Бунин

Движение воды в океане. Самая высокая волна цунами за всю историю

Волна (Wave, surge, sea) - образуется благодаря сцеплению частиц жидкости и воздуха; скользя по гладкой поверхности воды, поначалу воздух создаёт рябь, а уже затем, действует на ее наклонные поверхности, развивает постепенно волнение водной массы. Опыт показал, что водяные частицы не имеют поступательного движения; перемещается только вертикально. Морскими волнами называют движение воды на морской поверхности, возникающее через определённые промежутки времени.

Высшая точка волны называется гребнем или вершиной волны, а низшая точка - подошвой . Высотой волны называется расстояние от гребня до её подошвы, а длина это расстояние между двумя гребнями или подошвами. Время между двумя гребнями или подошвами называется периодом волны.

Основные причины возникновения

В среднем высота волны во время шторма в океане достигает 7-8 метров, обычно может растянуться в длину - до 150 метров и до 250метров во время шторма.

В большинстве случаев морские волны образуются ветром.Сила и размеры таких волн зависят от силы ветра, а так-же его продолжительности и «разгона» - длины пути, на котором ветер действует на водную поверхность. Иногда волны, которые обрушиваются на побережье, могут зарождаются за тысячи километров от берега. Но есть ещё много других факторов возникновения морских волн: это приливообразующие силы Луны, Солнца, колебания атмосферного давления, извержения подводных вулканов, подводных землетрясений, движением морских судов.

Волны, наблюдаемые и в других водных пространствах, могут быть двух родов:

1) Ветровые , созданные ветром, принимающие по прекращении действия ветра установившийся характер и называемые установившимися волнами, или зыбью; Ветровые волны создаются вследствие воздействия ветра (передвижение воздушных масс) на поверхность воды, то есть нагнетания. Причина колебательных движений волн становится легко понятна, если заметить воздействие того же ветра на поверхность пшеничного поля. Хорошо заметна непостоянность ветровых потоков, которые и создают волны.

2) Волны перемещения , или стоячие волны, образуются в результате сильных толчков на дне при землетрясениях или возбужденные, например, резким изменением давления атмосферы. Данные волны носят также название одиночных волн.

В отличие от приливов, отливов и течений волны в не перемещают массы воды. Волны идут, но вода остается на месте. Лодка, которая качается на волнах, не уплывает вместе с волной. Она сможет немного переместиться по наклонной, только благодаря силе земной гравитации. Частицы воды в волне движутся по кольцам. Чем дальше эти кольца от поверхности, тем меньше они становятся и, наконец, исчезают совсем. Находясь в субмарине на глубине 70-80 метров, вы не ощутите действие морских волн даже при самом сильном шторме на поверхности.

Виды морских волн

Волны могут проходить огромные расстояния, не изменяя формы и практически не теряя энергии, долго после того, как вызвавший их ветер утихнет. Разбиваясь о берег, морские волны высвобождают огрмную энергию, накопленную за время странствия. Сила непрерывно разбивающихся волн по-разному изменяет форму берега. Разливающиеся и накатывающиеся волны намывают берег и поэтому называются конструктивными . Волны, обрушивающиеся на берег, постепенно разрушают его и смывают защищающие его пляжи. Поэтому они называются деструктивными .

Низкие, широкие, закругленные волны вдали от берега называются зыбью. Волны заставляют частички воды описывать кружки, кольца. Размер колец уменьшается с глубиной. По мере приближения волны к покатому берегу частицы воды в ней описывают все более сплющенные овалы. Приближаясь к берегу, морские волны больше не могут замкнуть свои овалы, и волна разбивается. На мелководье частицы воды больше не могут замкнуть свои овалы, и волна разбивается. Мысы образованы из более твердой породы и разрушаются медленнее, чем соседние участки берега. Крутые, высокие морские волны подтачивают скалистые утесы у основания, образуя ниши. Утесы порой обрушиваются. Сглаженная волнами терраса - это все, что остается от разрушенных морем скал. Иногда вода поднимается по вертикальным трещинам в скале до вершины и вырывается на поверхность, образуя воронку. Разрушительная сила волн расширяет трещины в скале, образуя пещеры. Когда волны подтачивают скалу с двух сторон, пока не соединятся в проломе, образуются арки. Когда верх арки падает в море, остаются каменные столбы. Их основания подтачиваются, и столбы обрушиваются, образуя валуны. Галька и песок на пляже - это результат эрозии.

Деструктивные волны постепенно размывают берег и уносят песок и гальку с морских пляжей. Обрушивая всю тяжесть своей воды и смытого материала на склоны и обрывы, волны разрушают их поверхность. Они вжимают воду и воздух в каждую трещину, каждую расщелину, часто с энергией взрыва, постепенно разделяя и ослабляя скалы. Отколовшиеся обломки скал используются для дальнейшего разрушения. Даже самые твердые скалы постепенно уничтожаются, и суша на берегу изменяется под действием волн. Волны могут разрушать морской берег с поразительной быстротой. В графстве Линкольншир, в Англии, эрозия (разрушение) надвигается со скоростью 2 м в год. С 1870 г., когда был построен самый большой в США маяк на мысе Гаттерас, море смыло пляжи на 426 м в глубину побережья.

Цунами

Цунами - это волны огромной разрушительной силы. Они вызываются подводными землетрясениями или извержениями вулканов и могут пересекать океаны быстрее, чем реактивный самолет: 1000 км/ч. В глубоких водах они могут быть ниже одного метра, но, приближаясь к берегу, замедляют свой бег и вырастают до 30-50 метров, прежде чем обрушиться, затопляя берег и сметая все на своем пути. 90% всех зарегистрированных цунами отмечено в Тихом океане.

Наиболее распространённые причины.

Около 80% случаев зарождения цунами являются подводные землетрясения . При землетрясении под водой происходит взаимное смещение дна по вертикали: часть дна опускается, а часть приподнимается. На поверхности воды происходят колебательные движения по вертикали, стремясь вернуться к исходному уровню, - среднему уровню моря, - и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции. Также, необходимо чтобы подводный толчок вошёл в резонанс с волновыми колебаниями.

Оползни . Цунами такого типа возникают чаще, чем это оценивали в ХХ веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 524 м. Подобного рода случаи достаточно редки и, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.

Вулканические извержения составляют примерно 5% всех случаев цунами. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру, в результате чего возникает длинная волна. Классический пример - цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности более 5000 кораблей, погибло около 36 000 человек.

Признаки появления цунами.

