11 класс

Математический анализ, функциональный анализ. Задача о работе силы. Приложения двойного интеграла

11-е изд., стер. - СПб.: Лань, 2005. - 736 с.

Одиннадцатое издание известного учебника, охватывает большинство вопросов программы по высшей математике для инженерно-технических специальностей вузов, в том числе дифференциальное исчисление функций одной переменной и его применение к исследованию функций; дифференциальное исчисление функций нескольких переменных; интегральное исчисление; двойные, тройные и криволинейные интегралы; теорию поля; дифференциальные уравнения; степенные ряды и ряды Фурье. Разобрано много примеров и задач из различных разделов механики и физики.

Формат: pdf / zip (11-е изд ., стер.; 2005 , 736с.)

Размер: 7 9 Мб

Скачать: docs.google.com ; fileskachat.com

Формат: djvu / zip (5 -е изд ., стер.; 1967 , 736с.)

Размер: 13,4 Мб

Скачать: docs.google.com ; fileskachat.com

ОГЛАВЛЕНИЕ
Предисловие. 11
Введение. 13
1. «Элементарная» и «высшая» математика (13). 2. Величина. Переменная величина и функциональная зависимость (14). 3. Математика и действительность (16).
ГЛАВА I ФУНКЦИЯ
§ 1 . Действительные числа 18
4. Действительные числа и числовая ось. Интервал (18). 5. Абсолютная величина (21). 6. О приближенных вычислениях (22).
§ 2. Первоначальные сведения о функции 25
7. Определение функции (25). 8. Способы задания функций (27). 9. Символика (30). 10. Основные элементарные функции. Сложная функция (32). 11. Элементарные функции (33). 12. Неявные функции. Многозначные функции (36).
§ 3. Начало изучения функций. Простейшие функции 38
13. Основные характеристики поведения функции (38). 14. Графическое изучение функции (41). 15. Прямая пропорциональная зависимость и линейная функция. Приращение величины (43). 16. Квадратичная функция (46). 17. Обратная пропорциональная зависимость и дробно-линейная функция (48).
§ 4. Обратная функция. Степенная, показательная и логарифмическая функции 50
18. Обратная функция (50). 19. Степенная функция (54). 20. Показательная и логарифмическая функции (57).
§ 5. Тригонометрические, обратные тригонометрические, гиперболические и обратные гиперболические функции 60
21. Тригонометрические функции. Гармонические колебания (60). 22. Обратные тригонометрические функции (64). 23. Гиперболические и обратные гиперболические функции (68).
Вопросы и предложения для самопроверки 71
ГЛАВА II ПРЕДЕЛ. НЕПРЕРЫВНОСТЬ
§ 1. Предел функции. Бесконечные величины 73
24. Предел функции непрерывного аргумента (73). 25. Бесконечно большой аргумент (76). 26. Последовательности и их пределы (79). 27. Бесконечно большие величины. Ограниченные функции (81). 28. Бесконечно малые величины (85). 29. Правила предельного перехода (86). 30. Один признак существования предела функции. Первый замечательный предел (93).
31. Один признак существования предела последовательности. Второй замечательный предел (95).
§ 2. Непрерывные функции 98
32. Непрерывность функции (98). 33. Точки разрыва функции (100). 34. Действия над непрерывными функциями. Непрерывность элементарных функции (102). 35. Свойства непрерывных функций (106).
§ 3. Сравнение бесконечно малых величин 108
36. Сравнение бесконечно малых величин. Эквивалентные бесконечно малые величины (108). 37. Примеры отношений бесконечно малых величин. Натуральные логарифмы (ПО).
Вопросы и предложения для самопроверки 114
ГЛАВА III. ПРОИЗВОДНАЯ И ДИФФЕРЕНЦИАЛ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
§ 1. Производная 116
38. Некоторые задачи физики (116). 39. Скорость изменения функции. Производная функция. Производная степенной функции (120). 40. Геометрический смысл производной (123).
§ 2. Дифференцирование функций 125
41. Дифференцирование результатов арифметических действий (125). 42. Дифференцирование сложной и обратной функций (129). 43. Производные основных элементарных функций (133). 44. Дифференцирование элементарных функций. Примеры (138). 45. Дополнительные замечания о дифференцировании функций (139). 46. Параметрически заданные функции и их дифференцирование (141).
§ 3. Геометрические задачи. Графическое дифференцирование. .146
47. Касательная и нормаль к линии (146). 48. Графическое дифференцирование (150). 49. Геометрический смысл производной в системе полярных координат (152).
§ 4. Дифференциал 154
50. Дифференциал и его геометрический смысл (154). 51. Свойства дифференциала (157). 52. Дифференцируемость функции (161). 53. Применение дифференциала к приближенным вычислениям (163).
§ 5. Производные и дифференциалы высших порядков 166
54. Производные высших порядков (166). 55. Дифференциалы высших порядков (170).
Вопросы и предложения для самопроверки 172
ГЛАВА IV ПРИМЕНЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ К ИССЛЕДОВАНИЮ ФУНКЦИЙ
§ 1. Теоремы Ферма, Ролля, Лагранжа и Коши 174
56. Теоремы Ферма и Ролля (174). 57. Теорема Лагранжа (177). 58*. Теорема Коши (179).
§ 2. Поведение функции в интервале. 181
59. Признаки монотонности функции (181). 60. Экстремумы функции (183). 61. Схема исследования функций на экстремумы. Наибольшее и наименьшее значения функции (187). 62. Применение второй производной. Точки перегиба (195).
