По картинам

Гравитационные волны большой силы. Гравитационные волны. Инструкция для "чайников". (1 фото). След начала Вселенной

«Не так давно сильный интерес научной общественности вызвала серия долгосрочных экспериментов по непосредственному наблюдению гравитационных волн, — писал специалист в области теоретической физики Митио Каку в книге «Космос Эйнштейна» в 2004 году. — Проект LIGO («Лазерный интерферометр для наблюдения гравитационных волн»), возможно, окажется первым, в ходе которого удастся «увидеть» гравитационные волны, скорее всего, от столкновения двух черных дыр в дальнем космосе. LIGO — сбывшаяся мечта физика, первая установка достаточной мощности для измерения гравитационных волн».

Предсказание Каку сбылось: в четверг группа международных ученых из обсерватории LIGO объявила об открытии гравитационных волн.

Гравитационные волны — это колебания пространства-времени, которые «убегают» от массивных объектов (например, черных дыр), движущихся с ускорением. Иными словами, гравитационные волны — это распространяющееся возмущение пространства-времени, бегущая деформация абсолютной пустоты.

Черная дыра — это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть ее не могут даже объекты, движущиеся со скоростью света (и сам свет в том числе). Граница, отделяющая черную дыру от всего остального мира, называется горизонтом событий: все, что происходит внутри горизонта событий, скрыто от глаз внешнего наблюдателя.

Erin Ryan Снимок торта, выложенный в сеть Эрин Райан.

Ловить гравитационные волны ученые начали еще полвека назад: именно тогда американский физик Джозеф Вебер увлекся общей теорией относительности Эйнштейна (ОТО), взял творческий отпуск и стал изучать гравитационные волны. Вебер изобрел первое приспособление, детектирующее гравитационные волны, и вскоре заявил, что зафиксировал «звучание гравитационных волн». Впрочем, научное сообщество опровергло его сообщение.

Однако именно благодаря Джозефу Веберу множество ученых превратилось в «охотников за волнами». Сегодня Вебер считается отцом научного направления гравитационно-волновой астрономии.

«Это — начало новой эры гравитационной астрономии»

Обсерватория LIGO, в которой ученые зафиксировали гравитационные волны, состоит из трех лазерных установок в США: две находятся в штате Вашингтон и одна — в штате Луизиана. Вот как описывает работу лазерных детекторов Митио Каку: «Лазерный луч расщепляется на два отдельных луча, которые далее идут перпендикулярно друг другу. Затем, отразившись от зеркала, они вновь соединяются. Если через интерферометр (измерительный прибор) пройдет гравитационная волна, длины путей двух лазерных лучей претерпят возмущение и это отразится в их интерференционной картине. Чтобы убедиться в том, что сигнал, зарегистрированный лазерной установкой, не случаен, детекторы следует разместить в разных точках Земли.

Только под действием гигантской гравитационной волны, намного превышающей по размеру нашу планету, все детекторы сработают одновременно».

Сейчас коллаборация LIGO зафиксировала гравитационное излучение, вызванное слиянием двойной системы черных дыр с массами 36 и 29 солнечных масс в объект массой 62 массы Солнца. «Это первое прямое (очень важно, что это прямое!) измерение действия гравитационных волн, — дал комментарий корреспонденту отдела науки «Газеты.Ru» профессор физического факультета МГУ Сергей Вятчанин. — То есть принят сигнал от астрофизической катастрофы слияния двух черных дыр. И этот сигнал идентифицирован — это тоже очень важно! Понятно, что это от двух черных дыр. И это есть начало новой эры гравитационной астрономии, которая позволит получать информацию о Вселенной не только через оптические, рентгеновские, электромагнитные и нейтринные источники — но еще и через гравитационные волны.

Можно сказать, что процентов на 90 черные дыры перестали быть гипотетическими объектами. Некоторая доля сомнения остается, но все-таки сигнал, который пойман, уж больно хорошо ложится на то, что предсказывают бесчисленные моделирования слияния двух черных дыр в соответствии с общей теорией относительности.

Это является сильным доводом того, что черные дыры существуют. Другого объяснения такому сигналу пока нет. Поэтому принимается, что черные дыры существуют».

«Эйнштейн был бы очень счастлив»

Гравитационные волны в рамках своей общей теории относительности предсказал Альберт Эйнштейн (который, кстати, скептически относился к существованию черных дыр). В ОТО к трем пространственным измерениям добавляется время, и мир становится четырехмерным. Согласно теории, перевернувшей с ног на голову всю физику, гравитация — это следствие искривления пространства-времени под воздействием массы.

Эйнштейн доказал, что любая материя, движущаяся с ускорением, создает возмущение пространства-времени — гравитационную волну. Это возмущение тем больше, чем выше ускорение и масса объекта.

Из-за слабости гравитационных сил по сравнению с другими фундаментальными взаимодействиями эти волны должны иметь весьма малую величину, с трудом поддающуюся регистрации.

Объясняя ОТО гуманитариям, физики часто просят их представить натянутый лист резины, на который опускают массивные шарики. Шарики продавливают резину, и натянутый лист (который олицетворяет пространство-время) деформируется. Согласно ОТО, вся Вселенная — это резина, на которой каждая планета, каждая звезда и каждая галактика оставляют вмятины. Наша Земля вращается вокруг Солнца словно маленький шарик, пущенный кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром.

HANDOUT/Reuters

Тяжелый шар — это и есть Солнце

Вполне вероятно, что открытие гравитационных волн, являющееся главным подтверждением теории Эйнштейна, претендует на Нобелевскую премию по физике. «Эйнштейн был бы очень счастлив», — сказала Габриэлла Гонсалез, представитель коллаборации LIGO.

По словам ученых, пока рано говорить о практической применимости открытия. «Хотя разве Генрих Герц (немецкий физик, доказавший существование электромагнитных волн. — «Газета.Ru») мог подумать, что будет мобильный телефон? Нет! Мы сейчас ничего не можем представить, — рассказал Валерий Митрофанов, профессор физического факультета МГУ им. М.В. Ломоносова. — Я ориентируюсь на фильм «Интерстеллар». Его критикуют, да, но вообразить ковер-самолет мог даже дикий человек. И ковер-самолет реализовался в самолет, и все. А здесь уже нужно представить что-то очень сложное. В «Интерстелларе» один из моментов связан с тем, что человек может путешествовать из одного мира в другой. Если так представить, то верите ли вы, что человек может путешествовать из одного мира в другой, что может быть много вселенных — все, что угодно? Я не могу ответить «нет». Потому что физик не может ответить на такой вопрос «нет»! Только если это противоречит каким-то законам сохранения! Есть варианты, которые не противоречат известным физическим законам. Значит, путешествия по мирам могут быть!»

Взмахните рукой - и по всей Вселенной побегут гравитационные волны.
С. Попов, М. Прохоров. Призрачные волны Вселенной

В астрофизике произошло событие, которого ждали десятилетия. После полувека поисков наконец-то открыты гравитационные волны, колебания самого пространства-времени, предсказанные Эйнштейном сто лет назад. 14 сентября 2015 года обновленная обсерватория LIGO зарегистрировала гравитационно-волновой всплеск, порожденный слиянием двух черных дыр с массами 29 и 36 солнечных масс в далекой галактике на расстоянии примерно 1,3 млрд световых лет. Гравитационно-волновая астрономия стала полноправным разделом физики; она открыла нам новый способ наблюдать за Вселенной и позволит изучать недоступные ранее эффекты сильной гравитации.

Гравитационные волны

Теории гравитации можно придумывать разные. Все они будут одинаково хорошо описывать наш мир, пока мы ограничиваемся одним-единственным ее проявлением - ньютоновским законом всемирного тяготения. Но существуют и другие, более тонкие гравитационные эффекты, которые были экспериментально проверены на масштабах солнечной системы, и они указывают на одну конкретную теорию - общую теорию относительности (ОТО).

ОТО - это не просто набор формул, это принципиальный взгляд на суть гравитации. Если в обычной физике пространство служит лишь фоном, вместилищем для физических явлений, то в ОТО оно само становится явлением, динамической величиной, которая меняется в согласии с законами ОТО. Вот эти искажения пространства-времени относительно ровного фона - или, на языке геометрии, искажения метрики пространства-времени - и ощущаются как гравитация. Говоря кратко, ОТО вскрывает геометрическое происхождение гравитации.