  • Внезапный быстрый отход воды от берега на значительное расстояние и осушка дна. Чем дальше отступило море, тем выше могут быть волны цунами. Люди, которые находятся на берегу и не знающие об опасности , могут остаться из любопытства или для сбора рыбы и ракушек. В данном случае необходимо как можно скорее покинуть берег и удалиться от него на максимальное расстояние - таким правилом следует руководствоваться, находясь, например, в Японии, на Индоокеанском побережье Индонезии, Камчатке. В случае телецунами волна обычно подходит без отступления воды.
  • Землетрясение . Эпицентр землетрясения находится, как правило, в океане. На берегу землетрясение обычно гораздо слабее, а часто его нет вообще. В цунамоопасных регионах есть правило, что если ощущается землетрясение, то лучше уйти дальше от берега и при этом забраться на холм, таким образом заранее подготовиться к приходу волны.
  • Необычный дрейф льда и других плавающих предметов, образование трещин в припае.
  • Громадные взбросы у кромок неподвижного льда и рифов, образование толчеи, течений.

Волны-убийцы

Волны-убийцы (Блужда́ющие во́лны, волны-монстры, freak wave - аномальная волна) - гигантские волны, возникающие в океане, высотой более 30 метров, обладают несвойственным для морских волн поведением.

Еще каких-то 10-15 лет назад ученые считали истории моряков об исполинских волнах-убийцах, которые возникают из ниоткуда и топят корабли, всего лишь морским фольклором. Долгое время блуждающие волны считались выдумкой, так как они не укладывались ни в одну существовавшую на то время математические модели расчётов возникновения и их поведения, потому как волны высотой более 21 метра в океанах планеты Земля не могут существовать.

Одно из первых описаний волны-монстра относится к 1826 году. Её высота была более 25 метров и заметили её в Атлантическом океане недалеко от Бискайского залива. Этому сообщению никто не поверил. А в 1840 году мореплаватель Дюмон д"Юрвиль рискнул явиться на заседание Французского географического общества и заявить, что своими глазами видел 35-метровую волну. Присутствующие подняли его на смех. Но историй о громадных волнах-призраках, которые появлялись внезапно посреди океана даже при небольшом шторме, и своей крутизной походили на отвесные стены воды, становилось все больше.

Исторические свидетельства "волн-убийц"

Так, в 1933 году корабль ВМС США "Рамапо" попал в шторм в Тихом океане. Семь суток корабль бросало по волнам. А утром 7 февраля сзади внезапно подкрался невероятной высоты вал. Вначале судно швырнуло в глубокую пропасть, а потом подняло почти вертикально на гору пенящейся воды. Экипаж, которому посчастливилось выжить, зафиксировал высоту волны - 34 метра. Двигалась она со скоростью 23 м/сек, или 85 км/ч. Пока что это считается самой высокой когда-либо измеренной волной-убийцей.

Во время Второй мировой войны, в 1942 году, лайнер "Королева Мария" вез 16 тыс. американских военных из Нью-Йорка в Великобританию (между прочим, рекорд по количеству человек, перевозимых на одном судне). Неожиданно возникла 28-метровая волна. "Верхняя палуба была на обычной высоте, и вдруг - раз! - она резко ушла вниз", - вспоминал доктор Норвал Картер, находившийся на борту злополучного корабля. Корабль накренился под углом 53 градуса - если бы угол составил хотя бы на три градуса больше, гибель была бы неизбежной. История "Королевы Марии" легла в основу голливудского фильма "Посейдон".

Однако 1 января 1995 года на нефтяной платформе «Дропнер» в Северном море у побережья Норвегии была впервые приборно зафиксирована волна высотой в 25,6 метров, названная волной Дропнера. Проект "Максимальная волна" позволил по-новому посмотреть на причины гибели сухогрузов судов, которые перевозили контейнеры и другие немаловажные грузы. Дальнейшие исследования зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 20 метров. Новый проект получил название Wave Atlas (Атлас волн), в котором предусматривается составление всемирной карты наблюдавшихся волн-монстров и её последующую обработку и дополнение.

Причины возникновения

Существует несколько гипотез о причинах возникновения экстремальных волн. Многие из них лишены здравого смысла. Наиболее простые объяснения построены на анализе простой суперпозиции волн разной длины. Оценки, однако, показывают, что вероятность экстремальных волн в такой схеме оказывается слишком мала. Другая заслуживающая внимания гипотеза предполагает возможность фокусировки волновой энергии в некоторых структурах поверхностных течений. Эти структуры, однако, слишком специфичны для того, чтобы механизм фокусировки энергии мог объяснить систематическое возникновение экстремальных волн. Наиболее достоверное объяснение возникновения экстремальных волн должно основываться на внутренних механизмах нелинейных поверхностных волн без привлечения внешних факторов.

Интересно, что такие волны могут быть как гребнями, так и впадинами, что подтверждается очевидцами. Дальнейшее исследование привлекает эффекты нелинейности в ветровых волнах, способные приводить к образованию небольших групп волн (пакетов) или отдельных волн (солитонов), способных проходить большие расстояния без значительного изменения своей структуры. Подобные пакеты также неоднократно наблюдались на практике. Характерными особенностями таких групп волн, подтверждающими данную теорию, является то, что они движутся независимо от прочего волнения и имеют небольшую ширину (менее 1 км), причем высоты резко спадают по краям.

Впрочем, полностью прояснить природу аномальных волн пока не удалось.

Волнение — это колебательное движение воды. Оно воспринимается наблюдателем как движение волн по поверхности воды. На самом же деле водная поверхность совершает колебания вверх-вниз от среднего уровня положения равновесия. Форма волн при волнении постоянно изменяется в связи с движением частиц по замкнутым, почти круговым орбитам.

Каждая волна представляет собой плавное соединение возвышений и углублений. Основными частями волны являются: гребень — самая высокая часть; подошва - самая низкая часть; склон - профиль между гребнем и подошвой волны. Линия вдоль гребня волны называется фронтом волны (рис. 1).

Рис. 1. Основные части волны

Основные характеристики волн — это высота - разность уровней гребня и подошвы волны; длина - кратчайшее расстояние межу смежными гребнями или подошвами волн; крутизна - угол между склоном волны и горизонтальной плоскостью (рис. 1).

Рис. 1. Основные характеристики волны

Волны обладают очень большой кинетической энергией. Чем выше волна, тем больше в ней заключено кинетической энергии (пропорционально квадрату увеличения высоты).

Под влиянием силы Кориолиса справа по течению вдали от материка возникает водяной вал, а у суши создается депрессия.

