По литературе

Преобразование дробных выражений. Тождественные преобразования выражений. стула стола стул столов стульев стульев столов

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:

«Да куда уж проще» - говорим мы, но такой ответ обычно не прокатывает.

Сейчас я научу тебя не бояться никаких подобных задач.

Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа (да-да, к черту эти буквы).

Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители.

Поэтому, если ты этого не сделал раньше, обязательно освой темы « » и « ».

Прочитал? Если да, то теперь ты готов.

Let"s go! (Поехали!)

Базовые операции упрощения выражений

Сейчас разберем основные приемы, которые используются при упрощении выражений.

Самый простой из них - это

1. Приведение подобных

Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел.

Подобные - это слагаемые (одночлены) с одинаковой буквенной частью.

Например, в сумме подобные слагаемые - это и.

Вспомнил?

Привести подобные - значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.

А как же нам сложить друг с другом буквы? - спросишь ты.

Это очень легко понять, если представить, что буквы - это какие-то предметы.

Например, буква - это стул. Тогда чему равно выражение?

Два стула плюс три стула, сколько будет? Правильно, стульев: .

А теперь попробуй такое выражение: .

Чтобы не запутаться, пусть разные буквы обозначают разны предметы.

Например, - это (как обычно) стул, а - это стол.

стула стола стул столов стульев стульев столов

Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами .

Например, в одночлене коэффициент равен. А в он равен.

Итак, правило приведения подобных:

Примеры:

Приведите подобные:

Ответы:

2. (и подобны, так как, следовательно у этих слагаемых одинаковая буквенная часть).

2. Разложение на множители

Это обычно самая важная часть в упрощении выражений.

После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители , то есть представить в виде произведения.

Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.

Подробно способы разложения выражений на множители ты проходил в теме « », поэтому здесь тебе остается только вспомнить выученное.

Для этого реши несколько примеров (нужно разложить на множители)

Примеры:

Решения:

3. Сокращение дроби.

Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?

В этом вся прелесть сокращения.

Все просто:

Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.

Это правило вытекает из основного свойства дроби:

То есть суть операции сокращения в том, что числитель и знаменатель дроби делим на одно и то же число (или на одно и то же выражение).

Чтобы сократить дробь, нужно:

1) числитель и знаменатель разложить на множители

2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

Примеры:

Принцип, я думаю, понятен?

Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить - это значит поделить числитель и знаменатель на одно и то же число.

Никаких сокращений, если в числителе или знаменателе сумма.

Например: надо упростить.

Некоторые делают так: , что абсолютно неверно.

Еще пример: сократить.

«Самые умные» сделают так:

Скажи мне, что здесь неверно? Казалось бы: - это множитель, значит можно сокращать.

Но нет: - это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.

Вот другой пример: .

Это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на, а потом и на:

Можно и сразу поделить на:

Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:

Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным».

То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители).

Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

Для закрепления реши самостоятельно несколько примеров:

Примеры:

Решения:

4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители.

Давай вспомним:

Ответы:

1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

2. Здесь общий знаменатель равен:

3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

Совсем другое дело, если дроби содержат буквы, например:

Начнем с простого:

a) Знаменатели не содержат букв

Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

Попробуй сам:

Ответы:

b) Знаменатели содержат буквы

Давай вспомним принцип нахождения общего знаменателя без букв:

· в первую очередь мы определяем общие множители;

· затем выписываем все общие множители по одному разу;

· и домножаем их на все остальные множители, не общие.

Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

Подчеркнем общие множители:

Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

Это и есть общий знаменатель.

Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

· раскладываем знаменатели на множители;

· определяем общие (одинаковые) множители;

· выписываем все общие множители по одному разу;

· домножаем их на все остальные множители, не общие.

Итак, по порядку:

1) раскладываем знаменатели на множители:

2) определяем общие (одинаковые) множители:

3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

Кстати, есть одна хитрость:

Например: .

Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

в степени

в степени

в степени

в степени.

Усложним задание:

Как сделать у дробей одинаковый знаменатель?

Давай вспомним основное свойство дроби:

Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

Итак, очередное незыблемое правило:

Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

Но на что же надо домножить, чтобы получить?

Вот на и домножай. А домножай на:

Выражения, которые невозможно разложить на множители будем называть «элементарными множителями».

Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

Что скажешь насчет выражения? Оно элементарное?

Нет, поскольку его можно разложить на множители:

(о разложении на множители ты уже читал в теме « »).

Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

Еще пример:

Решение:

Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

Отлично! Тогда:

Еще пример:

Решение:

Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

Так и напишем:

То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

Теперь приводим к общему знаменателю:

Усвоил? Сейчас проверим.