У ОТО есть важнейшее предсказание: гравитационные волны. Это искажения пространства-времени, которые способны «оторваться от источника» и, самоподдерживаясь, улететь прочь. Это гравитация сама по себе, ничья, своя собственная. Альберт Эйнштейн окончательно сформулировал ОТО в 1915 году и почти сразу понял, что полученные им уравнения допускают существование таких волн.

Как и для всякой честной теории, такое четкое предсказание ОТО должно быть проверено экспериментально. Излучать гравитационные волны могут любые движущиеся тела: и планеты, и брошенный вверх камень, и взмах руки. Проблема, однако, в том, что гравитационное взаимодействие столь слабое, что никакие экспериментальные установки не способны заметить излучение гравитационных волн от обычных «излучателей».

Чтобы «погнать» мощную волну, нужно очень сильно исказить пространство-время. Идеальный вариант - две черные дыры, вращающиеся друг вокруг друга в тесном танце, на расстоянии порядка их гравитационного радиуса (рис. 2). Искажения метрики будут столь сильными, что заметная часть энергии этой пары будет излучаться в гравитационные волны. Теряя энергию, пара будет сближаться, кружась всё быстрее, искажая метрику всё сильнее и порождая еще более сильные гравитационные волны, - пока, наконец, не произойдет кардинальная перестройка всего гравитационного поля этой пары и две черных дыры не сольются в одну.

Такое слияние черных дыр - взрыв грандиозной мощности, но только уходит вся эта излученная энергия не в свет, не в частицы, а в колебания пространства. Излученная энергия составит заметную часть от исходной массы черных дыр, и выплеснется это излучение за доли секунды. Аналогичные колебания будут порождать и слияния нейтронных звезд. Чуть более слабый гравитационно-волновой выброс энергии сопровождает и другие процессы, например коллапс ядра сверхновой.

Гравитационно-волновой всплеск от слияния двух компактных объектов имеет очень конкретный, хорошо вычисляемый профиль, показанный на рис. 3. Период колебаний задается орбитальным движением двух объектов друг вокруг друга. Гравитационные волны уносят энергию; как следствие, объекты сближаются и крутятся быстрее - и это видно как по убыстрению колебаний, так и по усилению амплитуды. В какой-то момент происходит слияние, выбрасывается последняя сильная волна, а затем следует высокочастотный «послезвон» (ringdown ) - дрожание образовавшейся черной дыры, которая «сбрасывает» с себя все несферические искажения (эта стадия на картинке не показана). Знание этого характерного профиля помогает физикам искать слабый сигнал от такого слияния в сильно зашумленных данных детекторов.

Колебания метрики пространства-времени - гравитационно-волновое эхо грандиозного взрыва - разлетятся по Вселенной во все стороны от источника. Их амплитуда ослабевает с расстоянием, по аналогии с тем, как падает яркость точечного источника при удалении от него. Когда всплеск из далекой галактики долетит до Земли, колебания метрики будут порядка 10 −22 или даже меньше. Иными словами, расстояние между физически не связанными друг с другом предметами будет периодически увеличиваться и уменьшаться на такую относительную величину.

Порядок величины этого числа легко получить из масштабных соображений (см. статью В. М. Липунова ). В момент слияния нейтронных звезд или черных дыр звездных масс искажения метрики прямо рядом с ними очень большие - порядка 0,1, на то это и сильная гравитация. Столь суровое искажение затрагивает область порядка размеров этих объектов, то есть несколько километров. При удалении от источника амплитуда колебания падает обратно пропорционально расстоянию. Это значит, что на расстоянии 100 Мпк = 3·10 21 км амплитуда колебаний упадет на 21 порядок и станет порядка 10 −22 .

Конечно, если слияние произойдет в нашей родной галактике, дошедшая до Земли дрожь пространства-времени будет куда сильнее. Но такие события происходят раз в несколько тысяч лет. Поэтому по-настоящему рассчитывать стоит лишь на такой детектор, который способен будет почувствовать слияние нейтронных звезд или черных дыр на расстоянии в десятки-сотни мегапарсек, а значит, охватит многие тысячи и миллионы галактик.

Здесь надо добавить, что косвенное указание на существование гравитационных волн уже было обнаружено, и за него даже присудили Нобелевскую премию по физике за 1993 год . Многолетние наблюдения за пульсаром в двойной системе PSR B1913+16 показали, что период обращения уменьшается ровно такими темпами, которые предсказывает ОТО с учетом потерь энергии на гравитационное излучение. По этой причине практически никто из ученых в реальности гравитационных волн не сомневается; вопрос лишь в том, как их поймать.

История поисков

Поиски гравитационных волн стартовали примерно полвека назад - и почти сразу обернулись сенсацией. Джозеф Вебер из Мэрилендского университета сконструировал первый резонансный детектор: цельный двухметровый алюминиевый цилиндр с чувствительными пьезодатчиками по бокам и хорошей виброизоляцией от посторонних колебаний (рис. 4). При прохождении гравитационной волны цилиндр срезонирует в такт искажениям пространства-времени, что и должны зарегистрировать датчики. Вебер построил несколько таких детекторов, и в 1969 году, проанализировав их показания в ходе одного из сеансов, он прямым текстом сообщил, что зарегистрировал «звучание гравитационных волн» сразу в нескольких детекторах, разнесенных друг от друга на два километра (J. Weber, 1969. Evidence for Discovery of Gravitational Radiation). Заявленная им амплитуда колебаний оказалась неправдоподобно большой, порядка 10 −16 , то есть в миллион раз больше типичного ожидаемого значения. Сообщение Вебера было встречено научным сообществом с большим скепсисом; к тому же другие экспериментальные группы, вооружившись похожими детекторами, не смогли в дальнейшем поймать ни одного подобного сигнала.

Однако усилия Вебера дали толчок всей этой области исследований и запустили охоту за волнами. С 1970-х годов, усилиями Владимира Брагинского и его коллег из МГУ, в эту гонку вступил и СССР (см. об отсутствии гравитационно-волновых сигналов). Интересный рассказ о тех временах есть в эссе Если девушка попадет в дыру... . Брагинский, кстати, - один из классиков всей теории квантовых оптических измерений; он первым пришел к понятию стандартного квантового предела измерений - ключевому ограничению в оптических измерениях - и показал, как их в принципе можно преодолевать. Резонансная схема Вебера совершенствовалась, и благодаря глубокому охлаждению установки шумы удалось резко снизить (см. список и историю этих проектов). Однако точность таких цельнометаллических детекторов всё еще была недостаточна для надежного детектирования ожидаемых событий, да и к тому же они настроены резонировать лишь на очень узком диапазоне частот вблизи килогерца.

Намного более перспективными казались детекторы, в которых используется не один резонирующий объект, а отслеживается расстояние между двумя не связанными друг с другом, независимо подвешенными телами, например двумя зеркалами. Из-за колебания пространства, вызванного гравитационной волной, расстояние между зеркалами будет то чуть больше, то чуть меньше. При этом чем больше длина плеча, тем большее абсолютное смещение вызовет гравитационная волна заданной амплитуды. Эти колебания сможет почувствовать лазерный луч, бегающий между зеркалами. Такая схема способна регистрировать колебания в широком диапазоне частот, от 10 герц до 10 килогерц, и это именно тот интервал, в котором будут излучать сливающиеся пары нейтронных звезд или черных дыр звездных масс.

Современная реализация этой идеи на основе интерферометра Майкельсона выглядит следующим образом (рис. 5). В двух длинных, длиной в несколько километров, перпендикулярных друг другу вакуумных камерах подвешиваются зеркала. На входе в установку лазерный луч расщепляется, идет по обеим камерам, отражается от зеркал, возвращается обратно и вновь соединяется в полупрозрачном зеркале. Добротность оптической системы исключительно высока, поэтому лазерный луч не просто проходит один раз туда-обратно, а задерживается в этом оптическом резонаторе надолго. В «спокойном» состоянии длины подобраны так, чтобы два луча после воссоединения гасили друг друга в направлении датчика, и тогда фотодетектор оказывается в полной тени. Но стоит лишь зеркалам под действием гравитационных волн сместиться на микроскопическое расстояние, как компенсация двух лучей станет неполной и фотодетектор уловит свет. И чем сильнее смещение, тем более яркий свет увидит фотодатчик.