По происхождению волны подразделяются следующим образом:

Волны трения

Волны трения, в свою очередь, могут быть ветровыми (рис. 2) или глубинными. Ветровые волны возникают вследствие ветровые волнытрения на границе воздуха и воды. Высота ветровых волн не превышает 4 м, но при сильных и затяжных штормах она возрастает до 10-15 м и выше. Наиболее высокие волны — до 25 м — наблюдаются в полосе западных ветров Южного полушария.

Рис. 2. Ветровые волны и волны прибоя

Пирамидальные, высокие и крутые ветровые волны получили название толчея. Эти волны присущи центральным областям циклонов. Когда ветер стихает, волнение приобретает характер зыби , т. е. волнения по инерции.

Первичная форма ветровых волн - рябь. Она возникает при скорости ветра менее 1 м/с, а при скорости, большей 1 м/с, образуются сначала мелкие, а потом более крупные волны.

Волна близ берегов, в основном на мелководьях, основывающаяся на поступательных движениях, получила название прибоя (см. рис. 2).

Глубинные волны возникают на границе двух слоев воды с разными свойствами. Они часто возникают в проливах, с двумя этажами течения, близ устьев рек, у кромки тающих льдов. Эти волны перемешивают морскую воду и являются очень опасными для моряков.

Барическая волна

Барические волны возникают из-за быстрой смены атмосферного давления в местах происхождения циклонов, особенно тропических. Обычно эти волны одиночные и не приносят особого вреда. Исключение составляют случаи, когда они совпадают с высоким приливом. Таким бедствиям наиболее часто подвергаются Антильские острова, полуостров Флорида, побережья Китая, Индии, Японии.

Цунами

Сейсмические волны возникают под воздействием подводных толчков и прибрежных землетрясений. Это очень длинные и невысокие в открытом океане волны, но сила их распространения достаточно велика. Они движутся с очень большой скоростью. У побережий их длина сокращается, а высота резко возрастает (в среднем от 10 до 50 м). Их появление влечет за собой человеческие жертвы. Сначала морс отступает на несколько километров от берега, набирая силу для толчка, а потом волны с огромной скоростью выплескиваются на берег с интервалом 15-20 мин (рис. 3).

Рис. 3. Трансформация цунами

Японцы назвали сейсмические волны цунами , и этот термин используется во всем мире.

Сейсмический пояс Тихого океана является основным районом образования цунами.

Сейши

Сейши — это стоячие волны, которые возникают в заливах и внутренних морях. Они происходят по инерции после прекращения действия внешних сил — ветра, сейсмических толчков, резких изменений , выпадения интенсивных осадков и т. д. При этом в одном месте вода поднимается, а в другом — опускается.

Приливная волна

Приливные волны — это движения , совершаемые под влиянием приливообразующих сил Луны и Солнца. Обратная реакция морской воды на прилив - отлив. Полоса, осушаемая во время отлива, называется осушкой.

Существует тесная связь высоты приливов и отливов с фазами Луны. В новолуния и полнолуния наблюдаются самые высокие приливы и самые низкие отливы. Они называются сизигийными. В это время лунные и солнечные приливы, наступая одновременно, накладываются друг на друга. В промежутках между ними, в первую и последнюю четверги фазы Луны, наблюдаются самые низкие, квадратурные приливы.

Как уже было сказано во втором разделе, в открытом океане высота прилива невелика — 1,0-2,0 м, а у расчлененных берегов она резко возрастает. Максимальной величины прилив достигает на атлантическом побережье Северной Америки, в заливе Фанди (до 18 м). В России максимальная величина прилива — 12,9 м — отмечена в заливе Шелихова (Охотское море). Во внутренних морях приливы мало заметны, например, в Балтийском морс у Санкт-Петербурга прилив составляет 4,8 см, а вот по некоторым рекам прилив прослеживается на сотни и даже тысячи километров от устья, например, в Амазонке — до 1400 см.

Крутую приливную волну, поднимающуюся вверх по реке, называют бором. На Амазонке бор достигает высоты 5 м и ощущается на расстоянии 1400 км от устья реки.

Даже при спокойной поверхности в толще океанских вод происходит волнение. Это так называемые внутренние волны — медленные, но весьма значительные по размаху, достигающему порой сотен метров. Они возникают в результате внешнего воздействия на неоднородную по вертикали массу воды. К тому же так как температура, соленость и плотность океанской воды изменяются с глубиной не постепенно, а скачкообразно от одного слоя к другому, на границе между этими слоями и возникают специфические внутренние волны.

Морские течения

Морские течения — это горизонтальные поступательные движения водных масс в океанах и морях, характеризующиеся определенным направлением и скоростью. Они достигают нескольких тысяч километров в длину, десятков-сотен километров в ширину, сотен метров в глубину. По физико-химическим свойствам воды морских течений отличны от окружающих.

По продолжительности существования (устойчивости) морские течения подразделяют следующим образом:

  • постоянные , которые проходят в одних и тех же районах океана, имеют одно генеральное направление, более или менее постоянную скорость и устойчивые физико-химические свойства переносимых водных масс (Северное и Южное пассатные, Гольфстрим и др.);
  • периодические , у которых направление, скорость, температура подчинены периодическим закономерностям. Происходят они через равные промежутки времени в определенной последовательности (летнее и зимнее муссонные течения в северной части Индийского океана, приливно-отливные течения);
  • временные , вызываемые чаще всего ветрами.

По температурному признаку морские течения бывают:

  • теплые , которые имеют температуру выше, чем окружающая вода (например. Мурманское течение с температурой 2-3 °С среди вод О °С); они имеют направление от экватора к полюсам;
  • холодные , температура которых ниже окружающей воды (например, Канарское течение с температурой 15-16 °С среди вод с температурой около 20 °С); эти течения направлены от полюсов к экватору;
  • нейтральные , которые имеют температуру, близкую к окружающей среде (например, экваториальные течения).

По глубине расположения в толще воды различают течения:

  • поверхностные (до 200 м глубины);
  • подповерхностные , имеющие направление, противоположное поверхностному;
  • глубинные , движение которых совершается очень медленно — порядка нескольких сантиметров или первых десятков сантиметров в секунду;
  • придонные , регулирующие обмен вод между полярными — субполярными и экваториально-тропическими широтами.

По происхождению выделяют следующие течения:

  • фрикционные , которые могут быть дрейфовыми или ветровыми. Дрейфовые возникают под влиянием постоянных ветров, а ветровые создаются сезонными ветрами;
  • градиентно-гравитационные , среди которых выделяют стоковые , образующиеся в результате наклона поверхности, вызванного избытком вод вследствие их притока из океана и обильных осадков, и компенсационные , которые возникают благодаря оттоку вод, скудным осадкам;
  • инертные , которые наблюдаются после прекращения действия возбуждающих их факторов (например, приливные течения).