Задачи для самостоятельного решения:

Ответы:

5. Умножение и деление дробей.

Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

Порядок действий

Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

Посчитал?

Должно получиться.

Итак, напоминаю.

Первым делом вычисляется степень.

Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

Но: выражение в скобках вычисляется вне очереди!

Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

Хорошо, это все просто.

Но это ведь не то же самое, что выражение с буквами?

Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

Обычно наша цель - представить выражение в виде произведения или частного.

Например:

Упростим выражение.

1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

2) Получаем:

Умножение дробей: что может быть проще.

3) Теперь можно и сократить:

Ну вот и все. Ничего сложного, правда?

Еще пример:

Упрости выражение.

Сначала попробуй решить сам, и уж только потом посмотри решение.

Решение:

Перво-наперво определим порядок действий.

Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна.

Потом выполним деление дробей. Ну и результат сложим с последней дробью.

Схематически пронумерую действия:

Напоследок дам тебе два полезных совета:

1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

Вот тебе задачи для самостоятельного решения:

И обещанная в самом начале:

Ответы:

Решения (краткие):

Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

Теперь вперед к обучению!

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Базовые операции упрощения:

  • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
  • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
  • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
    1) числитель и знаменатель разложить на множители
    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    ВАЖНО: сокращать можно только множители!

  • Сложение и вычитание дробей:
    ;
  • Умножение и деление дробей:
    ;

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра МПМ

Тождественные преобразования выражений и методика обучения учащихся их выполнению

Исполнитель:

Студентка Стародубова А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Лебедева М.Т.

Гомель 2007

Введение

1 Основные типы преобразований и этапы их изучения. Этапы освоения применения преобразований

Заключение

Литература

Введение

Простейшие преобразования выражений и формул, опирающиеся на свойства арифметических операций, производятся в начальной школе и 5 и 6 классах. Формирование умений и навыков выполнения преобразований происходит в курсе алгебры. Это связано как с резким увеличением числа и разнообразия совершаемых преобразований, так и с усложнением деятельности по их обоснованию и выяснению условий применимости, с выделением и изучением обобщенных понятий тождества, тождественного преобразования, равносильного преобразования.

1. Основные типы преобразований и этапы их изучения. Этапы освоения применения преобразований

1. Начала алгебры

Используется нерасчлененная система преобразований, представленная правилами выполнения действий над одной или обеими частями формулы. Цель – достичь беглости в выполнении заданий на решение простейших уравнений, упрощение формул, задающих функции, в рациональном проведении вычислений с опорой на свойства действий.

Типичные примеры:

Решить уравнения:

а) ; б) ; в) .

Тождественное преобразование (а); равносильное и тождественное (б).

2. Формирование навыков применения конкретных видов преобразований

Выводы: формулы сокращенного умножения; преобразования, связанные с возведением в степень; преобразования, связанные с различными классами элементарных функций.

Организация целостной системы преобразований (синтез)

Цель – формирование гибкого и мощного аппарата, пригодного для использования в решении разнообразных учебных заданий . Переход к этому этапу осуществляется при итоговом повторении курса в ходе осмысления уже известного материала усвоенного по частям, по отдельным типам преобразований к ранее изученным видам добавляют преобразования тригонометрических выражений. Все эти преобразования можно назвать “алгебраическими” к “аналитическим” преобразованиям можно отнести те из них, в основе которых лежат правила дифференцирования и интегрирования и преобразования выражений, содержащих предельные переходы. Отличие этого типа – в характере множества, которое пробегают переменные в тождествах (определенные множества функций).

Изучаемые тождества подразделяются на два класса:

I – тождества сокращенного умножения, справедливые в коммутативном кольце и тождества

справедливого в поле.

II – тождества, связывающие арифметические операции и основные элементарные функции.

2 Особенности организации системы заданий при изучении тождественных преобразований

Основной принцип организации системы заданий – предъявление их от простого к сложному.

Цикл упражнений – соединение в последовательности упражнений нескольких аспектов изучения и приемов расположения материала. При изучении тождественных преобразований цикл упражнений связан с изучением одного тождества, вокруг которого группируются другие тождества, находящиеся с ним в естественной связи. В состав цикла наряду с исполнительными входят задания, требующие распознавания применимости рассматриваемого тождества . Изучаемое тождество применяется для проведения вычислений на различных числовых областях. Задания в каждом цикле разбиты на две группы . К первой относятся задания, выполняемые при первоначальном знакомстве с тождеством. Они служат учебным материалом для нескольких идущих подряд уроков, объединенных одной темой.

Вторая группа упражнений связывает изучаемое тождество с различными приложениями. Эта группа не образует композиционного единства – упражнения здесь разбросаны по различным темам.

