Чехов

Применение производных и интегралов в реальной жизни. Курсовая работа применение интеграла. Геометрический смысл производной

Слайд 2

Историческая справка

История понятия интеграла тесно связана с задачами нахождения квадратур, т.е. задачами на вычисление площадей. Вычислениями площадей поверхностей и объемов тел занимались еще математики Древней Греции и Рима. Первым европейским математиком, получившим новые формулы для площадей фигур и объемов тел, был знаменитый астроном И. Кеплер. После исследований ряда ученых (П.Ферма, Д.Валлиса) И. Барроу открыл связь между задачами отыскания площадей и проведением касательной (т.е. между интегрированием и дифференцированием). Исследование связи между этими операциями, свободное от геометрического языка, было дано И.Ньютоном и Г. Лейбницем. Современное обозначение интеграла восходит к Лейбницу, у которого оно выражало мысль, что площадь криволинейной трапеции есть сумма площадей бесконечно тонких полосок шириной d и высоты f(x). Сам знак интеграла является стилизованной латинской буквой S (summa). Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений.

Слайд 3

Краткая история интегрального исчисления

Многие значительные достижения математиков Древней Греции в решении задач на нахождение площадей, а также объемов тел связаны с именем Архимеда(287-212 до н. э.) Развивая идеи предшественников Архимед определил длину окружности и площадь круга, объем и поверхность шара. В работах «О шаре и цилиндре», «О спиралях», «О коноидах и сферах», он показал, что определение объемов шара, эллипсоида, гиперболоида и параболоида вращения сводится к определению объема конуса и цилиндра. Архимед разработал и применил методы, предвосхитившие созданное в XVII в. интегральное исчисление. Потребовалось более полутора тысяч лет, прежде чем идеи Архимеда нашли четкое выражение и были доведены до уровня исчисления. В XVII в. математики уже умели вычислять площади многих фигур с кривыми границами и объемы многих тел. А общая теория была создана во второй половине XVII в. в трудах великого английского математика Иссака Ньютона(1643-1716) и великого немецкого математика Готфрида Лейбница(1646-1716). Ньютон и Лейбниц являются основателями интегрального исчисления. Они открыли важную теорему, носящую их имя: где f(x) – функция, интегрируемая на отрезке , F(x) – одна из ее первообразных. Рассуждения, которые приводили Ньютон и Лейбниц, несовершенны с точки зрения современного математического анализа. В XVIII в. крупнейший представитель математического анализа Леонард Эйлер эти понятия обобщил в своих трудах. Только в начале XIX в. были окончательно созданы понятия интегрального исчисления. Обычно при этом отмечают заслуги французского математика Огюстена Коши и немецкого математика Георга Римана. Само слово интеграл придумал Я.Бернулли(1690г.). Оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. В1696г. появилось и название новой ветви математики – интегральное исчисление, которое ввел И.Бернулли. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция», которое ввел Лагранж (1797 г.). Обозначение определенного интеграла ввел Иосиф Бернулли, а нижние и верхние пределы Леонард Эйлер.

Слайд 4

Неопределенный интеграл

Математические операции образуют пары двух взаимно обратных действий, например, сложение и вычитание, умножение и деление, возведение в целую положительную степень и извлечение корня. Дифференцирование дает возможность для заданной функции F(х) находить ее производную F´(х). Существует действие, обратное дифференцированию – это интегрирование – нахождение функции F(х) по известной ее производной f(x) = F´(х)или дифференциалу f(x)dx. Функция F(х) называется первообразной для функции f(x), если F´(х) = f(x) или dF(x)=f(x)dx.Если функция f(x) имеет первообразную F(х), то она имеет бесконечное множество первообразных, причем все ее первообразные содержатся в выражении F(х) +С, где С – постоянная. Неопределенным интегралом от функции f(x)(или от выражения f(x)dx) называется совокупность всех ее первообразных. Обозначение ∫f(x)dx = F(х) +С. Здесь ∫ – знак интеграла, f(x) - подынтегральная функция, f(x)dx - подынтегральное выражение, х – переменная интегрирования. Отыскание неопределенного интеграла называется интегрированием функции. Свойства неопределенного интеграла Производная от неопределенного интеграла равна подынтегральной функции: (∫ f(x)dx)´ = f(x) Дифференциал от неопределенного интеграла равен подынтегральному выражению: d (∫ f(x)dx) = f(x) dx Интеграл от дифференциала первообразной равен самой первообразной и дополнительному слагаемому С:∫d (F(x)) = F(х) +С Постоянный множитель можно выносить за знак неопределенного интеграла: ∫a f(x) dx =a ∫f(x) dx Интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от слагаемых: ∫ dx = ∫ dx ± ∫ dx