§ 3. Правило Лопиталя. Схема исследования функций 202
63. Правило Лопиталя (202). 64. Асимптоты линий (208). 65. Общая схема исследования функций (213).
§ 4. Кривизна 216
66. Дифференциал длины дуги (216), 67. Кривизна (217).
§ 5. Пространственные линии. Векторная функция скалярного аргумента 221
68. Пространственные линии (221). 69. Винтовая линия (224). 70. Векторная функция скалярного аргумента (226). 71*. Приложения к механике (231).
§ 6. Комплексные функции действительного переменного. 233
72. Комплексные числа (233). 73. Определение и дифференцирование комплексных функций (236). 74. Показательная функция и формулы Эйлера (237).
§ 7. Решение уравнений 240
75. Общие сведения об уравнениях (240). 76. Признак кратности корня (244). 77. Приближенное решение уравнений (245).
Вопросы и предложения для самопроверки 251
ГЛАВА V ИНТЕГРАЛ. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
§ 1. Неопределенный интеграл 253
78. Первообразная функция (253). 79. Неопределенный интеграл. Основная таблица интегралов (256). 80. Простейшие правила интегрирования. Примеры (259). 81. Интегрирование по частям и замена переменной (264). 82. Интегрирование рациональных функций (270). 83. Интегрирование простейших иррациональных функций (277). 84. Интегрирование тригонометрических функций (279). 85. Заключительные замечания. Использование таблиц интегралов (283).
§ 2. Определенный интеграл 286
86. Некоторые задачи геометрии и физики (286). 87. Определенный интеграл. Теорема существования (292). 88. Простейшие свойства определенного интеграла (295). 89. Перестановка пределов и разбиение интервала интегрирования. Геометрический смысл интеграла (296). 90. Оценка интеграла. Теорема о среднем. Среднее значение функции (301) 91. Производная от интеграла по его верхнему пределу (306). 92. Формула Ньютона - Лейбница (308). 93*. Интегрирование комплексных функций действительного переменного (311).
§ 3. Способы вычисления определенных интегралов 312
94. Интегрирование по частям и замена переменной в определенном интеграле (312). 95. Приближенные методы интегрирования (317). 96. Графическое интегрирование (324).
§ 4. Несобственные интегралы 326
97. Интегралы с бесконечными пределами (326). 98. Признаки сходимости несобственных интегралов с бесконечными пределами (330). 99. Интегралы от разрывных функций (335).
Вопросы и предложения для самопроверки 338
ГЛАВА VI. ПРИМЕНЕНИЕ ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ
§ 1. Некоторые задачи геометрии и статики 340
100. Площадь фигуры (340). 101. Объем тела (343). 102. Длина дуги (346). 103. Центр тяжести криволинейной трапеции (350).
§ 2. Общая схема применения интеграла 353
104. Схема решения задач (353). 105*. Площадь поверхности вращения (357). 106. Давление жидкости на стенку сосуда (359).
Вопросы и предложения для самопроверки 360
ГЛАВА V II ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
§ 1. Функции нескольких переменных 361
107. Функции двух и многих переменных (361). 108. Метод сечений. Предел и непрерывность (365).
§ 2. Производные и дифференциалы. Дифференциальное исчисление. . 369
109. Частные производные и дифференциалы (369). ПО. Полный дифференциал (374). 111*. Дифференцируемость функций (377). 112. Геометрический смысл полного дифференциала функции двух переменных (380). 113. Применение полного дифференциала к приближенным вычислениям (382). 114. Производные и дифференциалы высших порядков (385). 115. Отыскание функции по ее полному дифференциалу (387). 116. Дифференцирование сложных функций. Правила для отыскания дифференциала функций (393). 117. Теорема существования неявной функции (398). 118. Дифференцирование неявных функций (401).
§ 3. Геометрические приложения дифференциального исчисления. . . 404
119. Поверхности (404). 120. Пространственные линии как пересечение двух поверхностей (407).
§ 4. Экстремумы функций нескольких переменных 410
121. Необходимые условия экстремума(410). 122. Достаточные условия экстремума для функций двух переменных (412). 123. Задачи о наибольших и наименьших значениях (414). 124*. Условные экстремумы (416).
§ 5. Скалярное поле 422
125. Скалярное поле. Поверхности уровня (422). 126. Производная по направлению (423). 127. Градиент (426).
Вопросы и предложения для самопроверки 430
ГЛАВА VIII ДВОЙНЫЕ И ТРОЙНЫЕ ИНТЕГРАЛЫ
§ 1. Двойные интегралы 432
128. Объем цилиндрического тела. Двойной интеграл (432). 129. Свойства двойных интегралов (435). 130. Вычисление двойных интегралов (437). 131. Двойной интеграл в полярных координатах (446). 132. Приложения двойных интегралов к задачам механики (451).
§ 2. Тройные интегралы 453
133. Масса неоднородного тела. Тройной интеграл (453). 134. Вычисление тройных интегралов (455). 135. Применение тройных интегралов (462).
§ 3. Интегралы, зависящие от параметра 464
136. Интегралы с конечными пределами (464). 137. Несобственные интегралы, зависящие от параметра (469).
Вопросы и предложения для самопроверки 471
ГЛАВА IX. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ И ИНТЕГРАЛЫ ПО ПОВЕРХНОСТИ. ТЕОРИЯ ПОЛЯ