Описанные структуры цикла относятся к этапу формирования навыков применения конкретных преобразований.

На этапе синтеза циклы изменяются, происходит объединение групп заданий в сторону усложнения и слияния циклов, относящихся к различным тождествам, что способствует повышению роли действий по распознаванию применимости того или иного тождества.

Пример.

Цикл заданий для тождества:

I группа заданий:

а) представить в виде произведения:

б) Проверить верность равенства:

в) Раскрыть скобки в выражении:

.

г) Вычислить:


д) Разложить на множители:

е) упростить выражение:

.

Ученики только что ознакомились с формулировкой тождества, его записью в виде тождества, доказательством.

Задание а) связано с фиксированием структуры изучаемого тождества, с установлением связи с числовыми множествами (сопоставление знаковых структур тождества и преобразуемого выражения; замещение буквы числом в тождестве). В последнем примере еще предстоит выполнить приведение его к изучаемому виду. В следующих примерах (д и ж) происходит усложнение, вызванное прикладной ролью тождества и усложнением знаковой структуры.

Задания типа б) направлены на формирование навыков замены на . Аналогична роль задания в).

Примеры типа г), в которых требуется выбрать одно из направлений преобразования, завершает развитие этой идеи.

Задания I группы ориентированы на усвоение структуры тождества, операции замещения в простейших, принципиально наиболее важных случаях, и представления об обратимости преобразований, осуществляемых тождеством. Очень важное значение имеет также обогащение языковых средств, показывающих различные аспекты тождества. Представление об этих аспектах дают тексты заданий.

II группа заданий.

ж) Используя тождество при , разложить на множители многочлен .

з) Исключить иррациональность в знаменателе дроби .

и) Доказать что если - нечетное число, то делится на 4.

к) Функция задана аналитическим выражением

.

Избавиться от знака модуля, рассмотрев два случая: , .

л) Решить уравнение .

Эти задания направлены на возможно более полное использование и учет специфики именно данного тождества, предполагают сформированность навыков использования изучаемого тождества для разности квадратов. Цель – углубить понимание тождества за счет рассмотрения разнообразных приложений его в различных ситуациях, в сочетании с использованием материала, относящегося к другим темам курса математики.

или .

Особенности циклов заданий, связанных с тождествами для элементарных функций:

1) они изучаются на базе функционального материала;

2) появляются позже тождества первой группы и изучаются с использованием уже сформированных навыков проведения тождественных преобразований.

В первую группу заданий цикла должны войти задания на установление связи этих новых числовых областей с исходной областью рациональных чисел.

Пример.

Вычислить:

;

.

Цель таких заданий – освоение особенностей записей, включающих символы новых операций и функций, и в развитии навыков математической речи.

Значительная часть использования тождественных преобразований, связанных с элементарными функциями, приходится на решение иррациональных и транцендетных уравнений. Последовательность шагов:

а) найти функцию φ, для которой данное уравнение f(x)=0 представимо в виде:

б) произвести подстановку y=φ(x) и решить уравнение


в) решить каждое из уравнений φ(x)=y k , где y k -множество корней уравнения F(y)=0.

При использовании описанного способа зачастую шаг б) выполняется в неявном виде, без введения обозначения для φ(x). Кроме того, ученики зачастую предпочитают из различных путей, ведущих к нахождению ответа, выбирать тот, который быстрее и проще приводит к алгебраическому уравнению.

Пример. Решить уравнение 4 x -3*2=0.

2)(2 2) x -3*2 x =0 (шаг а)

(2 x) 2 -3*2 x =0; 2 x (2 x -3)=0; 2 x -3=0. (шаг б)

Пример. Решить уравнение:

а) 2 2x -3*2 x +2=0;

б) 2 2x -3*2 x -4=0;

в) 2 2x -3*2 x +1=0.

(Предложить для самостоятельного решения.)

Классификация заданий в циклах, относящихся к решению транцендетных уравнений, включающих показательную функцию:

1) уравнения, сводящиеся к уравнениям вида а x =y 0 и имеющие простой, общий по форме ответ:

2) уравнения, сводящиеся к уравнениям вида а x = а k , где k- целое число, или а x =b, где b≤0.

3) уравнения, сводящиеся к уравнениям вида а x =y 0 , и требующие явного анализа формы, в которой явно записано число y 0 .

Большую пользу приносят задания, в которых тождественные преобразования используются для построения графиков при упрощении формул, задающих функции.

а) Построить график функции y=;

б) Решить уравнение lgx+lg(x-3)=1

в) на каком множестве формула lg(x-5)+ lg(x+5)= lg(x 2 -25) является тождеством?