Слова «микроскопическое смещение» даже близко не передают всей тонкости эффекта. Смещение зеркал на длину волны света, то есть микрон, заметить проще простого даже без каких-либо ухищрений. Но при длине плеча 4 км это отвечает колебаниям пространства-времени с амплитудой 10 −10 . Заметить смещение зеркал на диаметр атома тоже не представляет проблем - достаточно запустить лазерный луч, который пробежит туда-сюда тысячи раз и получит нужный набег фазы. Но и это дает от силы 10 −14 . А нам нужно спуститься по шкале смещений еще в миллионы раз, то есть научиться регистрировать сдвиг зеркала даже не на один атом, а на тысячные доли атомного ядра!

На пути к этой поистине поразительной технологии физикам пришлось преодолевать множество трудностей. Некоторые из них чисто механические: требуется повесить массивные зеркала на подвесе, который висит на другом подвесе, тот на третьем подвесе и так далее - и всё для того, чтобы максимально избавиться от посторонней вибрации. Другие проблемы тоже инструментальные, но оптические. Например, чем мощнее луч, циркулирующий в оптической системе, тем более слабое смещение зеркал можно будет заметить фотодатчиком. Но слишком мощный луч будет неравномерно нагревать оптические элементы, что пагубно скажется на свойствах самого луча. Этот эффект надо как-то компенсировать, и для этого в 2000-х годах была запущена целая исследовательская программа по этому поводу (рассказ об этом исследовании см. в новости Преодолено препятствие на пути к высокочувствительному детектору гравитационных волн , «Элементы», 27.06.2006). Наконец, есть чисто фундаментальные физические ограничения, связанные с квантовым поведением фотонов в резонаторе и принципом неопределенности . Они ограничивают чувствительность датчика величиной, которая называется стандартный квантовый предел . Однако физики с помощью хитро приготовленного квантового состояния лазерного света уже научились преодолевать и его (J. Aasi et al., 2013. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light).

В гонке за гравитационными волнами участвует целый список стран; своя установка есть и в России, в Баксанской обсерватории, и о ней, кстати, рассказывается в документальном научно-популярном фильме Дмитрия Завильгельского «В ожидании волн и частиц» . Лидерами этой гонки сейчас являются две лаборатории - американский проект LIGO и итальянский детектор Virgo . LIGO включает в себя два одинаковых детектора, расположенных в Ханфорде (штат Вашингтон) и в Ливингстоне (штат Луизиана) и разнесенных друг от друга на 3000 км. Наличие двух установок важно сразу по двум причинам. Во-первых, сигнал будет считаться зарегистрированным, только если его увидят оба детектора одновременно. А во-вторых, по разности прихода гравитационно-волнового всплеска на две установки - а она может достигать 10 миллисекунд - можно примерно определить, из какой части неба этот сигнал пришел. Правда, с двумя детекторами погрешность будет очень большой, но когда в работу вступит Virgo, точность заметно повысится.

Строго говоря, впервые идея интерферометрического детектирования гравитационных волн была предложена советскими физикам М. Е. Герценштейном и В. И. Пустовойтом в далеком 1962 году. Тогда только-только был придумал лазер, а Вебер приступал к созданию своих резонансных детекторов. Однако эта статья не была замечена на западе и, говоря по правде, не повлияла на развитие реальных проектов (см. исторический обзор Physics of gravitational wave detection: resonant and interferometric detectors).

Создание гравитационной обсерватории LIGO было инициативой трех ученых из Массачусетского технологического института (MIT) и из Калифорнийского технологического института (Калтеха). Это Райнер Вайсс (Rainer Weiss), который реализовал идею интерферометрического гравитационно-волнового детектора, Рональд Дривер (Ronald Drever), добившийся достаточной для регистрации стабильности лазерного света, и Кип Торн , теоретик-вдохновитель проекта, ныне хорошо известный широкой публике в качестве научного консультанта фильма «Интерстеллар». О ранней истории создания LIGO можно прочитать в недавнем интервью Райнера Вайсса и в воспоминаниях Джона Прескилла .

Деятельность, связанная с проектом интерферометрического детектирования гравитационных волн, началась в конце 1970-х годов, и поначалу реальность этой затеи тоже у многих вызывала сомнения. Однако после демонстрации ряда прототипов был написан и одобрен нынешний проект LIGO. Его строили в течение всего последнего десятилетия XX века.

Хотя первоначальный импульс проекту задали США, обсерватория LIGO является по-настоящему международным проектом. В него вложились, финансово и интеллектуально, 15 стран, и членами коллаборации числятся свыше тысячи человек. Важную роль в реализации проекта сыграли советские и российские физики. С самого начала активное участие в реализации проекта LIGO принимала уже упомянутая группа Владимира Брагинского из МГУ, а позже к коллаборации присоединился и Институт прикладной физики из Нижнего Новгорода.

Обсерватория LIGO заработала в 2002 году и вплоть до 2010 года на ней прошло шесть научных сеансов наблюдений. Никаких гравитационно-волновых всплесков достоверно обнаружено не было, и физики смогли лишь установить ограничения сверху на частоту таких событий. Это, впрочем, не слишком их удивляло: оценки показывали, что в той части Вселенной, которую тогда «прослушивал» детектор, вероятность достаточно мощного катаклизма была невелика: примерно один раз в несколько десятков лет.

Финишная прямая

С 2010 по 2015 годы коллаборации LIGO и Virgo кардинально модернизировали аппаратуру (Virgo, впрочем, еще в процессе подготовки). И вот теперь долгожданная цель находилась в прямой видимости. LIGO - а точнее, aLIGO (Advanced LIGO ) - теперь была готова отлавливать всплески, порожденные нейтронными звездами, на расстоянии 60 мегапарсек, и черными дырами - в сотни мегапарсек. Объем Вселенной, открытой для гравитационно-волнового прослушивания, вырос по сравнению с прошлыми сеансами в десятки раз.

Конечно, нельзя предсказать, когда и где будет следующий гравитационно-волновой «бабах». Но чувствительность обновленных детекторов позволяла рассчитывать на несколько слияний нейтронных звезд в год, так что первый всплеск можно было ожидать уже в ходе первого четырехмесячного сеанса наблюдений. Если же говорить про весь проект aLIGO длительностью в несколько лет, то вердикт был предельно ясным: либо всплески посыплются один за другим, либо что-то в ОТО принципиально не работает. И то, и другое станет большим открытием.

С 18 сентября 2015 года до 12 января 2016 года прошел первый сеанс наблюдений aLIGO. В течение всего этого времени по интернету гуляли слухи о регистрации гравитационных волн, но коллаборация хранила молчание: «мы набираем и анализируем данные и пока не готовы сообщить о результатах». Дополнительную интригу создавало то, что в процессе анализа сами члены коллаборации не могут быть полностью уверены, что они видят реальный гравитационно-волновой всплеск. Дело в том, что в LIGO в поток настоящих данных изредка искусственно внедряется сгенерированный на компьютере всплеск. Он называется «слепой вброс», blind injection , и из всей группы только три человека (!) имеют доступ к системе, которая осуществляет его в произвольный момент времени. Коллектив должен отследить этот всплеск, ответственно проанализировать его, и только на самых последних этапах анализа «открываются карты» и члены коллаборации узнают, было это реальным событием или же проверкой на бдительность. Между прочим, в одном таком случае в 2010 году дело даже дошло до написания статьи, но обнаруженный тогда сигнал оказался именно «слепым вбросом».

Лирическое отступление

Чтобы еще раз почувствовать торжественность момента, я предлагаю взглянуть на эту историю с другой стороны, изнутри науки. Когда сложная, неприступная научная задача не поддается несколько лет - это обычный рабочий момент. Когда она не поддается в течение более чем одного поколения, она воспринимается совершенно иначе.