§ 1. Криволинейный интеграл 472
138. Задача о работе силового поля. Криволинейный интеграл (472). 139. Вычисление криволинейных интегралов. Интегралы по замкнутому контуру (475). 140. Формула Грина (481). 141. Условие независимости интеграла от линии интегрирования (483). 142. Интегрирование полных дифференциалов. Первообразная функция (487). 143. Криволинейные интегралы по пространственным линиям (490). 144. Приложения криволинейных интегралов к задачам механики и термодинамики (494). 145. Криволинейный интеграл по длине (первого рода) (499).
§ 2. Интегралы по поверхности 502
146. Поток жидкости через поверхность. Интеграл по поверхности (502). 147*. Свойства интегралов по поверхности (505). 148*. Вычисление интегралов по поверхности (508) 149*. Формула Стокса (514). 150*. Формула Остроградского (517).
§ 3. Теория поля 519
151. Векторное поле и векторные линии (519). 152*. Поток вектора. Дивергенция (522). 153. Циркуляция и ротор векторного поля (528). 154*. Оператор Гамильтона и векторные дифференциальные операции второго порядка (533). 155*. Свойства простейших векторных полей (535). 156*. Электромагнитное поле (538). 157*. Нестационарные поля (543).
Вопросы и предложения для самопроверки 545
ГЛАВА Х ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
§ 1. Дифференциальные уравнения первого порядка 547
158. Общие понятия. Теорема существования (547). 159. Уравнения с разделяющимися переменными (551). 160. Некоторые задачи физики (554). 161. Однородные и линейные уравнения первого порядка (558). 162. Уравнения в полных дифференциалах (564). 163. Приближенные методы решения уравнений первого порядка (565). 164*. Особые точки дифференциальных уравнений первого порядка (569).
§ 2. Дифференциальные уравнения второго и высших порядков.... 572
165. Дифференциальные уравнения второго порядка (572). 166. Частные случаи уравнений второго порядка (574). 167. Приложения к механике (576). 168. Дифференциальные уравнения высших порядков (581).
§ 3. Линейные дифференциальные уравнения 582
169. Линейные уравнения второго порядка. Общие свойства (582). 170. Уравнения второго порядка с постоянными коэффициентами без правой части (586). 171. Уравнения второго порядка с постоянными коэффициентами с правой частью (591). 172. Метод вариации произвольных постоянных (598). 173. Линейные дифференциальные уравнения n- го порядка (600). 174. Линейные дифференциальные уравнения п-го порядка с постоянными коэффициентами (604). 175. Колебания. Резонанс (605).
§ 4. Системы дифференциальных уравнений 613
176. Общие определения. Нормальные системы уравнений (613), 177*. Геометрическая и механическая иллюстрации решений системы дифференциальных уравнений. Фазовое пространство (617). 178. Системы линейных дифференциальных уравнений (620). 179. Системы линейных дифференциальных уравнений с постоянными коэффициентами (622). 180*. Случай кратных корней характеристического уравнения (627). 181*. Матричная форма записи системы линейных дифференциальных уравнений (630).
Вопросы и предложения для самопроверки 634
ГЛАВА XI РЯДЫ
§ 1. Числовые ряды 636
182. Определение ряда и его суммы (636). 183. Необходимый признак сходимости ряда. Гармонический ряд (640). 184. Ряды с положительными членами. Достаточные признаки сходимости (642). 185. Интегральный признак Коши (647). 186. Ряды с произвольными членами. Абсолютная сходимость (649).
§ 2. Функциональные ряды 653
187. Общие определения (653). 188. Свойства правильно сходящихся функциональных рядов (656).
§ 3. Степенные ряды 658
189. Теорема Абеля. Интервал и радиус сходимости (658). 190. Свойства степенных рядов (663).
§ 4. Разложение функций в степенные ряды 665
191. Ряд Тейлора (665). 192. Условие разложения функций в ряд Тейлора (668). 193. Остаточный член ряда Тейлора. Формула Тейлора (670). 194. Разложение функций в ряды Тейлора и Маклорена (673).
§ 5. Некоторые применения рядов Тейлора 680
195. Приближенное вычисление значений функции (680). 196. Интегрирование функций и дифференциальных уравнений (684).
§ 6. Дополнительные вопросы теории степенных рядов 689
197*. Степенные ряды в комплексной области (689). 198*. Ряд и формула Тейлора для функции двух переменных (692).
Вопросы и предложения для самопроверки 694
ГЛАВА XII. РЯДЫ ФУРЬЕ. ИНТЕГРАЛ ФУРЬЕ
§ 1. Ряды Фурье. 695
199. Гармонические колебания. Тригонометрические ряды (696). 200. Ряды Фурье (700). 201. Разложение в ряд Фурье четных и нечетных функций. Ряд Фурье в произвольном интервале (705). 202. Примеры (707).
§ 2. Дополнительные вопросы теории рядов Фурье. Практический гармонический анализ 714
203*. Равенство Парсеваля. Среднее значение квадрата периодической функции (714). 204*. Ряды Фурье в комплексной форме (715).; 205*, Ортогональные системы функций (717). 206. Практический гармонический анализ. Шаблоны (719).
§3*. Интеграл Фурье. 723
207*. Интеграл Фурье (723). 208*. Интеграл Фурье для четных и нечетных функций (726). 209*. Интеграл Фурье в комплексной форме. Преобразование Фурье (728).
Вопросы и предложения для самопроверки 730
Таблица интегралов 731
Литература 736

