Чехов

Закон всемирного тяготения найти m1. Формулировка закона всемирного тяготения. Описание закона всемирного тяготения

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

К началу XVII века гелиоцентрическая система мира была признана большинством ученых. Однако в то время не были понятны причины и законы, по которым планеты движутся.

И. Кеплер обработал результаты множества своих наблюдений и своего коллеги Т. Браге, сформулировал законы перемещения планет вокруг Солнца. Стало понятно, что для объяснения законов Кеплера, следует определить, какие силы действуют на планеты. Но Кеплеру и его современникам не удалось это выполнить. Задачу решил И. Ньютон.

Приблизительно, можно считать, что планеты перемещаются равномерно по орбитам, близким к окружностям. При таком виде движения материальной точки у нее имеется центростремительное ускорение, которое направлено к центру орбиты (для планеты, центростремительной ускорение направлено к Солнцу). Из второго закона Ньютона следует, что на планету, действует некоторая сила, которая порождает нормальное ускорение. Получается, что Солнце действует на каждую планету с силой, направленной к его центру. В соответствии с третьим законом Ньютона, планета действует на Солнце с силой, равной по величине предыдущей силе, но имеющей противоположное направление.

Закон всемирного тяготения

Мы знаем, что Луна совершает вращение вокруг Земли. Луна притягивает Землю, Земля притягивает Луну. И. Ньютон предположил, что сила тяжести, с которой Земля притягивает все тела около своей поверхности, и сила с которой она притягивает Луну, имеют одно происхождение. Ньютон сравнил ускорение свободного падения ($g=9,81\ \frac{м}{с^{2\ }}$ около поверхности Земли) и центростремительное ускорение ($a_n$), которое имеет Луна при движении по своей орбите. Ньютон получил, что нормальное ускорение Луны равно $a_n=2,72\cdot {10}^{-3}\frac{м}{с^2}$. Расхождение в величинах Ньютон пояснил тем, что сила тяготения убывает с ростом расстояния между притягивающимися телами. Ускорение, вызванное силой тяготения, убывает обратно пропорционально квадрату расстояния ($r$) между телами:

где $K=const$.

Формулировка закона всемирного тяготения

Анализ нормального ускорения Луны при ее движении около Земли позволили И. Ньютону сделать вывод о том, что все тела в природе притягиваются с некоторыми силами, которые называются силами тяготения.

Допустим, что у нас имеются два тела, массы которых равны $m_1$ и $m_2$. Находятся они на расстоянии $r$ друг от друга. Эти тела взаимодействуют друг с другом с силами:

\[\ F_1=m_1a_1и\ F_2=m_2a_2\left(2\right)\]

По третьему закону Ньютона имеем:

\[\left|F_1\right|=\left|F_2\right|\left(3\right).\]

Принимая во внимание выражение (1), получаем:

Выражение (4) будет выполняться, если $K_1=\gamma m_2,$ а $K_2=\gamma m_1,$ где $\gamma $ =const. То есть, мы получили, что:

Формула (5) - математическое выражение закона всемирного тяготения: Сила тяготения между двумя материальными точками прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

Для точного расчёта силы взаимного притяжения формула (5) может быть применена только в том случае, если телами являются однородные шары, массы которых равны $m_{1\ }и\ m_2$, а $r$ - расстояние между их центрами.

Гравитационная постоянная

Коэффициент $\gamma $ называют гравитационной постоянной. В Международной системе единиц (система СИ) она равна $\gamma \approx 6,67\cdot {10}^{-11}\frac{м^3}{с^2\cdot кг}.\ $ Гравитационная постоянная численно равна силе взаимодействия материальных точек, имеющих массы по одному килограмму, расположенный на расстоянии в один метр. Гравитационная постоянная находится экспериментально.

Одним из первых эксперимент по измерению силы тяготения в лабораторных условиях поставил Кавендиш. Так была определена гравитационная постоянная.

Примеры задач с решением

Пример

Задание. В чем состоит суть опыта Кавендиша по измерению силы гравитации?

Решение. Сделаем рисунок.

Для проведения эксперимента Кавендиш использовал крутильные весы (рис.1). На тонкой кварцевой нити подвешивался легкий стержень. На нити жестко закреплялось маленькое зеркало. Луч света попадал на зеркало, отражался от него и падал на шкалу. Если стержень поворачивался, то луч перемещался по шкале. Так отмечался угол закручивания нити. На концах стержня были закреплены два шарика из свинца, каждый массой $m$. К этим шарикам подносили два симметрично расположенных свинцовых шарика массами $M$. Нить закручивалась до момента, когда сила упругости деформированной нити не уравновешивает силу гравитационного взаимодействия между шарами. Сила взаимодействия измерялась по углу закручивания нити. Зная массы шаров и расстояние между их центрами, вычислялась гравитационная постоянная.

Пример 2

Задание. Два одинаковых однородных железных шара касаются друг друга (рис.2). Радиус каждого шара равен $R=0,1$ м. Какова сила гравитации, действующая между этими шарами?

Решение. Сделаем рисунок.