Система течений океана обусловлена общей циркуляцией атмосферы.

Если представить гипотетический океан, непрерывно простирающийся от Северного полюса к Южному, и наложить на него генерализированную схему атмосферных ветров, то с учетом отклоняющей силы Кориолиса получим шесть замкнутых колец -
круговоротов морских течений: Северное и Южное экваториальные, Северное и Южное субтропические, Субарктическое и Субантарктическое (рис. 4).

Рис. 4. Круговороты морских течений

Отступления от идеальной схемы вызваны наличием материков и особенностями их распределения по земной поверхности Земли. Однако, как и на идеальной схеме, в действительности на поверхности океана наблюдается зональная смена крупных — протяженностью в несколько тысяч километров — не полностью замкнутых циркуляционных систем: это экваториальная антициклоническая; тропические циклонические, северная и южная; субтропические антициклонические, северная и южная; антарктическая циркумполярная; высокоширотные циклонические; арктическая антициклоническая системы.

В Северном полушарии они движутся по часовой стрелке, в Южном — против. С запада на восток направлены экваториальные межпассатные противотечения.

В умеренных субполярных широтах Северного полушария существуют малые кольца течений вокруг барических минимумов. Движение вод в них направлено против часовой стрелки, а в Южном полушарии — с запада на восток вокруг Антарктиды.

Течения в зональных циркуляционных системах достаточно хорошо прослеживаются до глубины 200 м. С глубиной они меняют направление, слабеют и превращаются в слабые вихри. Взамен на глубине усиливаются меридиональные течения.

Самые мощные и глубокие из поверхностных течений играют важнейшую роль в глобальной циркуляции Мирового океана. Наиболее устойчивые поверхностные течения — это Северное и Южное пассатные течения Тихого и Атлантического океанов и Южное пассатное течение Индийского океана. Они имеют направление с востока на запад. Для тропических широт характерны теплые сточные течения, например Гольфстрим, Куросио, Бразильское и др.

Под действием постоянных западных ветров в умеренных широтах существуют теплые Северо-Атлантическое и Северо-

Тихоокеанское течения в Северном полушарии и холодное (нейтральное) течение Западных ветров — в Южном. Последнее образует кольцо в трех океанах вокруг Антарктиды. Замыкают большие круговороты в Северном полушарии холодные компенсационные течения: вдоль западных берегов в тропических широтах — Калифорнийское, Канарское, а в Южном — Перуанское, Бенгальское, Западно-Австралийское.

Наиболее известными течениями также являются теплое Норвежское течение в Арктике, холодное Лабрадорское в Атлантике, теплое Аляскинское и холодное Курило-Камчатское — в Тихом океане.

Муссонная циркуляция в северной части Индийского океана порождает сезонные ветровые течения: зимнее — с востока на запад и летнее — с запада на восток.

В Северном Ледовитом океане направление движения вод и льдов происходит с востока на запад (Трансатлантическое течение). Причины его — обильный речной сток рек Сибири, вращательное циклоническое движение (против часовой стрелки) над Баренцевым и Карским морями.

Помимо циркуляционных макросистем существуют вихри открытого океана. Их размер — 100-150 км, а скорость перемещения водных масс вокруг центра — 10-20 см/с. Эти мезосистемы называются синоптическими вихрями. Считается, что именно в них заключено не менее 90 % кинетической энергии океана. Вихри наблюдаются не только в открытом океане, но и в морских течениях типа Гольфстрим. Здесь они вращаются с еще большей скоростью, чем в открытом океане, их кольцевая система лучше выражена, поэтому их называют рингами.

Для климата и природы Земли, особенно прибрежных районов, значение морских течений велико. Теплые и холодные течения поддерживают разницу температур западных и восточных побережий материков, нарушая ее зональное распределение. Так, незамерзающий Мурманский порт находится за Полярным кругом, а на восточном побережье Северной Америки замерзает залив св. Лаврентия (48° с.ш.). Теплые течения способствуют выпадению осадков, холодные, напротив, уменьшают возможность их выпадения. Поэтому территории, омываемые теплыми течениями, имеют влажный климат, а холодными — сухой. При помощи морских течений осуществляются миграция растений и животных, перенос питательных веществ и газовый обмен. Течения учитывают и при мореплавании.

"Не повезло Ване, – подумал Денис. – Но это не надолго, на полгода в правах ограничат и все".

Его отцу тоже как-то поражение в правах влепили – а не надо было скрывать, что он в старые времена состоял в каком-то неправильном сборище. Партии… так они назывались тогда. Если с государством вести себя честно, оно тоже будет с тобой честным.

– Да, с крепостью, но не только, – сказала Аглая. Ваня потух.

– Представьте, что наше государство – это дерево. Огромное, до небес. Оно дает жизнь всему живому, птицам и животным, раскинуло ветви от океана до океана. А все мы – часть этого дерева. Получается, что только от нас зависит его мощь и сила. Если мы будем сильны и крепки, то и дерево, наш общий дом, тоже. А если мы будем думать только о себе, то дерево рухнет. Однажды оно чуть не рухнуло. Когда это было?

Ваню опередил Федя Веселовский-Фань; он подскочил, даже не поднимая руки.

– Пятнадцать лет назад, – выпалил он. – В две тысячи восемнадцатом году, когда государство российское переживало смуту, в просинце восемнадцатого года, то есть в январе по старому стилю, выборный глава страны Гатин внезапно умер, и оказалось, что только он мог управлять страной.

Спиридон Эф закатил глаза, но Аглая Петровна улыбнулась.

– А больше никого не нашлось?

– Ну… – Федя замялся. – Они как бы не подходили. До конца…

– Садись. По сути верно, – сказала Аглая, – однако точность высказываний хромает, Спиридон Петрович.

– Мы проработаем лепословие совместно с учителем словесности, – быстро ответил историк.

Аглая кивнула.

– Глава замкнул на себя все рычаги управления государством, и когда он умер, оказалось, что страна не может существовать без ручного управления. А остальные высшие лица государства не обладали соответствующей легитимностью. Вы знаете, что такое легитимность?

– Право на управление страной, которое дает народ? – снова рискнул Ваня. – Это устаревшее слово, нам Спиридон Федорович рассказывал…

– Главным источником власти у нас в стране является народ, – кивнула Аглая Петровна. Ваня расцвел. – Народ доверяет управление государством лучшим людям, которых выбирает. Но после кончины главы Никитина таких людей не оказалось. Глава очень многое сделал, чтобы сохранить страну и укрепить ее положение в мире. Какие области при главе Никитине вошли в состав нашей страны?