Слайд 5

Определенный интеграл

Понятие определенного интеграла выводится через криволинейную трапецию. Криволинейной трапецией называется фигура, ограниченная линиями y = f(x), y = 0, x=a, x=b.Площадь криволинейной трапеции выражается интегральной суммой или числом, которое называется определенным интегралом. Определенный интеграл вычисляется по формуле Ньютона – Лейбница. = F (x)|ba= F(b) – F(a) Общность обозначения определенного и неопределенного интегралов подчеркивает тесную связь между ними: определенный интеграл – это число, а неопределенный интеграл – совокупность первообразных функций. Связь между определенным и неопределенным интегралом выражается формулой Ньютона – Лейбница. Свойства определенного интеграла: Если верхний и нижний пределы интегрирования поменять местами, то определенный интеграл сохранит абсолютную величину, но изменит свой знак на противоположный. Если верхняя и нижняя границы интегрирования равны, то определенный интеграл равен нулю. Если отрезок интегрирования разбить на несколько частей, определенный интеграл на отрезке будет равен сумме определенных интегралов этих отрезков. Определенный интеграл от суммы функций, заданных на отрезке равен сумме определенных интегралов от слагаемых функций. Постоянный множитель к подынтегральной функции можно выносить за знак определенного интеграла. Оценка определенного интеграла: если m ≤ f(x) ≤ M на , то m (b – a)

Слайд 6

Геометрический смысл определенного интеграла

Пусть функция y=f(x) непрерывна на отрезке и f(x) ≥ 0. Фигура, ограниченная графиком АВ функции y=f(x), прямыми x=a, x=b и осью Ох (см. рисунок), называется криволинейной трапецией. Интегральная сумма и ее слагаемые имеют простой геометрический смысл: произведение равно площади прямоугольника с основанием и высотой, а сумма представляет собой площадь заштрихованной ступенчатой фигуры, изображенной на рисунке. Очевидно, что эта площадь зависит от разбиенияотрезка на частичные отрезки и выбора количества точек разбиения. Чем меньше ∆ х, тем площадь ступенчатой фигуры ближе к площади криволинейной трапеции. Следовательно, за точную площадь S криволинейной трапеции принимается предел интегральной суммы. Таким образом, с геометрической точки зрения определенный интеграл от неотрицательной функции численно равен площади соответствующей криволинейной трапеции.