Школьником ты читаешь научно-популярные книжки и узнаешь про эту сложную для решения, но страшно интересную научную загадку. Студентом ты изучаешь физику, делаешь доклады, и иногда, к месту или нет, люди вокруг тебя напоминают о ее существовании. Потом ты сам занимаешься наукой, работаешь в другой области физики, но регулярно слышишь про безуспешные попытки ее решить. Ты, конечно, понимаешь, что где-то ведется активная деятельность по ее решению, но итоговый результат для тебя как человека со стороны остается неизменным. Проблема воспринимается как статичный фон, как декорация, как вечный и почти неизменный на масштабах твоей научной жизни элемент физики. Как задача, которая всегда была и будет.

А потом - ее решают. И резко, на масштабах нескольких дней, ты чувствуешь, что физическая картина мира поменялась и что теперь ее надо формулировать в других выражениях и задавать другие вопросы.

Для людей, которые непосредственно работают над поиском гравитационных волн, эта задача, разумеется, не оставалась неизменной. Они видят цель, они знают, чего надо достигнуть. Они, конечно, надеются, что природа им тоже пойдет навстречу и подкинет в какой-нибудь близкой галактике мощный всплеск, но одновременно они понимают, что, даже если природа не будет так благосклонна, ей от ученых уже не спрятаться. Вопрос лишь в том, когда именно они смогут достичь поставленные технические цели. Рассказ об этом ощущении от человека, который несколько десятилетий занимался поиском гравитационных волн, можно услышать в упомянутом уже фильме «В ожидании волн и частиц» .

Открытие

На рис. 7 показан главный результат: профиль сигнала, зарегистрированного обоими детекторами. Видно, что на фоне шумов сначала слабо проступает, а потом нарастает по амплитуде и по частоте колебание нужной формы. Сравнение с результатами численного моделирования позволило выяснить, слияние каких объектов мы наблюдали: это были черные дыры с массами примерно 36 и 29 солнечных масс, которые слились в одну черную дыру массой 62 солнечных массы (погрешность всех этих чисел, отвечающая 90-процентному доверительному интервалу, составляет 4 солнечных массы). Авторы мимоходом замечают, что получившаяся черная дыра - самая тяжелая из когда-либо наблюдавшихся черных дыр звездных масс . Разница между суммарной массой двух исходных объектов и конечной черной дырой составляет 3±0,5 солнечных масс. Этот гравитационный дефект масс примерно за 20 миллисекунд полностью перешел в энергию излученных гравитационных волн. Расчеты показали, что пиковая гравитационно-волновая мощность достигала 3,6·10 56 эрг/с, или, в пересчете на массу, примерно 200 солнечных масс в секунду.

Статистическая значимость обнаруженного сигнала составляет 5,1σ. Иными словами, если предположить, что это статистические флуктуации наложились друг на друга и чисто случайно выдали подобный всплеск, такого события пришлось бы ждать 200 тысяч лет. Это позволяет с уверенностью заявить, что обнаруженный сигнал не является флуктуацией.

Временная задержка между двумя детекторами составила примерно 7 миллисекунд. Это позволило оценить направление прихода сигнала (рис. 9). Поскольку детекторов только два, локализация вышла очень приблизительной: подходящая по параметрам область небесной сферы составляет 600 квадратных градусов.

Коллаборация LIGO не ограничилась одной лишь констатацией факта регистрации гравитационных волн, но и провела первый анализ того, какие это наблюдение имеет последствия для астрофизики. В статье Astrophysical implications of the binary black hole merger GW150914 , опубликованной в тот же день в журнале The Astrophysical Journal Letters , авторы оценили, с какой частотой происходят такие слияния черных дыр. Получилось как минимум одно слияние в кубическом гигапарсеке за год, что сходится с предсказаниями наиболее оптимистичных в этом отношении моделей.

О чем расскажут гравитационные волны

Открытие нового явления после десятилетий поисков - это не завершение, а лишь начало нового раздела физики. Конечно, регистрация гравитационных волн от слияния черных двух важна сама по себе. Это прямое доказательство и существования черных дыр, и существования двойных черных дыр, и реальности гравитационных волн, и, если говорить вообще, доказательство правильности геометрического подхода к гравитации, на котором базируется ОТО. Но для физиков не менее ценно то, что гравитационно-волновая астрономия становится новым инструментом исследований, позволяет изучать то, что раньше было недоступно.

Во-первых, это новый способ рассматривать Вселенную и изучать космические катаклизмы. Для гравитационных волн нет препятствий, они без проблем проходят вообще сквозь всё во Вселенной. Они самодостаточны: их профиль несет информацию о породившем их процессе. Наконец, если один грандиозный взрыв породит и оптический, и нейтринный, и гравитационный всплеск, то можно попытаться поймать все их, сопоставить друг с другом, и разобраться в недоступных ранее деталях, что же там произошло. Уметь ловить и сравнивать такие разные сигналы от одного события - главная цель всесигнальной астрономии .

Когда детекторы гравитационных волн станут еще более чувствительными, они смогут регистрировать дрожание пространства-времени не в сам момент слияния, а за несколько секунд до него. Они автоматически пошлют свой сигнал-предупреждение в общую сеть наблюдательных станций, и астрофизические спутники-телескопы, вычислив координаты предполагаемого слияния, успеют за эти секунды повернуться в нужном направлении и начать съемку неба до начала оптического всплеска.

Во-вторых, гравитационно-волновой всплеск позволит узнать новое про нейтронные звезды, . Слияние нейтронных звезд - это, фактически, самый последний и самый экстремальный эксперимент над нейтронными звездами, который природа может поставить для нас, а нам как зрителям останется только наблюдать результаты. Наблюдательные последствия такого слияния могут быть разнообразными (рис. 10), и, набрав их статистику, мы сможем лучше понимать поведение нейтронных звезд в таких экзотических условиях. Обзор современного состояния дел в этом направлении можно найти в недавней публикации S. Rosswog, 2015. Multi-messenger picture of compact binary mergers .

В-третьих, регистрация всплеска, пришедшего от сверхновой, и сопоставление его с оптическими наблюдениями позволит наконец-то разобраться в деталях, что же там происходит внутри, в самом начале коллапса. Сейчас у физиков по-прежнему остаются сложности с численным моделированием этого процесса.

В-четвертых, у физиков, занимающихся теорией гравитации, появляется вожделенная «лаборатория» по изучению эффектов сильной гравитации. До сих пор все эффекты ОТО, которые мы могли непосредственно наблюдать, относились к гравитации в слабых полях. О том, что происходит в условиях сильной гравитации, когда искажения пространства-времени начинают сильно взаимодействовать сами с собой, мы могли догадываться лишь по косвенным проявлениям, через оптический отголосок космических катастроф.

В-пятых, появляется новая возможность для проверки экзотических теорий гравитации. Таких теорий в современной физике уже много, см. например посвященную им главу из популярной книги А. Н. Петрова «Гравитация». Некоторые из этих теорий напоминают обычную ОТО в пределе слабых полей, но могут сильно от нее отличаться, когда гравитация становится очень сильной. Другие допускают существование у гравитационных волн нового типа поляризации и предсказывают скорость, слегка отличающуюся от скорости света. Наконец, есть и теории, включающие дополнительные пространственные измерения. Что можно будет сказать по их поводу на основе гравитационных волн - вопрос открытый, но ясно, что кое-какой информацией здесь можно будет поживиться. Рекомендуем также почитать мнение самих астрофизиков о том, что изменится с открытием гравитационных волн, в подборке на Постнауке .

Планы на будущее

Перспективы гравитационно-волновой астрономии - самые воодушевляющие. Сейчас завершился лишь первый, самый короткий наблюдательный сеанс детектора aLIGO - и уже за это короткое время был пойман четкий сигнал. Точнее будет сказать так: первый сигнал был пойман еще до официального старта, и коллаборация пока что не отчиталась о всех четырех месяцах работы. Кто знает, может там уже есть несколько дополнительных всплесков? Так или иначе, но дальше, по мере увеличения чувствительности детекторов и расширения доступной для гравитационно-волновых наблюдений части Вселенной, количество зарегистрированных событий будет расти лавинообразно.