Четвертое издание «Краткого курса математического анализа для втузов» выпускается в значительно переработанном виде. Главная цель переработки заключалась в том, чтобы привести «Курс» в соответствие с программой по высшей математике для инженерно-технических специальностей, утвержденной Министерством высшего и среднего специального образования СССР в 1964 г.

«Элементарная» и «высшая» математика.
Говоря о курсе математики, изучаемом в высших учебных заведениях, часто называют его «курс высшей математики». Соответственно те разделы математики, которые изучают в школе, обычно объединяются названием «курс элементарной математики». Сразу подчеркнем, что это разделение математики на «высшую» и «элементарную» весьма условно; нельзя указать никаких точных признаков, согласно которым такое разделение можно произвести.

Следует все же отметить, что те разделы математики, которые мы относим к «элементарной», возникли и существуют уже очень давно. Любому школьнику известны имена греческих ученых Пифагора и Евклида, - первый из которых жил за пятьсот, а второй за триста лет до нашей эры. Именно в то время была создана та система элементарной геометрии, которая лишь с небольшими изменениями изучается в школе и сейчас.

Несколько позже оформилась как самостоятельный раздел математики алгебра; ее рождение относят к VIII веку н. э., когда хорезмский ученый Моххамед Аль-Хорезми изложил ее основы в трактате «Альджебр аль-мукабала», из первого слова названия которого и произошло само слово «алгебра». Разумеется, правила арифметических и алгебраических действий, а также способы решения простейших уравнений были известны значительно раньше.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Краткий курс математического анализа для ВТУЗов, Бермант А.Ф., Араманович И.Г., 1967 - fileskachat.com, быстрое и бесплатное скачивание.

  • Краткий курс математического анализа, Учебник для вузов, Бермант А.Ф., Араманович И.Г., 2005
  • Функции комплексного переменного, Операционное исчисление, Теория устойчивости, Араманович И.Г., Лунц Г.Л., Эльсгольц Л.Э., 1968
  • Уравнения математической физики, Араманович И.Г., Левин В.И., 1969

Следующие учебники и книги.

Галкин С.В.

Краткий курс математического анализа

В лекционном изложении

для студентов МГТУ им. Н. Э. Баумана

(третий семестр)

Москва 2005.

Часть1 Кратные и криволинейные интегралы, теория поля.

Лекция 1.

