По литературе

Множество значений функции онлайн калькулятор с решением. Функция: область определения и область значений функций. Область определения постоянной

Дробные уравнения. ОДЗ.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний виддробные уравнения . Или их ещё называют гораздо солиднее – дробные рациональные уравнения . Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе . Хотя бы в одном. Например:

Напомню, если в знаменателях только числа , это линейные уравнения.

Как решать дробные уравнения ? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2) . Умножаем:

Это обычное умножение дробей, но распишу подробно:

Обратите внимание, я пока не раскрываю скобку (х + 2) ! Так, целиком, её и пишу:

В левой части сокращается целиком (х+2) , а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

А это уравнение уже решит всякий! х = 2 .

Решим ещё один пример, чуть посложнее:

Если вспомнить, что 3 = 3/1, а 2х = 2х/ 1, можно записать:

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2) . А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

А вот теперь уже раскрываем скобки:

Приводим подобные, переносим всё в левую часть и получаем:

Но до того мы другие задачи научимся решать. На проценты. Те ещё грабли, между прочим!

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений . Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

  • не влиять на ОДЗ;
  • приводить к расширению ОДЗ;
  • приводить к сужению ОДЗ.

Давайте поясним каждый случай примером.

Рассмотрим выражение x 2 +x+3·x , ОДЗ переменной x для этого выражения есть множество R . Теперь проделаем с этим выражением следующее тождественное преобразование – приведем подобные слагаемые , в результате оно примет вид x 2 +4·x . Очевидно, ОДЗ переменной x этого выражения тоже является множество R . Таким образом, проведенное преобразование не изменило ОДЗ.

Переходим дальше. Возьмем выражение x+3/x−3/x . В этом случае ОДЗ определяется условием x≠0 , которое отвечает множеству (−∞, 0)∪(0, +∞) . Это выражение тоже содержит подобные слагаемые, после приведения которых приходим к выражению x , для которого ОДЗ есть R . Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

Осталось рассмотреть пример сужения области допустимых значений после проведения преобразований. Возьмем выражение . ОДЗ переменной x определяется неравенством (x−1)·(x−3)≥0 , для его решения подходит, например, в результате имеем (−∞, 1]∪∪; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М. : Просвещение, 2010.- 368 с. : ил.- ISBN 978-5-09-022771-1.
  • Шамшурин А.В. 1

    Гагарина Н.А. 1

    1 Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №31»

    Текст работы размещён без изображений и формул.
    Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

    Введение

    Я начал работу с того, что в Интернете пересмотрел множество тем по математике и выбрал эту тему, потому что уверен, что важность нахождения ОДЗ играет огромную роль в решении уравнений и задач. В своей исследовательской работе я рассмотрел уравнения, в которых достаточно только нахождения ОДЗ, опасность, необязательность, ограниченность ОДЗ, некоторые запреты в математике. Самое главное для меня хорошо сдать ЕГЭ по математике, а для этого надо знать: когда, зачем и как находить ОДЗ. Это и подтолкнуло меня к исследованию темы, целью которой, стало показать, что овладение данной темой поможет учащимся правильно выполнить задания на ЕГЭ. Чтобы достичь этой цели, я исследовал дополнительную литературу и другие источники. Мне стало интересно, а знают учащиеся нашей школы: когда, зачем и как находить ОДЗ. Поэтому я провёл тест по теме «Когда, зачем и как находить ОДЗ?» (было дано 10 уравнений). Количество учащихся - 28. Справились - 14 %, опасность ОДЗ (учли) - 68 %, необязательность (учли) - 36 %.

    Цель : выявление: когда, зачем и как находить ОДЗ.

    Проблема: уравнения и неравенства, в которых нужно находить ОДЗ, не нашли места в курсе алгебры систематического изложения, возможно поэтому я и мои сверстники часто делаем ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об ОДЗ.

    Задачи:

    1. Показать значимость ОДЗ при решении уравнений и неравенств.
    2. Провести практическую работу по данной теме и подвести её итоги.

    Я думаю полученные мною, знания и навыки помогут мне решить вопрос: искать ОДЗ или не надо? Я перестану делать ошибки, научившись правильно делать ОДЗ. Получится ли у меня это, покажет время, точнее ЕГЭ.

    Глава 1

    Что такое ОДЗ?

    ОДЗ - это область допустимых значений , то есть это все значения переменной, при которых выражение имеет смысл.

    Важно. Для нахождения ОДЗ мы не решаем пример! Мы решаем кусочки примера для нахождения запретных мест.

    Некоторые запреты в математике. Таких запретных действий в математике очень мало. Но их не все помнят…

    • Выражения, состоящие под знаком чётной кратности или должно быть>0 или равно нулю, ОДЗ:f(x)
    • Выражение, стоящее в знаменателе дроби не может быть равно нулю, ОДЗ:f(x)
    • |f(x)|=g(x), ОДЗ: g(x) 0

    Как записать ОДЗ? Очень просто. Всегда рядом с примером пишите ОДЗ. Под этими известными буквами, глядя на исходное уравнение, записываем значения х, которые разрешены для исходного примера. Преобразование примера может изменить ОДЗ и, соответственно ответ.

    Алгоритм нахождения ОДЗ:

    1. Определите вид запрета.
    2. Найти значения, при которых выражение не имеет смысла.
    3. Исключить эти значения из множества действительных чисел R.