Ожидаемое расписание сеансов сети LIGO-Virgo показано на рис. 11. Второй, шестимесячный, сеанс начнется в конце этого года, третий сеанс займет почти весь 2018 год, и на каждом этапе чувствительность детектора будет расти. В районе 2020 года aLIGO должна выйти на запланированную чувствительность, которая позволит детектору прощупывать Вселенную на предмет слияния нейтронных звезд, удаленных от нас на расстояния до 200 Мпк. Для еще более энергетических событий слияния черных дыр чувствительность может добивать чуть ли до гигапарсека. Так или иначе, доступный для наблюдения объем Вселенной возрастет по сравнению с первым сеансом еще в десятки раз.

В конце этого года в игру также вступит и обновленная итальянская лаборатория Virgo. У нее чувствительность чуть поменьше, чем у LIGO, но тоже вполне приличная. За счет метода триангуляции, тройка разнесенных в пространстве детекторов позволит намного лучше восстанавливать положение источников на небесной сфере. Если сейчас, с двумя детекторами, область локализации достигает сотен квадратных градусов, то три детектора позволят уменьшить ее до десятков. Кроме того, в Японии сейчас строится аналогичная гравитационно-волновая антенна KAGRA, которая начнет работу через два-три года, а в Индии, в районе 2022 года, планируется запустить детектор LIGO-India. В результате спустя несколько лет будет работать и регулярно регистрировать сигналы целая сеть гравитационно-волновых детекторов (рис. 13).

Наконец, существуют планы по выводу гравитационно-волновых инструментов в космос, в частности, проект eLISA . Два месяца назад был запущен на орбиту первый, пробный спутник, задачей которого будет проверка технологий. До реального детектирования гравитационных волн здесь еще далеко. Но когда эта группа спутников начнет собирать данные, она откроет еще одно окно во Вселенную - через низкочастотные гравитационные волны. Такой всеволновой подход к гравитационным волнам - главная цель этой области в далекой перспективе.

Параллели

Открытие гравитационных волн стало уже третьим за последние годы случаем, когда физики наконец-то пробились через все препятствия и добрались до неизведанных ранее тонкостей устройства нашего мира. В 2012 году был открыт хиггсовский бозон - частица, предсказанная почти за полвека от этого. В 2013 году нейтринный детектор IceCube доказал реальность астрофизических нейтрино и начал «разглядывать вселенную» совершенно новым, недоступном ранее способом - через нейтрино высоких энергий. И вот сейчас природа поддалась человеку еще раз: открылось гравитационно-волновое «окно» для наблюдений вселенной и, одновременно с этим, стали доступны для прямого изучения эффекты сильной гравитации.

Надо сказать, нигде здесь не было никакой «халявы» со стороны природы. Поиски велись очень долго, но она не поддавалась потому, что тогда, десятилетия назад, аппаратура не дотягивала до результата по энергии, по масштабам, или по чувствительности. Привело к цели именно неуклонное, целенаправленное развитие технологий, развитие, которое не остановили ни технические сложности, ни отрицательные результаты прошлых лет.

И во всех трех случаях сам по себе факт открытия стал не завершением, а, наоборот, началом нового направления исследований, стал новым инструментом прощупывания нашего мира. Свойства хиггсовского бозона стали доступны измерению - и в этих данных физики пытаются разглядеть эффекты Новой физики. Благодаря возросшей статистике нейтрино высоких энергий, нейтринная астрофизика делает первые шаги . Как минимум то же самое сейчас ожидается и от гравитационно-волновой астрономии, и для оптимизма есть все основания.

Источники:
1) LIGO Scientific Coll. and Virgo Coll. Observation of Gravitational Waves from a Binary Black Hole Merger // Phys. Rev. Lett. Published 11 February 2016.
2) Detection Papers - список технических статей, сопровождающих основную статью об открытии.
3) E. Berti. Viewpoint: The First Sounds of Merging Black Holes // Physics. 2016. V. 9. N. 17.

Обзорные материалы:
1) David Blair et al. Gravitational wave astronomy: the current status // arXiv:1602.02872 .
2) Benjamin P. Abbott and LIGO Scientific Collaboration and Virgo Collaboration. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo // Living Rev. Relativity . 2016. V. 19. N. 1.
3) O. D. Aguiar. The Past, Present and Future of the Resonant-Mass Gravitational Wave Detectors // Res. Astron. Astrophys. 2011. V. 11. N. 1.
4) The search for gravitational waves - подборка материалов на сайте журнала Science по поиску гравитационных волн.
5) Matthew Pitkin, Stuart Reid, Sheila Rowan, Jim Hough. Gravitational Wave Detection by Interferometry (Ground and Space) // arXiv:1102.3355 .
6) В. Б. Брагинский. Гравитационно-волновая астрономия: новые методы измерений // УФН . 2000. Т. 170. С. 743–752.
7) Peter R. Saulson.

Валентин Николаевич Руденко делится историей своего визита в город Кашина (Италия), где он провел неделю на тогда еще только что построенной «гравитационной антенне» – оптическом интерферометре Майкельсона. По дороге к месту назначения таксист интересуется, для чего построена установка. «Тут люди думают, что это для разговора с Богом», – признается водитель.

– Что такое гравитационные волны?

– Гравитационная волна один из «переносчиков астрофизической информации». Существуют видимые каналы астрофизической информации, особая роль в «дальнем видении» принадлежит телескопам. Астрономы освоили также низкочастотные каналы – микроволновой и инфракрасный, и высокочастотные – рентгеновские и гамма-. Кроме электромагнитного излучения, мы можем регистрировать потоки частиц из Космоса. Для этого используют нейтринные телескопы – крупногабаритные детекторы космических нейтрино – частиц, которые слабо взаимодействуют с веществом и поэтому трудно регистрируются. Почти все теоретически предсказанные и лабораторно-исследованные виды «переносчиков астрофизической информации» надежно освоены на практике. Исключение составляла гравитация – самое слабое взаимодействие в микромире и самая мощная сила в макромире.

Гравитация – это геометрия. Гравитационные волны – геометрические волны, то есть волны, которые меняют геометрические характеристики пространства, когда проходят по этому пространству. Грубо говоря, это – волны, деформирующие пространство. Деформация – это относительное изменение расстояния между двумя точками. Гравитационное излучение отличается от всех других типов излучений именно тем, что они геометрические.

– Гравитационные волны предсказал Эйнштейн?

– Формально считается, что гравитационные волны предсказал Эйнштейн, как одно из следствий его общей теории относительности, но фактически их существование становится очевидным уже в специальной теории относительности.

Теория относительности предполагает, что из-за гравитационного притяжения возможен гравитационный коллапс, то есть стягивание объекта в результате коллапсирования, грубо говоря, в точку. Тогда гравитация такая сильная, что из нее даже не может выйти свет, поэтому такой объект образно называется черной дырой.

– В чем заключается особенность гравитационного взаимодействия?

Особенностью гравитационного взаимодействия является принцип эквивалентности. Согласно ему динамическая реакция пробного тела в гравитационном поле не зависит от массы этого тела. Проще говоря, все тела падают с одинаковым ускорением.

Гравитационное взаимодействие – самое слабое из известных нам сегодня.

– Кто первым пытался поймать гравитационную волну?

– Гравитационно-волновой эксперимент первым провел Джозеф Вебер из Мэрилендского университета (США). Он создал гравитационный детектор, который теперь хранится в Смитсоновском музее в Вашингтоне. В 1968-1972 году Джо Вебер провел серию наблюдений на паре пространственно разнесенных детекторов, пытаясь выделить случаи «совпадений». Прием совпадений заимствован из ядерной физики. Невысокая статистическая значимость гравитационных сигналов, полученных Вебером, вызывала критическое отношение к результатам эксперимента: не было уверенности в том, что удалось зафиксировать гравитационные волны. В дальнейшим ученые пытались увеличить чувствительность детекторов веберовского типа. На разработку детектора, чувствительность которого была адекватна астрофизическому прогнозу, ушло 45 лет.

За время начала эксперимента до фиксации прошло много других экспериментов, были зафиксированы импульсы за этот период, но у них была слишком маленькая интенсивность.

– Почему о фиксации сигнала объявили не сразу?