Слайд 7

Методы интегрирования

1. Непосредственное интегрирование Непосредственным интегрированием принято называть вычисление неопределенных интегралов путем приведения их к табличным с применением основных свойств. Здесь могут представиться следующие случаи: 1) данный интеграл берется непосредственно по формуле соответствующего табличного интеграла; 2) данный интеграл после применения свойств приводится к одному или нескольким табличным интегралам; 3) данный интеграл после элементарных тождественных преобразований над подынтегральной функцией и применением свойств приводится к одному или нескольким табличным интегралам. 2. Интегрирование методом замены переменной (способом подстановки) Замена переменной в неопределенном интеграле производится с помощью подстановок двух видов: х = φ (t), где φ (t) – монотонная, непрерывно дифференцируемая функция новой переменной t. Формула замены переменной в этом случае имеет вид ∫f(x) = ∫f [φ (t)] φ΄ (t) d(t); 2) u = ψ(x), где u – новая переменная. Формула замены переменной при такой подстановке: ∫f [ψ(х)] ψ ΄(х) d(х) = ∫f (u) du 3. Интегрирование по частям Интегрированием по частям называется нахождение интеграла по формуле ∫udv = uv - ∫v du, где u = φ (x), v = ψ(х) – непрерывно дифференцируемые функции от х. С помощью этой формулы нахождение интеграла ∫udv сводится к отысканию другого интеграла ∫v du; ее применение целесообразно в тех случаях, когда последний интеграл либо проще исходного, либо ему подобен. При этом за u берется такая функция, которая при дифференцировании упрощается, а за dv – та часть подынтегрального выражения, интеграл от которого известен или может быть найден.

Слайд 8

Таблица неопределенных интегралов

  • Слайд 9

    Повторение теоретического материала

    Как найти площади изображенных фигур?

    Слайд 10

    Продолжаем повторять

  • Слайд 11

    Применение интеграла

    Кроме этого определенный интеграл используется для вычисления площадей плоских фигур, объемов тел вращения, длин дуг кривых.

    Слайд 12

    Вычисление объемов тел

    Пусть задано тело объемом V, причем имеется такая прямая, что, какую бы плоскость, перпендикулярную этой прямой, мы ни взяли, нам известна площадь S сечения тела этой плоскостью. Но плоскость, перпендикулярная оси Ох, пересекает ее в некоторой точке х. Следовательно, каждому числу х (из отрезка [а; b]) поставлено в соответствие единственное число S (х) - площадь сечения тела этой плоскостью. Тем самым на отрезке [а; b] задана функция S(x). Если функция S непрерывна на отрезке [а; b] то справедлива формула:

    Слайд 13

    ПРОВЕРЬ СЕБЯ!

    Найдите площадь изображенных фигур 1 – 5. Ответы: 1) S = 2/3 (четность функции); 2) S = 1 (площадь прямоугольного треугольника); 3) S = 4 (равенство фигур); 4) S = 2π (площадь полукруга); 5) S = 1 (площадь треугольника).

    Слайд 14

    Найди ошибку!

    Найти сумму площадей бесконечного количества фигур, заштрихованных на рисунках. (Аргумент каждой следующей функции увеличивается в 2 раза) Интересная задача! Ответ: sin nx=0 ; x=π/n; где n=1,2,4,8,16…; S=2+1+1/2+1/4+1/8+…=2/(1-1/2)=4 Ответ: 4.

    Слайд 15

    Программированный контроль

    Верные ответы: I вариант: 2,3,1 ; II вариант: 2,4,2.

    Слайд 16

    Самостоятельная работа

    Вычислите площадь фигуры, ограниченной линиями (схематично изобразив графики функций). 1) y = 6 + x – x2 и y = 6 – 2x; 2) y = 2x2 и y = x + 1 ; 3) y = 1 – x и y = 3 – 2x – x2 ; 4) y = x2 и y = . Ответ: 1) 4,5 ; 2) 9/8 ; 3) 4,5 ; 4) 1/3 .

    Слайд 17

    Задачи на вычисление объемов

    Найдите объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями: 1) y = x2 + 1, x = 0, x = 1, y = 0 ; 2) y = , x = 1 , x = 4 , y = 0 ; 3) y = 2x , y = x + 3, x = 0 , x = 1 ; 4) y = x + 2 , y = 1 , x = 0 , x = 2 ; 5) у2 – 4 х = 0, х – 2 = 0, х – 4 = 0, у = 0; 6) у2 – х + 1 = 0, х – 2 = 0, у = 0; 7) y = - x2 + 2х, у = 0; 8) у2 = 2 х, х – 2 = 0, у = 0; 9) y = , x = 3 , y = 0 ; 10) у = 1 – x2 , у = 0. Ответ: 1) ; 2) 7,5  ; 3) 11 ; 4) 16 ⅔; 5) 24 ; 6) /2; 7) 16/15; 8) 4 ; 9) 2 ; 10) 16/15.