– Иван-город и Белорусский край, – отрапортовал Денис.

– Прежде чем отвечать, следует поднять руку, – заметила Аглая, – вы немного распустили класс, Спиридон Федорович.

– Ну вы же знаете нашу специфику… то есть особенность. У нас идет обучение в образе открытого разговора, согласно наказным письмам ПОРБ… В духе нашего народовластия…

– Народовластие не значит вседозволенность, – значок на груди Аглаи как-то особенно ярко сверкнул. – Народовластие – прежде всего порядок и соблюдение законов и правил общества.

– Полностью с вами согласен, – пробормотал Спиридон Эф.

– Так вот, в восемнадцатом году страна переживала смуту. Как я сказала, выборный глава Никитин сделал очень многое, однако он не мог держать под своей рукой всю страну. Главная беда тогдашней власти – воровство от низов до самого верха, в котором порой были замешаны даже главы тогдашних госкорпораций… Кстати, как они называются сейчас?

Улита Козак, тихая, как мышка, потянула руку.

Аглая удовлетворенно кивнула.

– Именно, Дальнопутный двор, Колоземный двор и так далее… Так вот, главы дворов, дьяки-министры, выборные-депутаты, воеводы-губернаторы – все они были богачами, миллионерами или даже миллиардерами. Представьте – у некоторых из них зарплаты достигали шести миллионов рублей в день!

– А сколько это в алтынах? – шепнула Катя Локотькова.

– Раздели на тысячу, – одними губами ответил Денис.

Катя только языком цокнула.

– От же жили!

– А чего тебе, в горностаях и соболях охота расхаживать? – покосился Денис.

Девушка закатила глаза.

– Что дурного в соболях, Ярцев?

Дорогие друзья, что вас так увлекло? – поинтересовалась Аглая Петровна. – Надеюсь, наша тема?

Денис с Катей синхронно закивали.

– Тогда продолжи… – Аглая помедлила, взглянула на светоплат. – Денис Ярцев. Итак, Денис, что же было дальше?

Денис встал.

– Смута началась после того, как Никитин преставился. Страны Заката стали поддерживать мятежников, которые хотели отделиться от нашей страны.

– А что происходило в столице?

Денис пожал плечами.

– Беззаконье, если честно. Временные главы менялись один за другим, дьяки и чиновники рванули за бугор, те, кого не посадили. А в холодную бросали тогда очень многих, по надуманным обвинениям, без суда. Власть и деньги делили, а воеводы тем временем страну по кускам растаскивали! Воровские ватаги грабили людей прямо на улицах, врывались в дома и хоромы, а сыскари от них не отставали.

– И что же в итоге?

– Видя, что страна катится в пропасть, в свои руки власть взял Михаил Саблин, тогдашний воевода в Югороссии. Он двинулся на Москву и его поддержали все настоящие отчизнолюбы, все, кому была дорога Россия. Войска повсеместно переходили под его руку, особенно отличились кавказские добровольческие дружины.

Миновав смутное время распада РФ, Денис почувствовал себя уверенней. Все же он плохо знал этот период: назвать поименно всех девятерых временных глав еще мог, но вот запомнить, кто за кем, было уже выше его сил. А вот период становления НоРС Денис любил, очень здорово у Саблина все получилось. Он почти торжественно продолжил:

– Войска Саблина, усиленные добровольческими кавказскими дружинами, уже через неделю вошли в Москву. Последний временный глава сбежал вместе с половиной правительства и пропал где-то в странах Заката.

– И что же случилось, когда Саблин вошел в Москву?

Маша Шевелева подняла руку.

– Был организован Сход народного спасения. СНС созвал Всероссийский земский собор, а тот принял Всезаконное уложение и объявил о создании Нового Российского Союза вместо Российской Федерации. Вместо правительства был учрежден постоянный Сход с выборными головами, который возглавил Саблин.

– Страна переживала тяжелые времена, – продолжила Аглая Петровна. – На что же опереться, когда все разрушено – доверие между людьми, вера в государство, закон и порядок? Перед Михаилом Саблиным и другими членами Схода стоял один вопрос – как вернуть мир и процветание нашей Родине? Где же та точка, опираясь на которую они смогли перевернуть все положение вещей, тот камень, с которого начало возводиться здание нашей новой государственности? Как вы думаете, ребята?

Аслан поднял руку.

Аглая посмотрела на светоплат.

– Как ты думаешь, Аслан?

– Это культура, – сказал тот. – Единственная опора для нашего народа.

– Великая русская культура, на почве которой только и может вырасти новое древо нашего государства, – вернулась к своему образу Аглая Петровна. – Наша словесность, живопись, музыка… Но чтобы взошли новые побеги, требуется очистить почву, дать ей новые силы. В нашем языке, литературе, культуре за многие столетия накопилось много мусорных слов, много грязи и нечистот. Темные слова, чужеземные понятия, которые затемняли народный ум. Тот, кто пьет из грязного источника, не будет чист, как сказал один из отцов-просветителей, писатель и протоиерей Недугин. Что такое язык, дети?

– Речь? Общение? – предположил Ваня.

– Мы на языке думаем, – блеснула Маша Шевелева. Аглая довольно кивнула:

– Именно. Как ты говоришь, так ты и думаешь. А как может жить страна, где люди думают чужими понятиями, заемными мыслями? Плохо она живет, не своей жизнью. Так началось Великое просветление русской культуры. И в первую очередь русского языка, который предстояло очистить от мусора и пены иноземных словечек…

Денис не хотел поднимать руку. Не надо, вон и Спиридон Эф у доски жмется, но вопрос сам слетел с языка.

– А разве слово культура – не иностранное? И музыка, и скульптура. Или вот протоиерей…

– Чужеземное, – согласилась Аглая, делая пометку в светоплате. – Однако следует различать слова вредные и полезные. Слово "культура" имеет давнюю историю в нашем языке. Также как "класс", "школа", "машина" и так далее. Со временем мы найдем им замену. Наши ученые-языкознатцы, как вы знаете, ведут постоянную работу по улучшению всего состава русского языка. Только в прошлом году было выпущено три многотомных словаря русского языка, а также новые издания всего Пушкина, Гоголя и Лермонтова. А Словесный надзор неустанно следит, чтобы в печати, в сетевых изданиях и в дальновидных передачах употреблялись только наши, коренные и исконные слова. Наш язык настолько велик, что ему нет нужды заимствовать чужие наречия, мы можем описать все явления и предметы на своем, родном.