– Гравитационные волны были зафиксированы еще в сентябре 2015 года. Но даже если совпадение было зафиксировано, надо прежде, чем объявлять, доказать, что оно не является случайным. В сигнале, снимаемом с любой антенны, всегда есть шумовые выбросы (кратковременные всплески), и один из них случайно может произойти одновременно с шумовым всплеском на другой антенне. Доказать, что совпадение произошло не случайно можно только с помощью статистических оценок.

– Почему открытия в области гравитационных волн так важны?

– Возможность зарегистрировать реликтовый гравитационный фон и измерить его характеристики, такие как плотность, температура и т.п., позволяет подойти к началу мироздания.

Привлекательным является то, что гравитационное излучение трудно обнаружить, потому что оно очень слабо взаимодействует с веществом. Но, благодаря этому же свойству, оно и проходит без поглощений из самых далеких от нас объектов с самыми таинственными, с точки зрения материи, свойствами.

Можно сказать, что гравитационные излучения проходят без искажения. Наиболее амбициозная цель – исследовать то гравитационное излучение, которое было отделено от первичной материи в Теории Большого Взрыва, которое создалось в момент создания Вселенной.

– Исключает ли открытие гравитационных волн квантовую теорию?

Теория гравитации предполагает существование гравитационного коллапса, то есть стягивание массивных объектов в точку. В то же время, квантовая теория, которую развивала Копенгагенская школа предполагает, что, благодаря принципу неопределенности, нельзя одновременно указать точно такие параметры как координата, скорость и импульс тела. Здесь есть принцип неопределенности, нельзя определить точно траекторию, потому что траектория – это и координата, и скорость и т. д. Можно определить только некий условный доверительный коридор в пределах этой ошибки, которая связана с принципами неопределенности. Квантовая теория категорически отрицает возможность точечных объектов, но описывает их статистически вероятностным образом: не конкретно указывает координаты, а указывает вероятность того, что она имеет определенные координаты.

Вопрос об объединении квантовой теории и теории гравитации – один из фундаментальных вопросов создания единой теории поля.

Над ним сейчас продолжают работать, и слова “квантовая гравитация” означают совершенно передовую область науки, границу знаний и незнаний, где сейчас работают все теоретики мира.

– Что может дать открытие в будущем?

Гравитационные волны неизбежно должны лечь в фундамент современной науки как одна из составляющих нашего знания. Им отводится существенная роль в эволюции Вселенной и с помощью этих волн Вселенную следует изучать. Открытие способствует общему развитию науки и культуры.

Если решиться выйти за рамки сегодняшней науки, то допустимо представить себе линии телекоммуникационной гравитационной связи, реактивные аппараты на гравитационной радиации, гравитационно-волновые приборы интроскопии.

– Имеют ли отношение гравитационные волны к экстрасенсорике и телепатии?

Не имеют. Описанные эффекты – это эффекты квантового мира, эффекты оптики.

Беседовала Анна Уткина

11 февраля 2016-го года международная группа ученых, в том числе из России, на пресс-конференции в Вашингтоне объявила об открытии, которое рано или поздно изменит развитие цивилизации. Удалось на практике доказать гравитационные волны или волны пространства-времени. Их существование предсказал еще 100 лет назад Альберт Эйнштейн в своей .

Никто не сомневается, что это открытие будет удостоено Нобелевской премии. Учёные не торопятся говорить о его практическом применении. Но напоминают, что еще совсем недавно человечество точно также не знало, что делать с электромагнитными волнами, которые в итоге привели к настоящей научно-технической революции.

Что такое гравитационные волны простым языком

Гравитация и всемирное тяготение – это одно и то же. Гравитационные волны являются одним из решений ОТС. Распространяться они должны со скоростью света. Излучает его любое тело, движущееся с переменным ускорением.

Например, вращается по своей орбите с переменным ускорением, направленным к звезде. И это ускорение постоянно изменяется. Солнечная система излучает энергию порядка нескольких киловатт в гравитационных волнах. Это ничтожная величина, сравнимая с 3 старыми цветными телевизорами.

Другое дело – два вращающихся вокруг друг друга пульсара (нейтронных звезды). Они вращаются по очень тесным орбитам. Такая «парочка» была обнаружена астрофизиками и наблюдалась долгое время. Объекты готовы были друг на друга упасть, что косвенно свидетельствовало, что пульсары излучают волны пространства-времени, то есть энергию в их поле.

Гравитация – сила тяготения. Нас тянет к земле. А суть гравитационной волны – изменение этого поля, чрезвычайно слабое, когда до нас доходит. К примеру, возьмем уровень воды в водоёме. Напряженность гравитационного поля — ускорение свободного падения в конкретной точке. По нашему водоёму бежит волна, и вдруг меняется ускорение свободного падения, совсем чуть-чуть.

Такие опыты начались в 60-е годы прошлого столетия. В ту пору придумывали так: подвешивали огромный алюминиевый цилиндр, охлажденный во избежание внутренних тепловых колебаний. И ждали, когда до нас внезапно дойдет волна от столкновения, например, двух массивных черных дыр. Исследователи были полны энтузиазма и говорили, что весь земной шар может испытать воздействие гравитационной волны, прилетевшей из космического пространства. Планета начнет колебаться, и можно будет изучить эти сейсмические волны (сжатия, сдвига и поверхностные).

Важная статья об устройстве простым языком, и как американцы и LIGO украли идею советских учёных и построили интроферометры, позволившие сделать открытие. Никто не говорит об этом, все молчат!

Между прочим, гравитационное излучение больше интересно с позиции реликтового излучения, найти которое пытаются по изменению спектра электромагнитного излучения. Реликтовое и электромагнитное излучение появились 700 тыс. лет после Большого взрыва, затем в процессе расширения вселенной, заполненной горячим газом с бегающими ударными волнами, превратившимися позже в галактики. При этом, естественно, должны были излучаться гигантское, умопомрачительное количество волн пространства-времени, влияющих на длину волны реликтового излучения, которое в то время еще было оптическим. Отечественный астрофизик Сажин пишет и регулярно публикует статьи на эту тему.

Неверная интерпретация открытия гравитационных волн

«Висит зеркало, на него действует гравитационная волна, и оно начинает колебаться. И даже самые незначительные колебания амплитудой меньше размера атомного ядра замечаются приборами» — такая неверная интерпретация, например, используется в статье Википедии. Не поленитесь, найдите статью советских учёных 1962 года.

Во-первых, зеркало должно быть массивным, чтобы почувствовать «рябь». Во-вторых, его нужно охлаждать практически до абсолютного нуля (по Кельвину), чтобы избежать собственных тепловых колебаний. Скорее всего не то что в 21 веке, а вообще никогда не удастся обнаружить элементарную частицу — носителя гравитационных волн:

, США
© REUTERS, Handout

Гравитационные волны наконец-то открыты

Популярная наука

Колебания в пространстве-времени открыты спустя столетие после того, как их предсказал Эйнштейн. Начинается новая эра в астрономии.

Ученым удалось обнаружить колебания в пространстве-времени, вызываемые слиянием черных дыр. Это произошло через сто лет после того, как Альберт Эйнштейн в своей общей теории относительности предсказал эти «гравитационные волны», и через сто лет после того, как физики занялись их поисками.

Об этом знаковом открытии сообщили сегодня исследователи из Лазерной интерферометрической гравитационно-волновой обсерватории LIGO. Они подтвердили слухи, которые уже несколько месяцев окружали анализ первого набора собранных ими данных. Астрофизики говорят, что открытие гравитационных волн позволяет по-новому взглянуть на вселенную и дает возможность распознавать далекие события, которые невозможно увидеть в оптические телескопы, но можно почувствовать и даже услышать их слабое дрожание, доносящееся до нас через космос.

«Мы обнаружили гравитационные волны. Мы сделали это!» — объявил исполнительный директор научного коллектива из одной тысячи человек Дэвид Рейце (David Reitze), выступая сегодня на пресс-конференции в Вашингтоне в Национальном научном фонде.