    Слайд 18

    Задачи из ЕГЭ

    Найти площадь фигуры, ограниченной линиями 2) Фигура, ограниченная линиями y=x+6, x=1, y=0 делится параболой y=x 2+2x+4 на две части. Найти площадь каждой части. 3) Найти ту первообразную F(x) функции f(x)=2x+4, график которой касается прямой у=6х+3. Вычислить площадь фигуры, ограниченной графиком найденной первообразной и прямыми у=6х+3 и у=0.

    Слайд 19

    Контрольные вопросы

    Какое действие называется интегрированием? Какая функция называется первообразной для функции f(x)? Чем отличаются друг от друга различные первообразные функции для данной функции f(x)? Дайте определение неопределенного интеграла. Как проверить результат интегрирования? Чему равна производная от неопределенного интеграла? Чему равен ∫ d(lnx8 – sin 3x)? Перечислите методы интегрирования. Дайте определение определенного интеграла. Сформулируйте теорему Ньютона – Лейбница. Перечислите свойства определенного интеграла. Как вычислить площадь плоской фигуры с помощью интеграла (составьте словесный алгоритм)? Перечислите области применения интеграла, назовите величины, которые можно вычислить с помощью интеграла.

    Слайд 20

    Для любителей математики

    1) Вычислить площадь фигуры, ограниченной данными линиями:y=x2 при x0, y=1, y=4, x=0 Решение: Данная фигура симметрична криволинейной трапеции, ограниченной прямыми х=1, х=4, у=0, графиком функции, обратной у=х2, x0. Поэтому эти фигуры имеют равные площади и 2) Найти площадь фигуры, ограниченной прямыми у=3х+1, у=9-х, у=х+1. Решение: Вершины полученного ABC имеют координаты: А(0;1), В(2;7), С(4;5). Можно заметить, что ABC - прямоугольный (произведение угловых коэффициентов прямых у=х+1 у=9-х равно -1). Поэтому применение интеграла для вычисления S(ABC) не рационально. Её всегда можно найти как разность площадей треугольников, у которых известны высота и основание или же можно использовать координатный метод.

    Слайд 21

    Домашнее задание

    Найти площади фигур, ограниченных линиями (1-7) у=х2 (х0), у=1, у=4, х=0 у= х2-4х+8, у=3х2-х3, если х [-2;3] у=х2-4х+sin2(x/2), y=-3-cos2(x/2), если х у=3х+1, у=9-х, у=х+1 у=|x-2|, x|y|=2;x=1;x=3 y= arcsin x; у=0; x=0,5; x=1 При каком значении а прямая х=а делит площадь фигуры, ограниченной линиями у=2/х; х=1; х=3 в отношении 1:3? Вычислить исходя из его геометрического смысла.

    Слайд 22

    Список литературы

    Н. А. Колмогоров, «Алгебра и начала анализа», Москва, Просвещение,2000г. М. И. Башмаков, «Алгебра и начала анализа», Москва, ДРОФА,2002г. Ш.А.Алимов, «Алгебра и начала анализа», 11 кл., Москва, ДРОФА, 2004г. Л. В. Киселева, Пособие по математике для студентов медицинских училищ и колледжей, Москва, ФГОУ«ВУНМЦ Росздрава», 2005г. http://www.nerungri.edu.ru http://tambov.fio.ru http://www.zachetka.ru http://edu.of.ru http://festival.1september.ru