– А зачем придумывать свои названия для всего? – Дениса понесло. – Ну вот хотя бы светоплат или дальновидение… Чем слова планшет или телевизор не подходят? Это же просто приборы, какие в них чужие смыслы могут быть?

Вопрос 1. Случалось ли вам наблюдать волны на поверхности моря (озера, реки)? Как они возникают?

Да. В основном волны возникают на большом пространстве открытой воды под действием ветра.

Вопрос 2. Почему возникают приливы?

Притяжение Луны действует на воду словно гигантский магнит, и вся поверхность морей и океанов приподнимается вверх.

Вопрос 3. Пользуясь картой океанов в атласе, определите, где на Земле регистрируются самые высокие приливы. Что общего у всех перечисленных вами мест?

Самые высокие приливы на Земле известны в заливе Фанди в Северной Америке - 18 м, в устье реки Северн в Англии - 16 м, в заливе Мон-Сен-Мишель во Франции - 15 м, в губах Охотского моря - Пенжинской и Гижигинской - 13 м, у мыса Нерпинский в Мезенском заливе - 11 м. Общего у этих мест то, что они все являются заливами.

Вопрос 4. Что такое длина и высота волны? Поясните свой ответ схемой.

Высота волны измеряется от подошвы до гребня по вертикали. Длина волны - это расстояние между двумя соседними гребнями.

Вопрос 5. Сравните штормовые волны и цунами по плану: а) причина возникновения; б) высота в океане; в) высота у берега; г) длина. Какие волны опаснее для судов, находящихся в открытом океане, а какие - для судов у берега?

Волны: а) Возникают под действием ветра на: 4-12 м. в) Высота у берега: меньше 4 м. г) Длина: до 250 м.

Цунами: а) Возникают из-за подводных землетрясений, оползней, извержений подводных вулканов. б) Высота в океане: 1 м. в) Высота у берега: 40 м. г) Длина: 100 - 200 км.

Для судов, находящихся в открытом океане опасными больше являются штормовые волны, так как они короче и выше. Цунами опасны у берега, так как они набирают наибольшую высоту при мелководье.

Вопрос 6. Через сколько часов цунами, возникнув у берегов Чили, достигнет Японских островов?

Учитывая расстояние между Чили и Японией, скорость волны, силу землетрясения, а так же преграду в виде Гавайских островов, 24 часа.

Вопрос 7. Каковы различия между океаническими течениями и движением воды при волнении?

Океаническое течение имеет постоянное горизонтальное направление, оно подобно реке в океане.

А волны имеют высоту, ширину, длину, гребень, подошву, и зависят прежде всего от ветра.

Вопрос 8. Назовите основную причину образования поверхностных океанических течений. Как в Мировом океане возникают глубинные течения?

Основная причина возникновения поверхностных океанических течений - действие постоянных ветров. Самое мощное течение во всём Мировом океане - это течение Западных Ветров.

Глубинные течения обычно возникают из-за различий в плотности воды. Более солёная или более холодная вода плотнее и тяжелее, чем менее солёная или тёплая вода. Охлаждаясь в приполярных областях, вода опускается на глубину и движется в сторону экватора.

Вопрос 9. Составьте по тексту параграфа рассказ о течении Западных Ветров и течении Гольфстрим.

Самое мощное течение во всём Мировом океане - это течение Западных Ветров. Длина этого течения 30 тыс. км, ширина оценивается в 2500 км, скорость - около 3,5 км/ч. Каждую секунду течение Западных Ветров переносит воды в 20 раз больше, чем все реки земного шара.

Давно известно и хорошо изучено тёплое течение Гольфстрим, проходящее близ восточных берегов Северной Америки с юго-запада на северо-восток. Гольфстрим образуется при слиянии вод, вытекающих из Мексиканского залива, и вод, пригоняемых ветром от берегов Африки. Длина его 3 тыс. км, ширина составляет сотни километров, скорость - до 10 км/ч. Каждую секунду Гольфстрим переносит в среднем около 75 млн. т. воды. Примерно у 45° с. ш. Гольфстрим переходит в Северо-Атлантическое течение, часть вод которого направляется в Северный Ледовитый океан. Под их влиянием Баренцево море не замерзает, и Мурманский порт доступен для судов круглый год.

Вопрос 10. Докажите, что океанические течения имеют большое значение для природы Земли и человека.

Океанические течения влияют не только на распределение температуры воды в океане, но и способствуют перемешиванию воды. У берегов, от которых ветер отгоняет воду, её место занимают глубинные воды, обогащённые питательными веществами. Вот почему районы подъёма глубинных вод богаты рыбой. В местах, к которым нагоняется вода, происходит её опускание. Опускающаяся вода несёт в глубину кислород.

Волны, которые мы привыкли видеть на поверхности моря, образуются главным образом под действием ветра. Однако волны могут возникать и по другим причинам, тогда они называются;

Приливные, образующиеся под действием приливообразующих сил Луны и Солнца;

Барические, возникающие при резких изменениях атмосферного давления;

Сейсмические (цунами), образующиеся в результате землетрясения или извержения вулканов;

Корабельные, возникающие при движении судна.

Ветровые волны являются преобладающими на поверхности морей и океанов. Волны приливные, сейсмические, барические и корабельные существенного влияния на плавание судов в открытом океане не оказывают, поэтому на их описании мы останавливаться не будем. Ветровое волнение - один из основных гидрометеорологических факторов, определяющих безопасность и экономическую эффективность мореплавания, так как волна, набегая на судно, обрушивается на него, раскачивает, бьет в борт, заливает палубы и надстройки, уменьшает скорость хода. Качка создает опасные крены, затрудняет определение места судна и сильно изнуряет команду. Кроме потери скорости, волнение вызывает рыскание и уклонение судна с заданного курса, и для удержания его требуется постоянная перекладка руля.

Ветровым волнением называется процесс формирования, развития и распространения вызванных ветром волн на поверхности моря. Ветровому волнению присущи две основные черты. Первая черта - нерегулярность: неупорядоченность размеров и форм волн. Одна волна не повторяет другую, за большой может следовать малая, а может и еще большая; каждая отдельная волна непрерывно меняет свою форму. Гребни волн перемещаются не только в направлении ветра, но и в других направлениях. Такая сложная структура возмущенной поверхности моря объясняется вихревым, турбулентным характером ветра, образующего волны. Вторая черта волнения заключается в быстрой изменчивости его элементов во времени и пространстве и связана также с ветром. Однако размеры волн зависят не только от скорости ветра, существенное значение имеет продолжительность его действия, площадь и конфигурация водной поверхности. С точки зрения практики нет необходимости знать элементы каждой отдельно взятой волны или каждого волнового колебания. Поэтому изучение волнения сводится в конечном итоге к выявлению статистических закономерностей, которые численно выражаются зависимостями между элементами волн и определяющими их факторами.