Гравитационные волны — это, пожалуй, самое трудноуловимое явление из прогнозов Эйнштейна, на эту тему ученый дискутировал с современниками на протяжении десятилетий. Согласно его теории, пространство и время формируют растягивающуюся материю, которая искривляется под воздействием тяжелых объектов. Почувствовать гравитацию значит попасть в изгибы этой материи. Но может ли это пространство-время дрожать подобно шкуре барабана? Эйнштейн был в замешательстве, он не знал, что означают его уравнения. И неоднократно менял свою точку зрения. Но даже самые стойкие сторонники его теории полагали, что гравитационные волны в любом случае слишком слабы и не поддаются наблюдению. Они расходятся каскадом наружу после определенных катаклизмов, и по мере движения попеременно растягивают и сжимают пространство-время. Но к тому времени, как эти волны достигают Земли, они растягивают и сжимают каждый километр пространства на ничтожную долю диаметра атомного ядра.


© REUTERS, Hangout Детектор обсерватории LIGO в Ханфорде, штат Вашингтон

Чтобы засечь эти волны, понадобилось терпение и осторожность. Обсерватория LIGO запускала лазерные лучи туда и обратно вдоль расположенных под прямым углом четырехкилометровых колен двух детекторов, — один в Ханфорде, штат Вашингтон, а другой в Ливингстоне, штат Луизиана. Делалось это в поисках совпадающих расширений и сокращений этих систем при прохождении гравитационных волн. Используя самые современные стабилизаторы, вакуумные приборы и тысячи датчиков, ученые измеряли изменения в длине этих систем, составляющие всего одну тысячную от размера протона. Такая чувствительность приборов была немыслима сто лет тому назад. Невероятной она казалась и в 1968 году, когда Райнер Вайс (Rainer Weiss) из Массачусетского технологического института задумал эксперимент, получивший название LIGO.

«Это великое чудо, что в конечном итоге им все удалось. Они сумели засечь эти крохотные вибрации!» — сказал теоретический физик из Арканзасского университета Дэниел Кеннефик (Daniel Kennefick), написавший в 2007 году книгу Traveling at the Speed of Thought : Einstein and the Quest for Gravitational Waves (Путешествуя со скоростью мысли. Эйнштейн и поиски гравитационных волн).

Это открытие положило начало новой эре астрономии гравитационных волн. Есть надежда, что у нас появятся более точные представления о формировании, составе и галактической роли черных дыр — этих сверхплотных шаров массы, которые искажают пространство-время настолько резко, что оттуда не может выйти даже свет. Когда черные дыры сближаются друг с другом и сливаются, они порождают импульсный сигнал — пространственно-временные колебания, которые нарастают по амплитуде и тону, а затем резко заканчиваются. Те сигналы, которые может фиксировать обсерватория, находятся в звуковом диапазоне — правда, они слишком слабые , и невооруженным ухом их не услышать. Можно воссоздать этот звук, пробежав пальцами по клавишам фортепьяно. «Начинайте с самой низкой ноты и доходите до третьей октавы, — сказал Вайс. — Это то, что мы слышим».

Физики уже удивляются тому количеству и силе сигналов, которые зафиксированы на данный момент. Это значит, что в мире больше черных дыр, чем предполагалось ранее. «Нам повезло, но я всегда рассчитывал на такое везение, — сказал астрофизик Кип Торн (Kip Thorne), работающий в Калифорнийском технологическом институте и создавший LIGO совместно с Вайсом и Рональдом Дривером (Ronald Drever), которые тоже из Калтеха. — Обычно такое случается тогда, когда во вселенной открывается совершенно новое окно».

Подслушав гравитационные волны, мы можем сформировать совсем другие представления о космосе, а возможно, откроем невообразимые космические явления.

«Я могу сравнить это с моментом, когда мы впервые направили в небо телескоп, — сказала теоретический астрофизик Жанна Левин (Janna Levin) из Барнард-колледжа Колумбийского университета. — Люди поняли, что там что-то есть, и это можно увидеть, но они не могли предугадать тот невероятный набор возможностей, которые существуют во вселенной». Аналогичным образом, заметила Левин, открытие гравитационных волн может показать, что во вселенной «полно темной материи, которую мы не в состоянии просто так определить при помощи телескопа».

История открытия первой гравитационной волны началась в понедельник утром в сентябре, и началась она с хлопка. Сигнал был такой четкий и громкий, что Вайс подумал: «Нет, это ерунда, ничего из этого не выйдет».

Накал страстей

Эта первая гравитационная волна прокатилась по детекторам модернизированной LIGO — сначала в Ливингстоне, а спустя семь миллисекунд в Ханфорде — во время имитационного прогона рано утром 14 сентября, за два дня до официального начала сбора данных.

Детекторы проходили «обкатку» после модернизации, длившейся пять лет и стоившей 200 миллионов долларов. Их оснастили новыми зеркальными подвесками для шумоподавления и системой активной обратной связи для подавления посторонних колебаний в режиме реального времени. Модернизация дала усовершенствованной обсерватории более высокий уровень чувствительности по сравнению со старой LIGO, которая в период с 2002 по 2010 годы обнаружила «абсолютный и чистый ноль», как выразился Вайс.

Когда в сентябре пришел мощный сигнал, ученые в Европе, где в тот момент было утро, начали спешно засыпать своих американских коллег сообщениями по электронной почте. Когда проснулась остальная группа, новость распространилась очень быстро. По словам Вайса, практически все отнеслись к этому скептически, особенно когда увидели сигнал. Это была настоящая классика, как из учебника, и поэтому кое-кто подумал, что это подделка.

Ошибочные утверждения в процессе поиска гравитационных волн звучали многократно, начиная с конца 1960-х годов, когда Джозеф Вебер (Joseph Weber) из Мэрилендского университета посчитал, что он обнаружил резонансные колебания в алюминиевом цилиндре с датчиками в ответ на волны. В 2014 году состоялся эксперимент под названием BICEP2, по результатам которого было объявлено об обнаружении изначальных гравитационных волн — пространственно-временных колебаний от Большого взрыва, которые к настоящему времени растянулись и на постоянной основе застыли в геометрии вселенной. Ученые из группы BICEP2 объявили о своем открытии с большой помпой, но потом их результаты были подвергнуты независимой проверке, в ходе которой выяснилось, что они неправы, и что этот сигнал пришел от космической пыли.

Когда космолог из Университета штата Аризона Лоуренс Краусс (Lawrence Krauss) услышал об открытии команды LIGO, он сначала подумал, что это «слепой вброс». Во время работы старой обсерватории смоделированные сигналы тайком вставляли в потоки данных для проверки реакции, и большая часть коллектива об этом не знала. Когда Краусс от знающего источника узнал, что на сей раз это не «слепой вброс», он с трудом смог сдержать радостное возбуждение.

25 сентября он сообщил своим 200 тысячам подписчикам в Твиттере: «Слухи об обнаружении гравитационной волны на детекторе LIGO. Поразительно, если правда. Сообщу детали, если это не липа». Затем следует запись от 11 января: «Прежние слухи о LIGO подтверждены независимыми источниками. Следите за новостями. Возможно, открыты гравитационные волны!»

Официальная позиция ученых была такова: не распространяться о полученном сигнале, пока не будет стопроцентной уверенности. Торн, по рукам и ногам связанный этим обязательством хранить тайну, даже жене ничего не сказал. «Я отпраздновал в одиночку», — заявил он. Для начала ученые решили вернуться в самое начало и проанализировать все до мельчайших деталей, чтобы узнать, как распространялся сигнал через тысячи каналов измерения различных детекторов, и понять, не было ли чего-то странного в момент обнаружения сигнала. Они не нашли ничего необычного. Они также исключили хакеров, которые лучше всех должны были знать о тысячах потоков данных в ходе эксперимента. «Даже тогда, когда команда осуществляет слепые вбросы, они недостаточно совершенны, и оставляют после себя множество следов, — сказал Торн. — А здесь никаких следов не было».

В последующие недели они услышали еще один, более слабый сигнал.

Ученые анализировали первые два сигнала, а к ним поступали все новые. В январе они представили материалы своего исследования в журнале Physical Review Letters. Этот номер выходит в интернет-версии сегодня. По их оценкам, статистическая значимость первого, наиболее мощного сигнала превышает «5-sigma», а это значит, что исследователи на 99,9999% уверены в его подлинности.