    Посмотреть все слайды

    Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
    Текстовое содержимое слайдов презентации:
    Интеграл и его применение в жизни человека.
    Цель: изучение и использование интеграла в деятельности человека. Задачи: узнать что такое интеграл; выявить все сферы деятельности человека где применяется интеграл;выяснить какое значение интеграл занимает в жизни человека. Ученый, создавший интеграл.Евдокс Книдский. Дал полное доказательство теоремы об объёме пирамиды; теоремы о том, что площади двух кругов относятся как квадраты их радиусов. При доказательстве он использовал так называемый метод «исчерпывания» их радиусов. Через две тысячи лет метод «исчерпывания» был преобразован в метод интегрирования. Что такое интеграл? Интеграл (от лат.Integer – целый) –интегралом называется величина, обратная дифференциалу функции. Многие физические и другие задачи сводятся к решению сложных дифференциальных или интегральных уравнений. Для этого необходимо знать, что представляют собой дифференциальное и интегральное исчисление.𝑓𝑥𝑑𝑥 Символ  введен Готфрид Лейбницем (1675г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Якоб Бернулли (1690 г.). Оно происходит от латинского integro, которое переводится как восстанавливать. Я. БернуллиГ. Лейбниц Применение интеграла. В геометрии.Площадь плоской фигуры.Определение: Фигура, ограниченная графиком непрерывной, знакопостоянной функции 𝑓(𝑥), осью абсцисс и прямыми 𝑥=𝑎, 𝑥=𝑏, называется криволинейной трапецией.Теорема. Если 𝑓(𝑥) непрерывная и неотрицательная функция на отрезке [𝑎;𝑏], то площадь соответствующей криволинейной трапеции равна определенному интегралу на этом отрезке.𝑆 =𝑎𝑏𝑓𝑥𝑑𝑥= 𝐹(𝑏)–𝐹(𝑎) Объем фигур вращения.Тело, полученное в результате вращения плоской фигуры, относительно какой-то оси, называют фигурой вращения.Функция 𝑆(𝑥)𝑓(𝑥) фигуры вращения есть круг.𝑆сеч = 𝑟2 Sсеч(𝑥)=𝜋𝑓 2(𝑥)𝑉= 𝑎𝑏𝑓 2(𝑥)𝑑𝑥 В физике.Координаты центра масс.Центр масс – точка, через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела. Пусть материальная однородная пластина имеет форму криволинейной трапеции 𝑥;𝑦 𝑎≤𝑥≤𝑏; 0≤𝑦≤𝑓(𝑥)} и функция 𝑦=𝑓(𝑥) непрерывна на [𝑎;𝑏], а площадь этой криволинейной трапеции равна 𝑆, тогда координаты центра масс пластины о находят по формулам:𝑥0 = 1𝑆 𝑎𝑏𝑥 𝑓(𝑥) 𝑑𝑥; 𝑦0 = 12𝑆 𝑎𝑏𝑓 2(𝑥) 𝑑𝑥; Работа силы 𝐴=𝐹𝑆𝑐𝑜𝑠, 𝑐𝑜𝑠 1. Если на частицу действует сила 𝐹, кинетическая энергия не остается постоянной. В этом случае согласно𝑑(𝑚2/2) = 𝐹𝑑𝑠приращение кинетической энергии частицы за время dt равно скалярному произведению 𝐹𝑑𝑠, где 𝑑𝑠 – перемещение частицы за время 𝑑𝑡. Величина𝑑𝐴=𝐹𝑑𝑠называется работой, совершаемой силой F.А = 𝑎𝑏𝑓𝑥𝑑𝑥 Путь, пройденный материальной точкой.Если материальная точка движется прямолинейно со скоростью 𝑣=𝑣(𝑡) и за время 𝑇= 𝑡2–𝑡1 (𝑡2>𝑡1) прошла путь 𝑆, то 𝑆=𝑡1𝑡2𝑣(𝑡)𝑑𝑡. В экономикеВ курсе микроэкономики часто рассматривают так называемые предельные величины, т.е. для данной величины, представляемой некоторой функцией 𝑦 =𝑓(𝑥), рассматривают ее производную 𝑓′(𝑥). Например, если дана функция издержек С в зависимости от объема q выпускаемого товара 𝐶= 𝐶(𝑞), то предельные издержки будут за­даваться производной этой функции МС=С′(q). Ее экономический смысл – это издержки на производство дополнительной единицы выпускаемого товара. Поэтому часто приходится находить функ­цию издержек по данной функции предельных издержек. В биологииСредняя длина пролета.Нас интересует средняя длина пролета. Так как круг симметричен относительно любого своего диамет­ра, нам достаточно ограничиться лишь теми птицами, которые ле­тят в каком-нибудь одном направлении, параллельном оси Оу. Тогда средняя длина пролета - это среднее расстоя­ние между дугами АСВ и 𝐴𝐶1𝐵. Иными словами, это среднее зна­чение функции 𝑓1𝑥−𝑓2𝑥, где 𝑦=𝑓1𝑥 – уравнение верхней дуги, а 𝑦=𝑓2𝑥 уравнение нижней дуги, т. е.𝐿=𝑎𝑏𝑓1𝑥−𝑓2𝑥𝑑𝑥𝑏−𝑎 Так как 𝑎𝑏𝑓1𝑥𝑑𝑥 равен площади криволинейной трапеции аАСВb, 𝑎𝑏𝑓2𝑥𝑑𝑥 равен площади криволинейной трапеции аА𝐶1Вb, то их разность равна площади круга, т. е. 𝜋𝑅2. Разность 𝑏−а равна 2R. Подставив это в 𝐿=𝑎𝑏𝑓1𝑥−𝑓2𝑥𝑑𝑥𝑏−𝑎 , получим: 𝐿=𝜋𝑅22𝑅=𝜋2𝑅