Использование тождественных преобразований в вычислениях.(ж. Математика в школе, №4, 1983, стр.45)

Задача№1. Функция задана формулой y=0,3x 2 +4,64x-6. Найдите значения функции при x=1,2

y(1,2)=0,3*1,2 2 +4,64*1,2-6=1,2(0,3*1,2+4,64)-6=1,2(0,36+4,64)-6=1,2*5-6=0.

Задача№2. Вычислите длину катета прямоугольного треугольника, если длина его гипотенузы равна 3,6см, а другого катета- 2,16см.

Задача№3. Какова площадь участка прямоугольной формы, имеющего размеры а) 0,64м и 6,25м; б) 99,8м и 2,6м?

а)0,64*6,25=0,8 2 *2,5 2 =(0,8*2,5) 2 ;

б)99,8*2,6=(100-0,2)2,6=100*2,6-0,2*2,6=260-0,52.


Эти примеры позволяют выявить практическое применение тождественных преобразований. Учащегося следует ознакомить с условиями выполнимости преобразования.(см. схемы).

-

изображение многочлена, где в круглые контуры вписывается любой многочлен.(схема 1)

-

условие выполнимости преобразования произведения одночлена и приведено выражение, допускающее преобразование в разность квадратов. (схема 2)

-

здесь штриховки означают равные одночлены и приведено выражение допускающее преобразование в разность квадратов.(схема 3)

-

выражение, допускающее вынесение общего множителя.

Сформировать умения учащихся по выявлению условий можно с помощью следующих примеров:

Какие из следующих выражений могут быть преобразованы вынесением общего множителя за скобки:


2)

3) 0,7а 2 +0,2b 2 ;

5) 6,3*0,4+3,4*6,3;

6) 2x 2 +3x 2 +5y 2 ;

7) 0,21+0,22+0,23.

Большинство вычислений на практике не удовлетворяют условиям выполнимости, поэтому учащимся необходимы навыки приведения их к виду, допускающему вычисления преобразований. В этом случае целесообразны такие задания:

при изучении вынесения общего множителя за скобки:

данное выражение, если это возможно, преобразуйте в выражение, которое изображается схемой 4:

4) 2а*а 2 *а 2 ;

5) 2n 4 +3n 6 +n 9 ;

8) 15ab 2 +5a 2 b;

10) 12,4*-1,24*0,7;

11) 4,9*3,5+1,7*10,5;

12) 10,8 2 -108;

13)

14) 5*2 2 +7*2 3 -11*2 4 ;

15) 2*3 4 -3*2 4 +6;

18) 3,2/0,7-1,8*

При формировании понятия «тождественное преобразование» следует помнить, что это означает не только то, что данное и полученное выражение в результате преобразования принимают равные значения при любых значениях входящих в него букв, но и то, что при тождественном преобразовании мы переходим от выражения, определяющего один способ вычисления, к выражению, определяющему другой способ вычисления того же значения.

Можно схему 5(правило преобразования произведения одночлена и многочлена) проиллюстрировать на примерах

0,5a(b+c) или 3,8(0,7+).

Упражнения для изучения вынесения общего множителя за скобки:

Вычислите значение выражения:

а) 4,59*0,25+1,27*0,25+2,3-0,25;

б) a+bc при a=0,96; b=4,8; c=9,8.

в) a(a+c)-c(a+b) при a=1,4; b=2,8; c=5,2.

Проиллюстрируем на примерах формирование умений и навыков в вычислениях и тождественных преобразованиях.(ж. Математика в школе, №5, 1984, стр.30)

1) умения и навыки быстрее усваиваются и дольше сохраняются, если их формирование происходит на сознательной основе (дидактический принцип сознательности).

1) Можно сформулировать правило сложения дробей с одинаковыми знаменателями или предварительно на конкретных примерах рассмотреть суть сложения одинаковых долей.

2) При разложении на множители вынесением общего множителя за скобки важно увидеть этот общий множитель и затем применить распределительный закон. При выполнении первых упражнений полезно каждое слагаемое многочлене записать в виде произведения, один из множителей которого- общий для всех слагаемых:

3a 3 -15a 2 b+5ab 2 = a3a 2 -a15ab+a5b 2 .

Особенно полезно так поступать, когда за скобки выносится один из одночленов многочлена:

II. Первый этап формирования навыка – овладение умением (упражнения выполняются с подробными объяснениями и записями)


(первым решается вопрос о знаке)

Второй этап – этап автоматизации умения путем исключения некоторых промежуточных операций

III. Прочность навыков достигается решением разнообразных как по содержанию, так и по форме, примеров.

Тема: “Вынесение общего множителя за скобки”.