    Решить уравнение: =

    Без ОДЗ

    С ОДЗ

    Ответ: х=5

    ОДЗ: => =>

    Ответ: корней нет

    Область допустимых значений оберегает нас от таких серьёзных ошибок. Честно говоря, именно из-за ОДЗ многие «ударники» превращаются в «троечников». Считая, что поиск и учёт ОДЗ малозначимым шагом в решении, они пропускают его, а потом удивляются: «почему учитель поставил 2?». Да потому и поставил, что ответ неверен! Это не «придирки» учителя, а вполне конкретная ошибка, такая же как неверное вычисление или потерянный знак.

    Дополнительные уравнения:

    а) = ; б) -42=14х+ ; в) =0; г) |x-5|=2x-2

    Глава 2

    ОДЗ. Зачем? Когда? Как?

    Область допустимых значений - есть решение

    1. ОДЗ представляет собой пустое множество, а значит, исходный пример не имеет решений
    • = ОДЗ:

    Ответ: корней нет.

    • = ОДЗ:

    Ответ: корней нет.

    0, уравнение не имеет корней

    Ответ: корней нет.

    Дополнительные примеры:

    а) + =5; б) + =23х-18; в) =0.

    1. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

    ОДЗ: х=2, х=3

    Проверка: х=2, + , 0<1, верно

    Проверка: х=3, + , 0<1, верно.

    Ответ: х=2, х=3.

    • > ОДЗ: х=1,х=0

    Проверка: х=0, > , 0>0, неверно

    Проверка: х=1, > , 1>0, верно

    Ответ: х=1.

    • + =х ОДЗ: х=3

    Проверка: + =3, 0=3, неверно.

    Ответ: корней нет.

    Дополнительные примеры:

    а) = ; б) + =0; в) + =х -1

    Опасность ОДЗ

    Заметим, тождественные преобразования могут:

    • не влиять на ОДЗ;
    • приводить к расширенному ОДЗ;
    • приводить к сужению ОДЗ.

    Известно также, что в результате некоторых преобразований, изменяющих исходное ОДЗ, может привести к неверным решениям.

    Давайте поясним каждый случай примером.

    1) Рассмотрим выражение х +4х+7х, ОДЗ переменной х для этого есть множество R. Приведём подобные слагаемые. В результате оно примет вид x 2 +11x. Очевидно, ОДЗ переменной x этого выражения тоже является множество R. Таким образом, проведенное преобразование не изменило ОДЗ.

    2) Возьмем уравнение x+ - =0. В этом случае ОДЗ: x≠0. Это выражение тоже содержит подобные слагаемые, после приведения которых, приходим к выражению x, для которого ОДЗ есть R. Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

    3) Возьмем выражение. ОДЗ переменной x определяется неравенством (x−5)·(x−2)≥0, ОДЗ: (−∞, 2]∪∪/Режим доступа: Материалы сайтов www.fipi.ru, www.eg

  • Область допустимых значений - есть решение [Электронный ресурс]/Режим доступа: rudocs.exdat.com›docs/index-16853.html
  • ОДЗ - область допустимых значений, как найти ОДЗ [Электронный ресурс]/Режим доступа: cleverstudents.ru›expressions/odz.html
  • Область допустимых значений: теория и практика [Электронный ресурс]/Режим доступа: pandia.ru›text/78/083/13650.php
  • Что такое ОДЗ [Электронный ресурс]/ Режим доступа: www.cleverstudents.ru›odz.html
  • Что такое ОДЗ и как его искать - объяснение и пример. Электронный ресурс]/ Режим доступа: cos-cos.ru›math/82/
  • Приложение 1

    Практическая работа «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    │х+14│= 2 - 2х

    │3-х│=1 - 3х

    Приложение 2

    Ответы к заданиям практической работы «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    Ответ: корней нет

    Ответ: х-любое число, кроме х=5

    9х+ = +27 ОДЗ: х≠3

    Ответ: корней нет

    ОДЗ: х=-3, х=5. Ответ:-3;5.

    у= -убывает,

    у= -возрастает

    Значит, уравнение имеет не более одного корня. Ответ: х=6.

    ОДЗ: → →х≥5

    Ответ:х≥5, х≤-6.

    │х+14│=2-2х ОДЗ:2-2х≥0, х≤1

    х=-4, х=16, 16 не принадлежит ОДЗ

    Убывает, -возрастает

    Уравнение имеет не более одного корня. Ответ: корней нет.

    0, ОДЗ: х≥3,х≤2

    Ответ: х≥3,х≤2

    8х+ = -32, ОДЗ: х≠-4.

    Ответ: корней нет.

    х=7, х=1. Ответ: решений нет

    Возрастает, - убывает

    Ответ: х=2.

    0 ОДЗ: х≠15

    Ответ: х- любое число, кроме х=15.

    │3-х│=1-3х, ОДЗ: 1-3х≥0, х≤

    х=-1, х=1 не принадлежит ОДЗ.

    Ответ: х=-1.

    Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.

    Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.

    Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

    НАПРИМЕР у=5+х

    1. Независимая -это х, значит берем любое значение, пусть х=3

    2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

    Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

    НАПРИМЕР.

    1.у=1/х. (наз.гипербола)

    2. у=х^2. (наз. парабола)

    3.у=3х+7. (наз. прямая)

    4. у= √ х. (наз. ветвь параболы)

    Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

    Область определения функции

    Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

    Рассмотрим D (у) для 1.,2.,3.,4.

    1. D (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

    2. D (у)= (∞; +∞)//всё мн-во действит.чисел

    3. D (у)= (∞; +∞)//всё мн-во действит.чисел

    4. D (у)= }