    Представьте, что у нас есть какая-то функция зависимости чего-то от чего-то.

    Например, вот так примерно можно на графике представить скорость моей работы в зависимости от времени суток:

    Скорость я измеряю в строках кода в минуту, в реальной жизни я программист.

    Объем работы - это скорость работы умножить на время. То есть если я пишу 3 строки в минуту, то в час получается 180. Если у нас есть такой график, можно узнать, сколько работы я сделал за день: это площадь под графиком. Но как это посчитать?

    Разделим график на столбики равной ширины величиной в час. А высоту этих столбиков сделаем равной скорости работы в середине этого часа.

    Площадь каждого столбика по отдельности легко посчитать, надо умножить его ширину на высоту. Получается, что площадь каждого столбика - это сколько примерно я работы сделал за каждый час. А если просуммировать все столбики, то получится примерная моя работа за день.

    Проблема в том, что результат получится примерный, а нам нужно точное число. Разобьем график на столбики по полчаса:

    На картинке видно, что это уже гораздо ближе к тому, что мы ищем.

    Так уменьшать отрезки на графике можно до бесконечности, и каждый раз мы все ближе и ближе будем подходить к площади под графиком. А когда ширина столбиков будет стремиться к нулю, тогда сумма их площадей будет стремиться к площади под графиком. Это и называется интегралом и обозначается вот так:

    В этой формуле f(x) означает функцию, которая зависит от величины x, а буквы a и b - это отрезок на котором мы хотим найти интеграл.

    Зачем это нужно?

    Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл - это один из основных инструментов работы с функциями.

    Например, если у нас есть формула круга, мы можем при помощи интеграла посчитать его площадь. Если у нас есть формула шара, то мы можем посчитать его объем. При помощи интегрирования находят энергию, работу, давление, массу, электрический заряд и многие другие величины.

    Нет, зачем мне это нужно?

    Да низачем - просто так, из любопытства. На самом деле интегралы входят даже в школьную программу, но не так много людей вокруг помнят, что это такое.

    HTML-версии работы пока нет.

    Подобные документы

      Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

      презентация , добавлен 26.01.2015

      Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

      презентация , добавлен 05.07.2016

      История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

      курсовая работа , добавлен 16.10.2013

      Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

      контрольная работа , добавлен 23.02.2011

      Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

      курсовая работа , добавлен 21.01.2008

      История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

      реферат , добавлен 07.09.2009

      Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.