1. Запишите вместо многочлена недостающий множитель:

2. Разложите на множители так, чтобы перед скобками был множителем одночлен с отрицательным коэффициентом:

3. Разложите на множители так, чтобы многочлен в скобках имел целые коэффициенты:


4. Решите уравнение:

IV. Формирование навыков наиболее эффективно в случае устного выполнения некоторых промежуточных вычислений или преобразований.

(устно);

V. Формируемые навыки и умения должны входить в ранее сформированную систему знаний, умений и навыков учащихся.

Например, при обучении разложению многочленов на множители с помощью формул сокращенного умножения предлагаются такие упражнения:

Разложить на множители:


VI. Необходимость рационального выполнения вычислений и преобразований.

в) упростить выражение:

Рациональность заключается в раскрытии скобок, т.к.

VII. Преобразование выражений, содержащих степень.

№1011 (Алг.9) Упростить выражение:


№1012 (Алг.9) Вынести множитель из-под знака корня:

№1013 (Алг.9) Внести множитель под знак корня:

№1014 (Алг.9) Упростить выражение:


Во всех примерах предварительно выполнить либо разложение на множители, либо вынесение общего множителя, либо “увидеть” соответствующую формулу сокращения.

№1015 (Алг.9) Сократить дробь:

Многие учащиеся испытывают некоторые затруднения в преобразовании выражений, содержащих корни, в частности при исследовании равенства:

Поэтому, либо подробно расписывают выражения вида или либо перейти к степени с рациональным показателем.

№1018 (Алг.9) Найти значение выражения:


№1019 (Алг.9) Упростить выражение:

2.285 (Сканави) Упростить выражение

а затем построить график функции y для


№2.299 (Сканави) Проверить справедливость равенства:

Преобразование выражений, содержащих степень, представляет собой обобщение полученных навыков и умений, при изучении тождественных преобразований многочленов.

№2.320 (Сканави) Упростить выражение:


В курсе «Алгебра 7» даны следующие определения.

Опр. Два выражения, соответственные значения которых равны при значениях переменных, называются тождественно равными.

Опр. Равенство, верно при любых значениях переменных наз. тождеством.

№94(Алг.7) Является ли тождеством равенство:

a)

c)

d)

Описание опр-ние: Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

№ (Алг.7) Среди выражений

найдите те, которые тождественно равны .

Тема: «Тождественные преобразования выражений» (методика вопроса)

Первая тема «Алгебры-7»-«Выражения и их преобразования» помогает закрепить вычислительные навыки, приобретённые в 5-6 классах, систематизировать и обобщить сведения о преобразованиях выражений и решений уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с учащимися правила действия с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры.

При рассмотрении преобразований выражений формально – оперативные умения остаются на том же уровне, который был достигнут в 5-6 классах.

Однако здесь учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественные преобразования выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчёркивается, что основу тождественных преобразований составляют свойства действий над числами.

При изучении темы «Многочлены» формируются формально-оперативные умения тождественных преобразований алгебраических выражений. Формулы сокращённого умножения способствуют дальнейшему процессу формирования умений выполнять тождественные преобразования целых выражений, умение применять формулы как для сокращённого умножения, так и для разложения многочленов на множители используется не только в преобразовании целых выражений, но и в действиях с дробями, корнями, степенями с рациональным показателем.

В 8-м классе приобретённые навыки тождественных преобразований отрабатываются на действиях с алгебраическими дробями, квадратным корнем и выражениями, содержащие степени с целым показателем.

В дальнейшем приёмы тождественных преобразований отражаются на выражениях, содержащих степень с рациональным показателем.

Особую группу тождественных преобразований составляют тригонометрические выражения и логарифмические выражения.

К обязательным результатам обучения за курс алгебры в 7-9 классах относятся:

1) тождественные преобразования целых выражений

a) раскрытие скобок и заключение в скобки;

b) приведение подобных членов;

c) сложение, вычитание и умножение многочленов;

d) разложение многочленов на множители при помощи вынесения общего множителя за скобки и формул сокращённого умножения;

e) разложение квадратного трёхчлена на множители.

«Математика в школе» (Б.У.М.) стр.110

2) тождественные преобразования рациональных выражений: сложение, вычитание, умножение и деление дробей, а также применять перечисленные умения при выполнении несложных комбинированных преобразований [стр. 111]

3) учащиеся должны уметь выполнять преобразования несложных выражений, содержащих степени и корни. (стр. 111-112)

Были рассмотрены основные типы задач, умение решать которых позволяют получить ученику положительную оценку.

Одной из самой важных сторон методики изучения тождественных преобразований является развитие учащимся целей выполнения тождественных преобразований.