Двойной интеграл.

Вычисление двойного интеграла в декартовой системе координат.

Предположим, что D – плоская область, лежащая в некоторой плоскости и введем в этой плоскости декартову систему координат.

Область D назовем правильной , если любая прямая, параллельная декартовым осям, пересекает ее не более чем в двух точках.

Можно показать, что замкнутую ограниченную область с кусочно-гладкой границей можно представить в виде объединения правильных областей, не имеющих общих внутренних точек. Поэтому интеграл по области D можно вычислять как сумму интегралов (свойство 2) по правильным областям. Будем считать, что нам надо вычислить двойной интеграл по правильной области.

Вспомним формулу для вычисления объема тела по площадям параллельных сечений , где - «крайние» точки области D по x., - площадь сечения тела одной из параллельных плоскостей (при фиксированном x). Эта плоскость пересекается с плоскостью OXY по прямой, параллельной оси OY, соединяющей точку входа в область j(x) с точкой выхода f(x). Графики функций j(x), f(x) образуют границу области D. = - площадь криволинейной трапеции..

Подставляя в формулу для объема, получим . Это повторный интеграл, вернее один из них. Второй повторный интеграл можно получить, вводя сечения, параллельные оси OX. По аналогии . По смыслу двойного интеграла (объем цилиндрического тела)

= =

Примеры. Записать двойной интеграл по заданной области и повторные интегралы.



1.
= =
2. + = +

Геометрический и физический «смысл» двойного интеграла.

К двойному интегралу .мы пришли от задачи об объеме цилиндрического тела, расположенного над областью D с переменной высотой .

В этом и состоит его геометрический смысл.

Можно рассмотреть задачу о массе плоской пластины, представляющей собой плоскую область D, плотность которой равна , т.е. меняется от точки к точке. Достаточно ассоциировать переменную плотность с переменной высотой в задаче об объеме, чтобы понять, что мы имеем ту же модель.

Поэтому физический смысл двойного интеграла заключается в том, что равен массе плоской области D, плотность которой равна .

Пример. Вычислить объем V цилиндрического тела, ограниченного двумя параболическими цилиндрами z = 1-y 2 и x = y 2 и площадь его основания D, расположенного в плоскости OXY..

Приложения двойного интеграла.

С помощью двойного интеграла можно вычислить объем цилиндрического тела, площадь и массу плоской области. От этих задач мы и пришли к двойному интегралу.

Но возможны и менее очевидные приложения.

С помощью двойного интеграла можно вычислять площадь поверхности, определять статические моменты, моменты инерции и центр тяжести плоской области.

Вычисление статических моментов, координат центра тяжести, моментов инерции.

Пусть задана плотность вещества плоской материальной области D r(x, y). Выделим элементарную ячейку с массой dm и применим к ней известные формулы для материальной точки:

Статические моменты относительно осей OX, OY dm x = y dm = y r(x, y) ds,

dm y = x dm = x r(x, y) ds.

Моменты инерции относительно осей OX, OY dJ x = y 2 dm = y 2 r(x, y) ds,

dJ y = x 2 dm = x 2 r(x, y) ds.

Момент инерции относительно начала координат dJ 0 = dJ x + dJ y .

Двойным интегралом по всей области D вычисляем те же характеристики для области D.

, , , , J 0 = J x + J y .

Координаты центра тяжести , где - масса области D.

Пример. Вычислить координаты центра тяжести полукруга с заданной плотностью .

(это было ясно заранее, по симметрии полукруга относительно OYи независимости плотности от координаты x).

Поэтому .

Пример. Вычислить момент инерции полукруга с заданной плотностью относительно прямой .

Эта формула известна в теоретической механике.

Лекция 3 Тройной интеграл.

Лекция 4. Приложения тройного интеграла.

Задача о работе силы.

Какую работу производит сила F(M) при перемещении точки M по дуге AB? Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр).

1. Организуем разбиение области- дуги AB на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и (условие А )

2. Отметим на элементах разбиения «отмеченные точки» M i и вычислим в них значения функции

3. Построим интегральную сумму , где вектор, направленный по хорде, стягивающей -дугу .

4. Переходя к пределу при условии (условие В ), получим криволинейный интеграл второго рода как предел интегральных сумм (и работу силы):

. Часто обозначают

Теорема существования.

Пусть вектор - функция непрерывна на кусочно-гладкой дуге L. Тогда криволинейный интеграл второго рода существует как предел интегральных сумм.

.

Замечание. Предел этот не зависит от

Способа выбора разбиения, лишь бы выполнялось условие А

Выбора «отмеченных точек» на элементах разбиения,

Способа измельчения разбиения, лишь бы выполнялось условие В

Лекция 6. Формула Грина.