3.1.1. Элементы волн

Каждая волна характеризуется определенными элементами,

Общими элементами для волн являются (рис. 25):

Вершина - наивысшая точка гребня волны;

Подошва - наинизшая точка ложбины волны;

Высота (h) - превышение вершины волны;

Длина (Л)-горизонтальное расстояние между вершинами двух смежных гребней на волновом профиле, проведенном в генеральном направлении распространения волн;

Период (т) - интервал времени между прохождением двух смежных вершин волн через фиксированную вертикаль; другими словами, это промежуток времени, в течение которого волна проходит расстояние, равное своей длине;

Крутизна (е) - отношение высоты данной волны к ее длине. Крутизна волны в различных точках волнового профиля различна. Средняя крутизна волны определяется отношением:

Рис. 25. Основные элементы волн.


Для практики важное значение имеет наибольший уклон, который приближенно равен отношению высоты волны h к ее полудлине λ/2


- скорость волны с - скорость перемещения гребня волны в направлении ее распространения, определяемая за короткий интервал времени порядка периода волны;

Фронт волны - линия на плане взволнованной поверхности, проходящая по вершинам гребня данной волны, которые определяются по множеству волновых профилей, проведенных параллельно генеральному направлению распространения волн.

Для мореплавания наибольшее значение имеют такие элементы волн, как высота, период, длина, крутизна и генеральное направление перемещения волн. Все они зависят от параметров ветрового потока (скорости и направления ветра), его протяженности (разгона) над морем и продолжительности его действия.

В зависимости от условий образования и распространения ветровые волны можно подразделить на четыре типа.

Ветровые - система волн, находящаяся в момент наблюдения под воздействием ветра, которым она вызвана. Направления распространения ветровых волн и ветра на глубокой воде обычно совпадают или же различаются не более чем на четыре румба (45°).

Ветровые волны характерны тем, что подветренный склон их круче, чем наветренный, поэтому верхушки гребней обычно заваливаются, образуя пену, или даже срываются сильным ветром. При выходе волн на мелководье и подходе их к берегу направления распространения волн и ветра могут различаться более чем на 45°.

Зыбь - вызванные ветром волны, распространяющиеся в области волнообразования после ослабления ветра и/или изменения его направления, или вызванные ветром волны, пришедшие из области волнообразования в другую область, где дует ветер с другой скоростью и/или другим направлением. Частный случай зыби, распространяющейся при отсутствии ветра носит название мертвой зыби.

Смешанные - волнение, образующееся в результате взаимодействия ветровых волн и зыби.

Трансформация ветровых волн - изменение структуры ветровых волн при изменении глубины. В этом случае форма волн искажается, они становятся круче и короче и при небольшой глубине, не превышающей высоты волны, гребни последних опрокидываются, и волны разрушаются.

По своему внешнему виду ветровые волны характеризуются разными формами.

Рябь - начальная форма развития ветрового волнения, возникающая под действием слабого ветра; гребни волн при ряби напоминают чешую.

Трехмерное волнение - совокупность волн, средняя длина гребня которых в несколько раз превышает среднюю длину волны.

Регулярное волнение - волнение, в котором форма и элементы всех волн одинаковы.

Толчея - беспорядочное волнение, возникающее вследствие взаимодействия волн, бегущих в разных направлениях.

Волны, разбивающиеся над банками, рифами или камнями, носят название бурунов. Волны, обрушивающиеся в прибрежной зоне, называются прибоем. У крутых берегов и у портовых сооружений прибой имеет форму взброса.

Волны на поверхности моря подразделяются на свободные, когда сила, вызвавшая их, прекращает действовать и волны свободно перемещаются, и вынужденные, когда действие силы, вызвавшей образование волн, не прекращается.

По изменчивости элементов волн во времени их разделяют на установившиеся, т. е, ветровое волнение, в котором статистические характеристики волн не изменяются во времени, и развивающиеся или затухающие - изменяющие свои элементы во времени.

По форме волны делятся на двухмерные - совокупность волн, средняя длина гребня которых во много раз больше средней длины волн, трехмерные - совокупность волн, средняя длина гребня которых в несколько раз превышает длину волн, и уединенные, имеющие только куполообразный гребень без подошвы.

В зависимости от отношения длины волны к глубине моря волны подразделяются на короткие, длина которых значительно меньше глубины моря, и длинные, длина которых больше глубины моря.

По характеру перемещения формы волны они бывают поступательные, у которых наблюдается видимое перемещение формы волны, и стоячие - не имеющие перемещения. По тому, как располагаются волны, их делят на поверхностные и внутренние. Внутренние волны образуются на той или иной глубине на поверхности раздела между слоями воды разной плотности.

3.1.2. Методы расчета элементов волн

При изучении морского волнения используются некоторые теоретические положения, объясняющие те или иные стороны этого явления. Общие законы строения волн и характера движения их отдельных частиц рассматриваются трохоидальной теорией волн. Согласно этой теории, отдельные частицы воды в поверхностных волнах движутся по замкнутым эллипсоидным орбитам, совершая полный оборот за время, равное периоду волны т.

Вращательное движение последовательно расположенных частиц воды, сдвинутых на фазовый угол в начальный момент движения, создает видимость поступательного движения: отдельные частицы движутся по замкнутым орбитам, в то время как профиль волны перемещается поступательно в направлении ветра. Трохоидальная теория волн позволила математически обосновать строение отдельных волн и связать между собой их элементы. Были получены формулы, позволяющие рассчитать отдельные элементы волн


где g -ускорение свободного падения, Длина волны К скорость ее распространения С и период t связаны между собой зависимостью К=Сх.

Следует отметить, что трохоидальная теория волн справедлива только для правильных двухмерных волн, которые наблюдаются в случае свободных ветровых волн - зыби. При трехмерном ветровом волнении орбитальные пути частиц не являются замкнутыми круговыми орбитами, так как под воздействием ветра возникает горизонтальный перенос вод на поверхности моря в направлении распространения волны.

Трохоидальная теория морских волн не вскрывает процесса их развития и затухания, а также механизма передачи энергии от ветра к волне. Между тем, решение именно этих вопросов необходимо с целью получения надежных зависимостей для расчета элементов ветровых волн.