1) - упрощение численного значения выражения


2) какое из преобразований следует выполнить: (1) или (2) Разбор этих вариантов является мотивировкой (предпочтительнее (1), т.к. в (2) происходит сужение области определения)

3) Решить уравнение:

Разложение на множители при решении уравнений.

4) Вычислить:

Применим формулу сокращённого умножения:

(101-1) (101+1)=100102=102000

5) Найти значение выражения:

Для нахождения значения домножим каждую дробь на сопряжённый:

6) Построить график функции:

Выделим целую часть: .

Предупреждение ошибок при выполнении тождественных преобразований может быть получено путём варьирования примеров выполнения их. В этом случае отрабатываются «мелкие» приёмы которые как составные части входят в более объёмный процесс преобразования.

Например:

В зависимости от направлений уравнения можно рассмотреть несколько задач: справа налево умножение многочленов; слева направо -разложение на множители. Левая часть кратна одному из сомножителей в правой части и т.д.

Кроме варьирования примеров, можно воспользоваться проведением апологии между тождествами и числовыми равенствами.

Следующий приём – объяснение тождеств.

Для повышения интереса учащихся можно отнести отыскание различных способов решения задач.

Уроки по изучению тождественных преобразований станут интереснее, если их посвятить поиску решения задачи .

Например: 1) сократить дробь:

3) доказать формулу «сложного радикала»


Рассмотрим:

Преобразуем правую часть равенства:

-

сумма сопряжённых выражений. Их можно было бы домножить и разделить на сопряжённый, но такая операция приведет нас к дроби, знаменатель которой есть разность радикалов.

Заметим, что первое слагаемое в первой части тождества есть число большее, чем второе, поэтому можно возвести обе части в квадрат:

Практическое занятие №3.

Тема: Тождественные преобразования выражений (методика вопроса).

Литература: ”Практикум по МПМ”, стр. 87-93.

Признаком высокой культуры вычислений и тождественных преобразований у учащихся являются прочные знания свойств и алгоритмов операций над точными и приближенными величинами и умелое их применение; рациональные приемы вычислений и преобразований и их проверка; умение обосновать применение приемов и правил вычислений и преобразований, автоматизм навыков безошибочного выполнения вычислительных операций.

С какого класса необходимо начать с учащимися работу по выработке перечисленных навыков?

Линия тождественных преобразований выражений начинается с применения приемов рационального вычисления начинается с применения приемов рационального вычисления значений числовых выражений. (5 класс)

При изучении таких тем школьного курса математики надо уделять им особое внимание!

Сознательному выполнению учащимися тождественных преобразований способствует понимание того факта, что алгебраические выражения существуют не сами по себе, а в неразрывной связи с некоторым числовым множеством, являются обобщенными записями числовых выражений. Аналогии между алгебраическими и числовыми выражениями (и преобразованиями их) законны в логическом отношении, использование их в обучении способствует предупреждению ошибок у учащихся.

Тождественные преобразования не являются какой-либо отдельной темой школьного курса математики, они изучаются на протяжении всего курса алгебры и начал математического анализа.

Программа по математике 1-5 класса представляет собой пропедевтический материал для изучения тождественных преобразований выражений с переменной.

В курсе алгебры 7 кл. вводятся определение тождества и тождественных преобразований.

Опр. Два выражения соответственные значения которых равны при любых значениях переменных, наз. тождественно равными.

Опр . Равенство, верное при любых значениях переменных, называется тождеством.

Ценность тождества состоит в том, что оно позволяет данное выражение заменить другим, тождественно равным ему.

Опр. Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Основой тождественных преобразований можно считать равносильные преобразования.

Опр . Два предложения, каждое из которых является логическим следствием другого, наз. равносильными.

Опр . Предложение с переменными А наз. следствием предложения с переменными В , если область истинности В есть подмножество области истинности А.

Можно дать другое определение равносильных предложений: два предложения с переменными равносильны, если их области истинности совпадают.

а) В: x-1=0 над R; А: (x-1) 2 над R => A~B, т.к. области истинности (решения) совпадают (x=1)

б) А: х=2 над R; В: х 2 =4 над R => область истинности А: х=2; область истинности В: х=-2, х=2; т.к. область истинности А содержится в В, то: х 2 =4 следствие предложения х=2.

Основой тождественных преобразований является возможность представление одного и того же числа в разных формах. Например,


-

такое представление поможет при изучении темы “основные свойства дроби”.

Навыки в выполнении тождественных преобразований начинают формироваться при решении примеров, аналогичных следующему: “Найти числовое значение выражения 2а 3 +3аb+b 2 при а=0,5, b=2/3 ”, которые предлагаются учащимся в 5 классе и позволяют осуществить пропедевтику понятия функция.