Основой для решения задачи служит закон всемирного тяготения:

где $m_1=m_2=m$ - массы каждого из шаров, тогда закон гравитации запишем в виде:

Расстояние между центрами шаров (рис.2) равно: $r=2R.$ Массы шаров найдем как:

Формулу (2.2) преобразуем так:

Для вычисления силы гравитации, найдем в справочниках плотность железа ($\rho =7800\ \frac{кг}{м^3}$). Гравитационная постоянная равна: $\gamma =6,67\cdot {10}^{-11}\frac{м^3}{с^2\cdot кг}.$ Проведем вычисления:

Ответ. $F=1,78\cdot {10}^{-6}$Н

Закон всемирного тяготения открыл Ньютон в 1687 году при изучении движения спутника Луны вокруг Земли. Английский физик четко сформулировал постулат, характеризующий силы притяжения. Кроме того, анализируя законы Кеплера, Ньютон вычислил, что силы притяжения должны существовать не только на нашей планете, но и в космосе.

История вопроса

Закон всемирного тяготения родился не спонтанно. Издревле люди изучали небосвод, главным образом для составления сельскохозяйственных календарей, вычисления важных дат, религиозных праздников. Наблюдения указывали, что в центре «мира» находится Светило (Солнце), вокруг которого по орбитам вращаются небесные тела. Впоследствии догматы церкви не позволяли так считать, и люди утратили накапливавшиеся тысячелетиями знания.

В 16 веке, до изобретения телескопов, появилась плеяда астрономов, взглянувших на небосвод по-научному, отбросив запреты церкви. Т. Браге, многие годы наблюдая за космосом, с особой тщательностью систематизировал перемещения планет. Эти высокоточные данные помогли И. Кеплеру впоследствии открыть три своих закона.

К моменту открытия (1667 г.) Исааком Ньютоном закона тяготения в астрономии окончательно утвердилась гелиоцентрическая система мира Н. Коперника. Согласно ей, каждая из планет системы вращается вокруг Светила по орбитам, которые с приближением, достаточным для многих расчетов, можно считать круговыми. В начале XVII в. И. Кеплер, анализируя работы Т. Браге, установил кинематические законы, характеризующие движения планет. Открытие стало фундаментом для выяснения динамики движения планет, то есть сил, которые определяют именно такой вид их движения.

Описание взаимодействия

В отличие от короткопериодных слабых и сильных взаимодействий, гравитация и электромагнитные поля имеют свойства дальнего действия: их влияние проявляется на гигантских расстояниях. На механические явления в макромире воздействуют 2 силы: электромагнитная и гравитационная. Воздействие планет на спутники, полет брошенного или запущенного предмета, плавание тела в жидкости - в каждом из этих явлений действуют гравитационные силы. Эти объекты притягиваются планетой, тяготеют к ней, отсюда и название «закон всемирного тяготения».

Доказано, что между физическими телами безусловно действует сила взаимного притяжения. Такие явления, как падение объектов на Землю, вращение Луны, планет вокруг Солнца, происходящие под действием сил всемирного притяжения, называют гравитационными.

Закон всемирного тяготения: формула

Всемирное тяготение формулируется следующим образом: два любых материальных объекта друг к другу притягиваются с определенной силой. Величина этой силы прямо пропорциональна произведению масс этих объектов и обратно пропорциональна квадрату расстояния между ними:

В формуле m1 и m2 являются массами исследуемых материальных объектов; r - расстояние, определяемое между центрами масс расчетных объектов; G - постоянная гравитационная величина, выражающая силу, с которой осуществляется взаимное притяжение двух объектов массой по 1 кг каждый, располагающихся между собой на расстоянии 1 м.

От чего зависит сила притяжения

Закон всемирного тяготения по-разному действует, в зависимости от региона. Так как сила притяжения зависит от значений широты на определенной местности, то аналогично ускорение свободного падения обладает разными значениями в разных местах. Максимальное значение сила тяжести и, соответственно, ускорение свободного падения имеют на полюсах Земли - сила тяжести в этих точках равна силе притяжения. Минимальными значения будут на экваторе.

Земной шар слегка сплюснут, его полярный радиус меньше экваториального примерно на 21,5 км. Однако эта зависимость менее существенная по сравнению с суточным вращением Земли. Расчеты показывают, что из-за сплюснутости Земли на экваторе величина ускорения свободного падения чуть меньше его значения на полюсе на 0,18%, а через суточное вращение - на 0,34%.

Впрочем, в одном и том же месте Земли угол между векторами направления мал, поэтому расхождение между силой притяжения и силой тяжести незначительно, и ею в расчетах можно пренебречь. То есть можно считать, что модули этих сил одинаковы - ускорение свободного падения около поверхности Земли везде одинаковое и равно приблизительно 9,8 м/с².

Вывод

Исаак Ньютон был ученым, который совершил научную революцию, полностью перестроил принципы динамики и на их основе создал научную картину мира. Его открытие повлияло на развитие науки, на создание материальной и духовной культуры. На судьбу Ньютона выпала задача пересмотреть результаты представления о мире. В XVII в. ученым завершена грандиозная работа построения фундамента новой науки - физики.