Поэтому развитие теории морских волн пошло по пути разработки теоретических и эмпирических связей между ветром и волнением с учетом разнообразия реальных морских ветровых волн и нестационарности явления, т. е. с учетом их развития и затухания.

В общем виде формулы для расчета элементов ветровых волн могут быть выражены в виде функции от нескольких переменных

H, t, Л,C=f(W , D t, H),

Где W - скорость ветра; D - разгон , t - продолжительность действия ветра; Н - глубина моря.

Для мелководных районов морей для расчета высоты и длины волн можно использовать зависимости


Коэффициенты а и z переменны и зависят от глубины моря

А = 0,0151H 0,342 ; z = 0,104H 0,573 .

Для открытых районов морей элементы волн, обеспеченность высот которых составляет 5%, и средние значения длины волн рассчитываются по зависимостям:

H = 0,45 W 0,56 D 0,54 A,

Л = 0,3lW 0,66 D 0,64 A.

Коэффициент А вычисляется по формуле


Для открытых районов океана элементы волн рассчитываются по следующим формулам:


где е - крутизна волны при малых разгонах, D ПР - предельный разгон, км. Максимальную высоту штормовых волн можно рассчитать по формуле


где hmax - максимальная высота волн, м, D - длина разгона, мили.

В Государственном океанографическом институте на основании спектральной статистической теории волнения были получены графические связи между элементами волн и скоростью ветра, продолжительностью его действия и длиной разгона. Эти зависимости следует считать наиболее надежными, дающими приемлемые результаты, на основе которых в Гидрометцентре СССР (В. С. Красюк) были построены номограммы для расчета высоты волн. Номограмма (рис. 26) разделена на четыре квадранта (I-IV) и состоит из серии графиков, расположенных в определенной последовательности.

В квадранте I (отсчет ведется из нижнего правого угла) номограммы дана градусная сетка, каждое деление которой (по горизонтали) соответствует 1° меридиана на данной широте (от 70 до 20° с. ш.) для карт масштаба 1:15 000000 полярной стереографической проекции. Градусная сетка необходима для перевода расстояния между изобарами п и радиуса кривизны изобар R, измеренных на картах другого масштаба, в масштаб 1:15 000000. В этом случае мы определяем расстояние между изобарами п и радиус кривизны изобар R в градусах меридиана на данной широте. Радиус кривизны изобар R - радиус Окружности, с которой участок изобары, проходящей через точку, для которой ведется расчет, или вблизи нее имеет наибольшее соприкосновение. Определяется он с помощью измерителя путем подбора таким образом, чтобы дуга, проведенная из найденного центра, совпадала с данным участком изобары. Затем на градусной сетке откладываем измеренные величины на данной широте, выраженные в градусах меридиана, и раствором циркуля определяем радиус кривизны изобар и расстояние между изобарами, соответствующее масштабу 1:15000 000.


В квадранте II номограммы приведены кривые, выражающие зависимость скорости ветра от барического градиента и географической широты места (каждая кривая соответствует определенной широте- от 70 до 20° с. ш.). Для перехода от рассчитанного градиентного ветра к ветру, дующему вблизи поверхности моря (на высоте 10 м), была выведена поправка, учитывающая стратификацию приводного слоя атмосферы. При расчетах для холодной части года (устойчивая стратификация t w 2°С)-коэффициент 0,6.


Рис. 26. Номограмма для расчета элементов волн и скорости ветра по картам приземного поля давления, где изобары проведены с интервалом 5 мбар (а) и 8 мбар (б). 1 - зима, 2 - лето.


В квадранте III производится учет влияния кривизны изобар на скорость геострофического ветра. Кривые, соответствующие различным значениям радиуса кривизны (1, 2, 5 и т. д.), даны сплошными (зима) и штриховыми (лето) линиями. Знак оо означает, что изобары прямолинейны. Обычно при радиусе кривизны, превышающей 15°, учета кривизны при расчетах не требуется. По оси абсцисс, разделяющей кйадранты III и IV, определяется скорость ветра W для данной точки.

В квадранте IV расположены кривые, позволяющие по скорости ветра, разгону или продолжительности действия ветра определять высоту так называемых значительных волн (h 3H), имеющих обеспеченность 12,5%.

Если имеется возможность при определении высоты волн использовать не только данные о скорости ветра, но и о разгоне и продолжительности действия ветра, расчет выполняется по разгону и продолжительности действия ветра (в часах). Для этого из квадранта III номограммы опускаем перпендикуляр не до кривой разгона, а до кривой продолжительности действия ветра (6 или 12 ч). Из полученных результатов (по разгону и продолжительности) берется меньшее значение высоты волны.

Расчет с помощью предлагаемой номограммы можно производить лишь для районов «глубокого моря», т. е. для районов, где глубина моря не меньше половины длины волны. При разгоне, превышающем 500 км, или продолжительности действия ветра больше 12 ч используется зависимость высот волн от ветра, соответствующая океанским условиям (утолщенная кривая в квадранте IV).

Таким образом, для определения высоты волн в данной точке необходимо выполнить следующие операции:

А) найти радиус кривизны изобары R, проходящий через данную точку или вблизи нее (с помощью циркуля путем подбора). Радиус кривизны изобар определяется только в случае циклонической кривизны (в циклонах и ложбинах) и выражается в градусах меридиана;

Б) определить разность давления п путем измерения расстояния между соседними изобарами в районе выбранной точки;

В) по найденным значениям R и п в зависимости от времени года находим скорость ветра W;

Г) зная скорость ветра W и разгон D или продолжительность действия ветра (6 или 12 ч), находим высоту значительных волн (h 3H).

Разгон находится следующим образом. От каждой точки, для которой ведется расчет высоты волн, в направлении против ветра проводится линия тока до тех пор, пока ее направление не изменится по отношению к начальному на угол 45° или не достигнет берега, или кромки льда. Приблизительно это и будет разгон или путь ветра, на протяжении которого должны формироваться (волны, приходящие в данную точку.

Продолжительность действия ветра определяется как время, в течение которого направление ветра неизменно или отклоняется от первоначального не более чем на ±22,5°.

По номограмме на рис. 26 а можно определить высоту волны по карте приземного поля давления, на которой изобары проведены через 5 мбар. Если изобары проведены через 8 мбар, то следует использовать номограмму, приведенную на рис. 26 б.

Период и длину волны можно рассчитать по данным о скорости ветра и высоте волны. Приближенный расчет периода волн может быть произведен по графику (рис. 27), на котором представлена зависимость между периодами и высотой ветровых волн при различных скоростях ветра (W). Длина волн определяется по ее периоду и глубине моря в данной точке по графику (рис. 28).