Изучая формулы сокращенного умножения следует уделять внимание их глубокому пониманию и прочному усвоению. Для этого можно воспользоваться следующей графической иллюстрацией:



(a+b) 2 =a 2 +2ab+b 2 (a-b) 2 =a 2 -2ab+b 2 a 2 -b 2 =(a-b)(a+b)

Вопрос: Как объяснить учащимся суть приведенных формул по данным чертежам?

Распространенной ошибкой является смешение выражений “квадрат суммы” и “ сумма квадратов”. Указание учителя на то, что эти выражения различаются порядком действия, не кажется существенным, так как учащиеся считают, что эти действия производятся над одними и теми же числами и поэтому от перемены порядка действий результат не изменяется.

Задание: Составьте устные упражнения для выработки у учащихся навыков безошибочного использования названных формул. Как объяснить, чем похожи эти два выражения и чем они друг от друга отличаются?

Большое разнообразие тождественных преобразований затрудняет ориентацию учащихся в том, с какой целью они выполняются. Нечеткое знание цели выполнения преобразований (в каждом конкретном случае) отрицательно сказывается на их осознании, служит источником массовых ошибок учащихся. Это говорит о том, что разъяснение учащимся целей выполнении различных тождественных преобразований является важной составной частью методики их изучения.

Примеры мотивировок тождественных преобразований:

1. упрощение нахождения числового значения выражения;

2. выбор преобразования уравнения, не приводящего к потере корня;

3. при выполнении преобразования можно отметить его область вычислений;

4. использование преобразований при вычислении, например, 99 2 -1=(99-1)(99+1);

Для управления процессом решения учителю важно обладать умением давать точную характеристику сущности допущенной учащимся ошибки. Точная характеристика ошибки является ключом к правильному выбору последующих действий, предпринимаемых учителем.

Примеры ошибок учащихся:

1. выполняя умножение: ученик получил -54abx 6 (7 кл.);

2. выполняя возведение в степень (3х 2) 3 ученик получил 3х 6 (7 кл.);

3. преобразуя (m+n) 2 в многочлен, ученик получил m 2 +n 2 (7 кл.);

4. сокращая дробь ученик получил (8 кл.);

5. выполняя вычитание: , ученик записывает (8 кл.)

6. представляя дробь в виде дробей, ученик получил: (8 кл.);

7. извлекая арифметический корень ученик получил х-1 (9кл.);

8. решая уравнение (9кл.);

9. преобразовывая выражение , ученик получает: (9 кл.).

Заключение

Изучение тождественных преобразований проводится в тесной связи с числовыми множествами, изучаемыми в том или ином классе.

На первых порах следует просить учащегося объяснять каждый шаг преобразования, сформировать те правила и законы, которые применяются.

В тождественных преобразованиях алгебраических выражений используются два правила: подстановки и замены равным. Наиболее часто используется подстановка, т.к. на ней основан счёт по формулам, т.е. найти значение выражения a*b при a=5 и b=-3. Очень часто учащиеся пренебрегают скобками при выполнении действия умножения, считая что знак умножения подразумевается. Например, возможна такая запись: 5*-3.

Литература

1. А.И. Азаров, С.А. Барвенов «Функциональный и графический методы решения экзаменационных задач»,Мн..Аверсэв, 2004

2. О.Н. Пирютко «Типичные ошибки на централизованном тестировании», Мн..Аверсэв, 2006

3. А.И. Азаров, С.А. Барвенов «Задачи-ловушки на централизованном тестировании»,Мн..Аверсэв, 2006

4. А.И. Азаров, С.А. Барвенов «Методы решения тригонометрических задач», Мн..Аверсэв, 2005

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

Основные свойства сложения и умножения чисел.

Переместительное свойство сложения: от перестановки слагаемых значение суммы не меняется. Для любых чисел a и b верно равенство

Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего. Для любых чисел a, b и c верно равенство

Переместительное свойство умножения: от перестановки множителей значение произведения не изменяется. Для любых чисел а, b и c верно равенство

Сочетательное свойство умножения: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего.

Для любых чисел а, b и c верно равенство

Распределительное свойство: чтобы умножить число на сумму, можно умножить это число на каждое слагаемое и сложить полученные результаты. Для любых чисел a, b и c верно равенство

Из переместительного и сочетательного свойств сложения следует: в любой сумме можно как угодно переставлять слагаемые и произвольным образом объединять их в группы.

Пример 1 Вычислим сумму 1,23+13,5+4,27.

Для этого удобно объединить первое слагаемое с третьим. Получим:

1,23+13,5+4,27=(1,23+4,27)+13,5=5,5+13,5=19.

Из переместительного и сочетательного свойств умножения следует: в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.