Теорема (формула) Грина. Пусть G – плоская односвязная область с кусочно-гладкой границей L. Пусть функции P(x, y), Q(x, y) непрерывны и имеют непрерывные частные производные по своим переменным в области G и на L.

Тогда справедлива формула Грина

.

Доказательство. 1) Назовем плоскую область D (в плоскости OXY) правильной, если любая прямая, параллельная координатной оси (OX или OY) пересекает область не более, чем в двух точках. Можно показать, что область G можно представить как объединение конечного числа правильных областей .

Тогда по свойству аддитивности двойной интеграл в правой части формулы Грина равен сумме двойных интегралов по правильным областям. Криволинейный интеграл в левой части равен сумме криволинейных интегралов по границам правильных областей, так как криволинейные интегралы по общим границам любых правильных областей различны по знаку из-за различных направлений обхода границы и взаимно уничтожаются при суммировании.

Поэтому доказательство может быть проведено для правильной области G.

2) Пусть G – правильная область. Так как P, Q могут быть произвольными функциями, то формула Грина сводится двум формулам и , каждую из которых надо доказать. Докажем первую формулу, вторая доказывается аналогично.

= = = =

Формула Ньютона – Лейбница.

Пусть выполнены условия теоремы о полном дифференциале и пусть выражение

Полный дифференциал, а функция - потенциал.

Тогда справедлива формула Ньютона – Лейбница

, где - потенциал.

Доказательство. В теореме о полном дифференциале доказано, что потенциал можно записать в виде . Так как интеграл не зависит от пути интегрирования, то дугу, соединяющую точки (x 1 , y 1), (x 2 , y 2) можно провести через точку (x 0 , y 0). Поэтому = + = - = .

Лекция 8

Скалярное и векторное поля.

скалярное поле j (M), если в этой области задана скалярная функция j (M).

Говорят, что в области (плоской или пространственной) задано векторное поле (M), если в этой области задана векторная функция (M).

Например, масса или температура частиц в комнате – скалярные поля, скорость или силы взаимодействия частиц – векторные поля.

В интегралах первого рода:двойных, криволинейных, поверхностных мы имели дело со скалярным полем – распределением масс точек кривой или поверхности в пространстве.

В интегралах второго рода вычислялись характеристики векторных полей: работа векторного поля (силового поля) в криволинейном интеграле, поток векторного поля в поверхностном интеграле.

Рассмотрим подробнее основные характеристики скалярных и векторных полей.

Скалярные поля.

Линии уровня плоского поля j (x, y) – кривые, на которых значения функции постоянны j (x, y) = С.

Например, линии равной высоты, нанесенные на географической карты (h (x, y) = 0 – уровень моря, h = 7000м – немногие горные вершины, h = - 10000м – самые глубокие океанские впадины).

Поверхности уровня пространственного поля j (x, y, z) – поверхности, на которых значения функции постоянны j (x, y, z) = С.

Например, поверхности равной температуры или давления в атмосфере. Любая линия на поверхности уровня – это линия уровня.

Пример. Задано поле . При С > 0 поверхности уровня – однополостные гиперболоиды, при С = 0 поверхность уровня – конус, при С < 0 поверхности уровня – двуполостные гиперболоиды.

Линии или поверхности различных уровней не пересекаются.

Чем чаще (гуще) поверхности или линии уровня, тем интенсивнее изменение поля.

Градиент поля – вектор .

Утверждение . Градиент скалярного поля ортогонален его поверхности уровня .

Доказательство. Пусть точка (x, y, z) остается на поверхности уровня g(x, y, z) = 0 при вариациях переменных. Тогда равенство превращается в тождество, а тождество можно дифференцировать.

Вектор (x, y, z) - это вектор, касательный в точке (x, y, z) к любой кривой, лежащей на поверхности уровня, проходящей через эту точку. Поэтому в точке (x, y, z) вектор градиента ортогонален всем касательным к линии уровня, проходящим через эту точку. Следовательно, он ортогонален касательной плоскости к поверхности уровня и направлен по нормали к поверхности уровня.

Производная скалярного поля по направлению определяется как . Известно из теории функций многих переменных (выпуск V учебника), что производная по направлению есть проекция градиента на данное направление

.

Пример. Найти производную скалярного поля g(x, y, z) = x 2 + y 2 + z 3 по направлению {1,3,2} в точке (1,0,4)

Векторное поле.

Векторная линия - линия, в каждой точке которой вектор поля направлен по касательной к ней.

Уравнения векторной линии легко получить из условия коллинеарности векторов поля и касательной

.

Пример. Написать уравнения векторных линий векторного поля

Линии уровня – окружности (С>0).