      дипломная работа , добавлен 20.07.2009

      Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

      шпаргалка , добавлен 21.08.2009

      Ознакомление с понятием и основными свойствами определенного интеграла. Представление формулы расчета интегральной суммы для функции y=f(x) на отрезке [а, b]. Равенство нулю интеграла при условии равенства нижнего и верхнего пределов интегрирования.

      презентация , добавлен 18.09.2013

      Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.

    Тема исследования

    Применение интегрального исчисления в планировании расходов семьи

    Актуальность проблемы

    Все чаще в социальных и экономических сферах при вычислении степени неравенства в распределении доходов используется математика, а именно, интегральное исчисление. Изучая практическое применение интеграла мы узнаем:

    • Как интеграл и вычисление площади с помощью интеграла помогает в распределении материальных затрат?
    • Как интеграл поможет в накоплении денег на отпуск.

    Цель

    спланировать расходы семьи с использованием интегрального вычисления

    Задачи

    • Изучить геометрический смысл интеграла.
    • Рассмотреть методы интегрирования в социальной и экономической сферах жизни.
    • Составить прогноз материальных затрат семьи при ремонте квартиры с использованием интеграла.
    • Рассчитать объем потребления энергии семьи на год с учетом интегрального исчисления.
    • Расчитать сумму накопительного вклада в Сбербанк на отпуск.

    Гипотеза

    интегральное исчисление помогает в экономичных расчетах при планировании доходов и расходов семьи.

    Этапы исследования

    • Изучили геометрический смысл интеграла и методы интегрирования в социальной и экономической сферах жизни.
    • Произвели расчет материальных затрат, необходимых при ремонте квартиры с помощью интеграла.
    • Расчитали объем потребления электроэнегрии в квартире и затраты на электроэнергию семьи на год.
    • Рассмотрели один из вариантов полонения доходов семьи через вклады в Сбербанк с помощью интеграла.

    Объект исследования

    инегральное исчисление в социальной и экономических сферах жизни.

    Методы

    • Анализ литературы по теме "Практическое применение интгрального исчисления"
    • Изучение методов интегрирования при решении задач на вычисление площадей и объемов фигур с помощью интеграла.
    • Анализ расходов и доходов семьи с помощью интегрального вычисления.

    Ход работы

    • Обзор литературы по теме "Практическое применение интегрального исчисления"
    • Решение системы задач на вычисление площадей и объемов фигур с помощью интеграла.
    • Расчет расходов и доходов семьи с помощью интегрального вычисления: ремонт комнаты, объем электроэнергии, вклады в Сбербанк на отпуск.

    Наши результаты

    Как интеграл и вычисление объема с помощью интеграла помогает в прогнозировании объемов потребления электроэнергии?

    Выводы

    • Экономический расчет необходимых средств при ремонте квартиры можно быстрее и более точно выполнить с помощью интегрального вычисления.
    • Расход объемов электроэнергии семьи легче и быстрее рассчитать с помощью интегрального вычисления и программы Microsoft Office Excel, а значит прогнозировать затраты семьи на оплату электроэнергии на год.
    • Прибыль от вкладов в сбербанк можно рассчитать с помощью интегрального вычисления, значит спланировать отпуск семьи.

    Список ресурсов

    Печатные издания:

    • Учебник. Алгебра и начала анализа 10-11 класс. А.Г. Мордкович. Мнемозина. М: 2007
    • Учебник. Алгебра и начала анализа 10-11 класс. А. Колмогоров Просвещение. М: 2007
    • Математика для социологов и экономистов. Ахтямов А.М. М.: ФИЗМАТЛИТ, 2004. - 464 с.
    • Интегральное вычисление.Справочник по Высшей Математике М. Я. Выгодского, Просвещение, 2000