Пример 2 Найдём значение произведения 1,8·0,25·64·0,5.

Объединив первый множитель с четвёртым, а второй с третьим, будем иметь:

1,8·0,25·64·0,5=(1,8·0,5)·(0,25·64)=0,9·16=14,4.

Распределительное свойство справедливо и в том случае, когда число умножается на сумму трёх и более слагаемых.

Например, для любых чисел a, b, c и d верно равенство

a(b+c+d)=ab+ac+ad.

Мы знаем, что вычитание можно заменить сложением, прибавив к уменьшаемому число, противоположное вычитаемому:

Это позволяет числовое выражение вида a-b считать суммой чисел a и -b, числовое выражение вида a+b-c-d считать суммой чисел a, b, -c, -d и т. п. Рассмотренные свойства действий справедливы и для таких сумм.

Пример 3 Найдём значение выражения 3,27-6,5-2,5+1,73.

Это выражение является суммой чисел 3,27, -6,5, -2,5 и 1,73. Применив свойства сложения, получим: 3,27-6,5-2,5+1,73=(3,27+1,73)+(-6,5-2,5)=5+(-9) =-4.

Пример 4 Вычислим произведение 36·().

Множитель можно рассматривать как сумму чисел и -. Используя распределительное свойство умножения, получим:

36()=36·-36·=9-10=-1.

Тождества

Определение. Два выражения, соответственные значения которых равны при любых значениях переменных, называются тождественно равными.

Определение. Равенство, верное при любых значениях переменных, называется тождеством.

Найдём значения выражений 3(x+y) и 3x+3y при x=5, y=4:

3(x+y)=3(5+4)=3·9=27,

3x+3y=3·5+3·4=15+12=27.

Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных соответственные значения выражений 3(x+y) и 3x+3y равны.

Рассмотрим теперь выражения 2x+y и 2xy. При x=1, y=2 они принимают равные значения:

Однако можно указать такие значения x и y, при которых значения этих выражений не равны. Например, если x=3, y=4, то

Выражения 3(x+y) и 3x+3y являются тождественно равными, а выражения 2x+y и 2xy не являются тождественно равными.

Равенство 3(x+y)=x+3y, верное при любых значениях x и y, является тождеством.

Тождествами считают и верные числовые равенства.

Так, тождествами являются равенства, выражающие основные свойства действий над числами:

a+b=b+a, (a+b)+c=a+(b+c),

ab=ba, (ab)c=a(bc), a(b+c)=ab+ac.

Можно привести и другие примеры тождеств:

a+0=a, a+(-a)=0, a-b=a+(-b),

a·1=a, a·(-b)=-ab, (-a)(-b)=ab.

Тождественные преобразования выражений

Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Чтобы найти значение выражения xy-xz при заданных значениях x, y, z, надо выполнить три действия. Например, при x=2,3, y=0,8, z=0,2 получаем:

xy-xz=2,3·0,8-2,3·0,2=1,84-0,46=1,38.

Этот результат можно получить, выполнив лишь два действия, если воспользоваться выражением x(y-z), тождественно равным выражению xy-xz:

xy-xz=2,3(0,8-0,2)=2,3·0,6=1,38.

Мы упростили вычисления, заменив выражение xy-xz тождественно равным выражением x(y-z).

Тождественные преобразования выражений широко применяются при вычислении значений выражений и решении других задач. Некоторые тождественные преобразования уже приходилось выполнять, например, приведение подобных слагаемых, раскрытие скобок. Напомним правила выполнения этих преобразований:

чтобы привести подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть;

если перед скобками стоит знак "плюс", то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки;

если перед скобками стоит знак "минус", то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки.

Пример 1 Приведём подобные слагаемые в сумме 5x+2x-3x.

Воспользуемся правилом приведения подобных слагаемых:

5x+2x-3x=(5+2-3)x=4x.

Это преобразование основано на распределительном свойстве умножения.

Пример 2 Раскроем скобки в выражении 2a+(b-3c).

Применив правило раскрытия скобок, перед которыми стоит знак "плюс":

2a+(b-3c)=2a+b-3c.

Проведённое преобразование основано на сочетательном свойстве сложения.

Пример 3 Раскроем скобки в выражении a-(4b-c).

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак "минус":

a-(4b-c)=a-4b+c.

Выполненное преобразование основано на распределительном свойстве умножения и сочетательном свойстве сложения. Покажем это. Представим в данном выражении второе слагаемое -(4b-c) в виде произведения (-1)(4b-c):

a-(4b-c)=a+(-1)(4b-c).

Применив указанные свойства действий, получим:

a-(4b-c)=a+(-1)(4b-c)=a+(-4b+c)=a-4b+c.