K=100 – V(t) – коэффициент устойчивости (в процентах или долях единиц).

Для измерения устойчивости тенденции динамики (тренда) используют следующие показатели:

1) коэффициент корреляции рангов (коэффициент Спирмена):

d - разность рангов уровней изучаемого ряда и рангов номеров периодов или моментов времени.

Для определения этого коэффициента величины уровней нумеруют в порядке возрастания, а при наличии одинаковых уровней им присваивается определенный ранг равный частному от деления рангов, приходящихся на число этих равных значений.

Коэффициент Спирмена может принимать значения в пределах от 0 до ±1. Если каждый уровень исследуемого периода выше, чем предыдущего, то ранги уровней ряда и номера лет совпадают – Кр=+1. Это означает полную устойчивость самого факта роста уровней ряда, то есть непрерывность роста. Чем ближе Кр к +1, тем ближе рост уровней к непрерывному, то есть выше устойчивости роста. Если Кр=0, рост совершенно неустойчив.

При отрицательных значениях чем ближе Кр к -1, тем устойчивее уменьшение изучаемого показателя.

I=

Индекс корреляции показывает степень сопряженности колебаний исследуемых показателей с совокупностью факторов, изменяющих их во времени. Приближение индекса корреляции к 1 означает, большую устойчивость изменения уровней временных рядов.

Число уровней ряда у двух показателей должно быть одинаково.

Применяются также комплексные показатели устойчивости , сущность которых заключается в определении их не через уровни временных рядов, а через показатели их динамики.

1. Показатель Каякиной определяется как отношение среднего прироста линейного тренда, т.е. параметра а1 к среднему квадратическому отклонению уровней от тренда:

Чем больше величина этого показателя, тем менее вероятно, что уровень ряда в следующем периоде будет меньше предыдущего.

2. Показатель опережения, который получают, сопоставляя темпы роста уровней ряда с темпами значения колеблемости:

Если показатель опережения > 1, то это свидетельствует о том, что уровни ряда в среднем растут быстрее колебаний или снижаются медленнее колебаний. В таком случае коэффициент колеблемости уровней будет уменьшаться, а коэффициент устойчивости уровней увеличиваться. Если показатель опережения меньше 1, то колебания растут быстрее уровней тренда и коэффициент колеблемости растет, а коэффициент устойчивости уровней уменьшается, то есть показатель опережения определяет направление динамики коэффициента устойчивости уровней.

Министерство образования Российской Федерации

Всероссийский заочный финансово – экономический институт

Ярославский филиал

Кафедра статистики

Курсовая работа

по дисциплине:

«Статистика»

задание № 19

Студент: Курашова Анастасия Юрьевна

Специальность «Финансы и кредит»

3 курс, периферия

Руководитель: Сергеев В.П.

Ярославль, 2002 г.

1. Введение……………………………………………………………3 стр.

2. Теоретическая часть…………………………………………… …4 стр.

2.1 Основные понятия о рядах динамики…………………………...4 стр.

2.2 Методы сглаживания и выравнивания динамических рядов……………………………………………………………….6 стр.

2.2.1 Методы «механического сглаживания»………………………6 стр.

2.2.2 Методы «аналитического» выравнивания…………………. 8 стр.

3. Расчетная часть……………………………………………… ……11 стр.

4. Аналитическая часть……………………………………………. .16 стр.

5. Заключение ………………………………………………………. 25 стр.

6. Список литературы……………………………………………… 26 стр.

7. Приложения………………………………………………………. 27 стр.


Введение

Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Вся информация, имеющая народнохозяйственную значимость, в конечном счете, обрабатывается и анализируется с помощью статистики.

Именно статистические данные позволяют определить объемы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы.

Овладение статистической методологией - одно из условий познания конъюнктуры рынка, изучения тенденций и прогнозирования, принятия оптимальных решений на всех уровнях деятельности.

Сложной, трудоемкой и ответственной является заключительная, аналитическая стадия исследования. На этой стадии рассчитываются средние показатели и показатели распределения, анализируется структура совокупности, исследуется динамика и взаимосвязь между изучаемыми явлениями и процессами.

На всех стадиях исследования статистика использует различные методы. Методы статистики - это особые приемы и способы изучения массовых общественных явлений.

I. Теоретическая часть.

1.1 Основные понятия о рядах динамики.

Ряды динамики – статистические данные, отображающие развитие во времени изучаемого явления. Их также называют динамическими рядами, временными рядами.

В каждом ряду динамики имеется два основных элемента:

1) показатель времени t ;

2) соответствующие им уровни развития изучаемого явления y;

В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты), либо отдельные периоды (годы, кварталы, месяцы, сутки).

Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.

Ряды динамики различаются по следующим признакам:

1) По времени. В зависимости от характера изучаемого явления уровни рядов динамики могут относиться или к определенным датам (моментам) времени, или к отдельным периодам. В соответствии с этим ряды динамики подразделяются на моментные и интервальные.

Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени. Примером моментного ряда динамики является следующая информация о списочной численности работников магазина в 1991 году (таб. 1):

Таблица 1

Списочная численность работников магазина в 1991 году

Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности. Хотя и в моментном ряду есть интервалы – промежутки между соседними в ряду датами, -- величина того или иного конкретного уровня не зависит от продолжительности периода между двумя датами. Так, основная часть персонала магазина, составляющая списочную численность на 1.01.1991 , продолжающая работать в течение данного года, отображена в уровнях последующих периодов. Поэтому при суммировании уровней моментного ряда может возникнуть повторный счет.

Посредством моментных рядов динамики в торговле изучаются товарные запасы, состояние кадров, количество оборудования и других показателей, отображающих состояние изучаемых явлений на отдельные даты (моменты) времени.

Интервальные ряды динамики отражают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени.

Примером интервального ряда могут служить данные о розничном товарообороте магазина в 1987 – 1991 гг. (таб. 2):

Таблица 2

Объем розничного товарооборота магазина в 1987 - 1991 гг.

Объем розничного товарооборота, тыс. р.

885.7 932.6 980.1 1028.7 1088.4

Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней.

Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы (субпериоды) времени. Например, суммируя товарооборот за первые три месяца года, получают его объем за I квартал, а суммируя товарооборот за четыре квартала, получают его величину за год, и т. д. При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится.

Свойство суммирования уровней за последовательные интервалы времени позволяет получить ряды динамики более укрупненных периодов.

Посредством интервальных рядов динамики в торговле изучают изменения во времени поступления и реализации товаров, суммы издержек обращения и других показателей, отображающих итоги функционирования изучаемого явления за отдельные периоды.

Структура ряда динамики:

Всякий ряд динамики теоретически может быть представлен в виде составляющих:

1) тренд – основная тенденция развития динамического ряда (к увеличению или снижению его уровней) ;

2) циклические (периодические колебания, в том числе сезонные);

случайные колебания.

1. 2. Методы сглаживания и выравнивания динамических рядов.

Исключение случайных колебаний значений уровней ряда осуществляется с помощью нахождения «усредненных» значений. Способы устранения случайных факторов делятся на две больше группы:

1. Способы «механического» сглаживания колебаний путем усреднения значений ряда относительно других, расположенных рядом, уровней ряда.

2. Способы «аналитического» выравнивания, т. е. определения сначала функционального выражения тенденции ряда, а затем новых, расчетных значений ряда.

1.2. 1 Методы «механического» сглаживания.

Сюда относятся:

а. Метод усреднения по двум половинам ряда, когда ряд делится на две части. Затем, рассчитываются два значения средних уровней ряда, по которым графически определяется тенденция ряда. Очевидно, что такой тренд не достаточно полно отражает основную закономерность развития явления.

б. Метод укрупнения интервалов, при котором производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.

в. Метод скользящей средней. Данный метод применяется для характеристики тенденции развития исследуемой статистической совокупности и основан на расчете средних уровней ряда за определенный период. Последовательность определения скользящей средней:

Устанавливается интервал сглаживания или число входящих в него уровней. Если при расчете средней учитываются три уровня, скользящая средняя называется трехчленной, пять уровней – пятичленной и т.д. Если сглаживаются мелкие, беспорядочные колебания уровней в ряду динамики, то интервал (число скользящей средней) увеличивают. Если волны следует сохранить, число членов уменьшают.

Исчисляют первый средний уровень по арифметической простой:

y1 = Sy1/m, где

y1 – I-ый уровень ряда;

m – членность скользящей средней.

Первый уровень отбрасывают, а в исчисление средней включают уровень, следующий за последним уровнем, участвующем в первом расчете. Процесс продолжается до тех пор, пока в расчет y будет включен последний уровень исследуемого ряда динамики y n .

По ряду динамики, построенному из средних уровней, выявляют общую тенденцию развития явления.

Отрицательной стороной использования метода скользящей средней является образование сдвигов в колебаниях уровней ряда, обусловленных «скольжением» интервалов укрупнения. Сглаживание с помощью скользящей средней может привести к появлению «обратных» колебаний, когда выпуклая «волна» заменяется на вогнутую.

В последнее время стала рассчитываться адаптивная скользящая средняя. Ее отличие состоит в том, что среднее значение признака, рассчитываемое также как описано выше, относится не к середине ряда, а к последнему промежутку времени в интервале укрупнения. Причем предполагается, что адаптивная средняя зависит от предыдущего уровня в меньшей степени, чем от текущего. То есть., чем больше промежутков времени между уровнем ряда и средним значением, тем меньшее влияние оказывает значение этого уровня ряда на величину средней.

г. Метод экспоненциальной средней. Экспоненциальная средняя – это адаптивная скользящая средняя, рассчитанная с применением весов, зависящих от степени «удаленности» отдельных уровней ряда от среднего значения. Величина веса убывает по мере удаления уровня по хронологической прямой от среднего значения в соответствии с экспоненциальной функцией, поэтому такая средняя называется экспоненциальной. На практике применяется многократное экспоненциальное сглаживания ряда динамики, которое используется для прогнозирования развития явления.

Вывод: способы, включенные в первую группу, ввиду применяемых методик расчета предоставляют исследователю очень упрощенное, неточное, представление о тенденции в ряду динамики. Однако корректное применение этих способов требует от исследователя глубины знаний о динамике различных социально - экономических явлений.