Векторной трубкой называется поверхность, образованная векторными линиями.

Свойства дивергенции.

1) Линейность.

.

2) , где - постоянное векторное поле.

3) , где - скалярное поле.

= = .

Лекция 9 Формула Стокса.

Ротор векторного поля.

Назовем ротором векторного поля вектор

Свойства ротора.

1) Линейность

= +

= .

2) - постоянное векторное поле.

+ = .

Теорема Стокса.

Пусть пространственно односвязная область V содержит кусочно-гладкую поверхность с кусочно-гладкой границей .

Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные по своим аргументам до второго порядка включительно в области V.

Тогда справедлива формула Стокса

Замечание. Нормаль к поверхности проведена так, чтобы наблюдатель, находясь на конце вектора нормали, видел бы обход контура , совершающимся в положительном направлении (так, чтобы область, границей которой является контур, при обходе контура находилась бы «по левую руку»).

Доказательство теоремы Стокса.

представляет собой вектор

Отсюда видно, что . Вспомним еще, что .

(на поверхности , поэтому под интегралом стоит частная производная P по y с учетом зависимости z от y на поверхности )

=

Используем формулу Грина для области D с ее границей . Ее можно записать в виде

. Нам понадобится только та ее часть, которая относится к функции P . Продолжаем равенство дальше.

= .

В самом деле, на контуре , а переменные x, y на том и другом контуре те же, так как контур - это проекция контура на плоскость OXY (параллельно оси OZ).

Одна из частей формулы Стокса доказана.

Линейным интегралом векторного поля по дуге L называется криволинейный интеграл .

Линейный интеграл имеет смысл работы векторного поля при перемещении по дуге.

Циркуляцией векторного поля называется линейный интеграл по замкнутому контуру.

.

Вводя эти понятия, можно записать формулу Стокса в «полевой» форме

.

Мы определили ротор векторного поля в декартовой системе координат, однако ротор – это характеристика самого векторного поля Поэтому необходимо дать определение ротора, которое не зависит от выбора системы координат.

Инвариантное определение ротора.

Рассмотрим произвольную точку M в области V. Проведем через нее поверхность , границей которой служит контур . Пусть поверхность и контур удовлетворяют условиям теоремы Стокса. По теореме о среднем для поверхностного интеграла и формуле Стокса получим

Здесь, как и ранее - обозначение области и ее площади. Из этого соотношения, стягивая контур к точке M, получим

Это и есть инвариантное определение ротора.

Правая часть формулы – это поверхностная плотность циркуляции векторного поля (энергии в точке M вращения векторного поля или работы векторного поля при вращении вокруг некоторого направления, определяемого вектором ). Левая часть – это проекция ротора на это направление.

Если направление совпадает с направлением ротора и - единичный вектор, то левая часть равна модулю ротора. Поэтому модуль ротора векторного поля равен максимальному значению поверхностной плотности циркуляции векторного поля.

Левая часть достигает максимума при коллинеарности направления и ротора векторного поля. Поэтому направление ротора векторного поля – это то направление, вокруг которого поверхностная плотность циркуляции векторного поля – наибольшая.

Пример. Найти ротор линейной скорости вращения с постоянной угловой скоростью

Векторное поле линейной скорости .

,

Ранее была сформулирована теорема о полном дифференциале для пространственной кривой. В ее доказательстве не хватало только одного пункта – перехода от пункта 3) к пункту 2). Все остальное доказывается аналогично случаю плоской кривой.

Оператор Гамильтона

Оператор Гамильтона .

Применим оператор Гамильтона к скалярному полю .

Оператор Гамильтона представляет собой вектор-оператор. Его можно скалярно или векторно умножить на векторное поле .

Это дифференциальные операции первого порядка над скалярным и векторным полями. От скалярного поля можно взять градиент, от векторного поля можно взять дивергенцию и ротор.

Гармоническое поле.

Скалярное поле называется гармоническим, если

- уравнение Лапласа .

Векторное поле называется гармоническим, если оно потенциальное (), а потенциал - гармоническое скалярное поле, т.е. .

Теорема. Для того, чтобы векторное поле было гармоническим, необходимо и достаточно чтобы оно было соленоидальным и потенциальным.

Необходимость. Если векторное поле - гармоническое, то оно потенциальное, т.е. , тогда оно соленоидально, так как .

Достаточность. Если векторное поле потенциальное, то . Так как оно еще и соленоидально, то 0 = . Следовательно, поле потенциально и его потенциал удовлетворяет уравнению Лапласа, поэтому векторное поле – гармоническое.

Так как гармоническое поле потенциально и соленоидально, то его свойства – свойства соленоидального поля и свойства потенциального поля.