Слушая гравитацию

Уравнения общей относительности Эйнштейна настолько сложны, что у большинства физиков ушло 40 лет на то, чтобы согласиться: да, гравитационные волны существуют, и их можно засечь — даже теоретически.

Сначала Эйнштейн думал, что объекты не могут выделять энергию в виде гравитационного излучения, но потом поменял свою точку зрения. В своей исторической работе, написанной в 1918 году, он показал, какие объекты могут это делать: гантелевидные системы, которые одновременно вращаются вокруг двух осей, например, двойные и сверхновые звезды, взрывающиеся подобно хлопушкам. Они-то и могут порождать волны в пространстве-времени.


© REUTERS, Handout Компьютерная модель, иллюстрирующая природу гравитационных волн в Солнечной системе

Но Эйнштейн и его коллеги продолжали колебаться. Некоторые физики утверждали, что даже если волны существуют, мир будет колебаться вместе с ними, и ощутить их будет невозможно. И лишь в 1957 году Ричард Фейнман (Richard Feynman) закрыл этот вопрос, продемонстрировав в ходе мысленного эксперимента, что если гравитационные волны существуют, теоретически их можно обнаружить. Но никто не знал, насколько распространены эти гантелевидные системы в космическом пространстве, и насколько сильны или слабы возникающие в результате волны. «В конечном итоге, вопрос звучал так: сможем ли мы когда-нибудь их обнаружить?» — сказал Кеннефик.

В 1968 году Райнер Вайс был молодым преподавателем Массачусетского технологического института, и ему поручили вести курс общей теории относительности. Будучи экспериментатором, он мало что знал о ней, но вдруг появились новости об открытии Вебером гравитационных волн. Вебер построил из алюминия три резонансных детектора размером с письменный стол и разместил их в разных американских штатах. Теперь он сообщил, что во всех трех детекторах зафиксировано «звучание гравитационных волн».

Ученики Вайса попросили объяснить природу гравитационных волн и высказать свое мнение о прозвучавшем сообщении. Изучая детали, он был поражен сложностью математических расчетов. «Я не мог понять, какого черта делает Вебер, как датчики взаимодействуют с гравитационной волной. Я подолгу сидел и спрашивал себя: „Какую я могу придумать самую примитивную вещь, чтобы она обнаруживала гравитационные волны?“ И тут мне в голову пришла идея, которую я называю концептуальной основой LIGO».

Представьте себе три предмета в пространстве-времени, скажем, зеркала в углах треугольника. «Посылайте световой сигнал от одного к другому, — рассказывал Вебер. — Смотрите, сколько времени уходит на переход от одной массы к другой, и проверяйте, изменилось ли время». Оказывается, отметил ученый, это можно сделать быстро. «Я поручил это своим студентам в качестве научного задания. Буквально вся группа смогла сделать эти расчеты».

В последующие годы, когда другие исследователи пытались повторить результаты эксперимента Вебера с резонансным детектором, но постоянно терпели неудачу (непонятно, что наблюдал он, но это были не гравитационные волны), Вайс начал готовить гораздо более точный и амбициозный эксперимент: гравитационно-волновой интерферометр. Лазерный луч отражается от трех зеркал, установленных в форме буквы «Г» и формирует два луча. Интервал пиков и провалов световых волн точно указывает длину колен буквы «Г», которые создают оси Х и Y пространства-времени. Когда шкала неподвижна, две световые волны отражаются от углов и гасят друг друга. Сигнал в детекторе получается нулевой. Но если через Землю проходит гравитационная волна, она растягивает длину одного плеча буквы «Г» и сжимает длину другого (и наоборот поочередно). Несовпадение двух световых лучей создает сигнал в детекторе, показывая легкие колебания пространства-времени.

Сначала коллеги-физики проявляли скептицизм, но вскоре эксперимент обрел поддержку в лице Торна, чья группа теоретиков из Калтеха исследовала черные дыры и прочие потенциальные источники гравитационных волн, а также порождаемые ими сигналы. Торна вдохновил эксперимент Вебера и аналогичные усилия российских ученых. Поговорив в 1975 году на конференции с Вайсом, «я начал верить, что обнаружение гравитационных волн пройдет успешно», сказал Торн. «И я хотел, чтобы Калтех в этом тоже участвовал». Он договорился с институтом, чтобы тот взял на работу шотландского экспериментатора Рональда Дривера, который также заявлял, что построит гравитационно-волновой интерферометр. Со временем Торн, Дривер и Вайс начали работать как одна команда, и каждый из них решал свою долю бесчисленных задач в рамках подготовки практического эксперимента. Это трио в 1984 году создало LIGO, а когда были построены опытные образцы и началось сотрудничество в рамках постоянно увеличивавшегося коллектива, они в начале 1990-х получили от Национального научного фонда финансирование в размере 100 миллионов долларов. Были составлены чертежи для строительства пары гигантских детекторов Г-образной формы. Спустя десятилетие детекторы заработали.

В Ханфорде и Ливингстоне в центре каждого из четырехкилометровых колен детекторов находится вакуум, благодаря которому лазер, его пучок и зеркала максимально изолированы от постоянных колебаний планеты. Чтобы еще больше застраховаться, ученые LIGO следят за своими детекторами во время их работы при помощи тысяч приборов, измеряя все что можно: сейсмическую активность, атмосферное давление, молнии, появление космических лучей, вибрацию оборудования, звуки в районе лазерного луча и так далее. Затем они отфильтровывают свои данные от этих посторонних фоновых шумов. Пожалуй, главное в том, что у них два детектора, а это позволяет сличать полученные данные, проверяя их на наличие совпадающих сигналов.

Контекст

Гравитационные волны: завершено то, что Эйнштейн начал в Берне

SwissInfo 13.02.2016

Как умирают черные дыры

Medium 19.10.2014
Внутри создаваемого вакуума, даже в условиях полной изоляции и стабилизации лазеров и зеркал «все время происходят странные вещи», говорит заместитель пресс-секретаря проекта LIGO Марко Кавалья (Marco Cavaglià). Ученые должны отслеживать этих «золотых рыбок», «призраков», «непонятных морских монстров» и прочие посторонние вибрационные явления, выясняя их источник, чтобы устранить его. Один трудный случай произошел на проверочном этапе, рассказала научный исследователь из коллектива LIGO Джессика Макайвер (Jessica McIver), исследующая такие посторонние сигналы и помехи. Среди данных часто появлялась череда периодических одночастотных шумов. Когда она вместе с коллегами преобразовала вибрации зеркал в аудиофайлы, «стал отчетливо слышен звонок телефона», сказала Макайвер. «Оказалось, что это рекламщики связи звонили по телефону внутри лазерного помещения».

В предстоящие два года ученые продолжат совершенствовать чувствительность детекторов модернизированной Лазерной интерферометрической гравитационно-волновой обсерватории LIGO. А в Италии начнет работать третий интерферометр под названием Advanced Virgo. Один из ответов, который помогут дать полученные данные, это как формируются черные дыры. Являются ли они продуктом схлопывания самых ранних массивных звезд, или они появляются в результате столкновений внутри плотных звездных кластеров? «Это только два предположения, я полагаю, их будет больше, когда все успокоятся», — говорит Вайс. Когда в ходе предстоящей работы LIGO начнет накапливать новые статистические данные, ученые начнут слушать истории о происхождении черных дыр, которые им будет нашептывать космос.

Судя по форме и размеру, первый, самый громкий импульсный сигнал возник в 1,3 миллиарда световых лет от того места, где после длившегося вечность медленного танца под влиянием взаимного гравитационного притяжения наконец слились две черные дыры, каждая примерно в 30 раз больше солнечной массы. Черные дыры кружили все быстрее и быстрее, подобно водовороту, постепенно сближаясь. Потом произошло слияние, и они в мгновение ока выпустили гравитационные волны с энергией, сопоставимой энергии трех Солнц. Это слияние стало самым мощным энергетическим явлением из когда-либо зафиксированных.

«Как будто мы никогда не видели океан во время шторма», — сказал Торн. Он ждал этого шторма в пространстве-времени с 1960-х годов. То чувство, которое Торн испытал в момент, когда накатили эти волны, нельзя назвать волнением, говорит он. Это было нечто иное: чувство глубочайшего удовлетворения.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.