Свойства сходящихся рядов.

1. Члены сходящегося ряда можно умножить на одно и то же число k. Полученный ряд будет сходиться, а сумма его будет в k раз больше суммы исходного ряда.

Доказательство. Для второго ряда частичная сумма будет равна . По теореме о предельном переходе в равенстве .

2. Члены сходящегося ряда можно группировать. Полученный ряд будет сходиться, и сумма его не изменится.

Сгруппируем члены ряда, например, так

Видно, что частичные суммы группированного ряда представляют собой подпоследовательность последовательности частичных сумм исходного ряда. Так как последовательность сходится, то и подпоследовательность сходится к тому же пределу.

3. В сходящемся ряде можно отбросить конечное число первых членов . Полученный ряд будет сходиться, а его сумма будет меньше суммы исходного ряда на B.

Запишем частичные суммы второго ряда . По теореме о предельном переходе в равенстве .

Замечание. Ряд, полученный из исходного ряда отбрасыванием первых k членов, называется остатком ряда и обозначается

4. Для того чтобы ряд сходился необходимо и достаточно, чтобы сходился остаток ряда. (Докажите это самостоятельно, используя доказательство свойства 3).

Мы должны были бы по свойству 5 получить сходящийся ряд. А получаем расходящийся гармонический ряд. Следовательно, исходный ряд расходится. . , а по необходимому признаку сходимости ряда ряды Дирихле» . Название взято в кавычки, так неизвестно, рассматривал ли эти ряды Дирихле, но оно устоялось за долгие годы.

. Ясно, что интеграл сходится при p>1 и расходится при P<1. Случай p=1 рассмотрен выше (расходящийся гармонический ряд). Отсюда следует вывод

.

Интересно, что ряд , интегралы расходятся (проверьте по интегральному признаку).

Теперь становится яснее, где пролегает граница между сходящимися и расходящимися рядами. Заодно накоплена библиотека сходящихся и расходящихся рядов, которые можно использовать как эталонные при сравнении рядов. Сравнивать ряды можно с помощью признаков сравнения.

Признаки сравнения рядов.

сходится.

Пусть ряд расходится. Если ряд сходится, то по предыдущему ряд сходится (противоречие).

Пример. Ряд с расходится по второму признаку сравнения (ряд сравнения – гармонический ряд).

Т. 1. Дифференциальное и интегральное исчисления функций одной переменной. Ряды.

Т. 2. Дифференциальное и интегральное исчисления функций многих переменных. Гармонический анализ.

3-е изд., перераб. - М.: Физматлит, 2005. т.1 - 400с.; т.2 - 424с.

В первом томе излагаются традиционные разделы математического анализа: дифференциальное и интегральное исчисления функций одной переменной, теория рядов.

Во втором томе излагаются традиционные разделы математического анализа: дифференциальное и интегральное исчисления функций многих переменных, гармонический анализ. В конце тома помещен краткий исторический очерк развития понятий математического анализа. Нумерация параграфов и рисунков продолжает нумерацию первого тома.

Том 1.

Формат: djvu / zip

Размер: 2 ,7 Мб

Том 2 .

Формат: djvu / zip

Размер: 2 ,9 Мб

Том 1. ОГЛАВЛЕНИЕ
Предисловие 8
ГЛАВА 1
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ
§ 1. Функции и множества 11
1.1. Множества (11). 1.2. Функции (13).
§ 2. Числа 15
2.1. Действительные числа (15). 2.2. Расширенная числовая прямая. Окрестности (19). 2.3. Комплексные числа (20). 2.4. Перестановки и сочетания (29). 2.5. Формула бинома Ньютона (31).
§ 3. Элементарные функции 32
3.1. Числовые функции (32). 3.2. Понятие элементарной функции (33). 3.3. Многочлены (34). 3.4. Разложение многочленов на множители (37). 3.5. Рациональные дроби (40) 3.6. Графики рациональных функций (45). 3.7. Степенная функция (48). 3.8. Показательная и логарифмическая функции (50). 3.9. Тригонометрические и обратные тригонометрические функции (51). 3.10. Параллельный перенос и растяжение графиков (54).
§ 4. Числовые множества 55
4.1. Ограниченные и неограниченные множества (55). 4.2. Верхняя и нижняя грани (56). 4.3*. Арифметические свойства верхних и нижних граней (58). 4.4. Принцип Архимеда (61). 4.5. Принцип вложенных отрезков (61). 4.6*. Счетность рациональных чисел. Несчетность действительных чисел (63).
§ 5. Предел числовой последовательности 67
5.1. Определение предела числовой последовательности (67). 5.2. Единственность предела последовательности (71). 5.3. Переход к пределу в неравенствах (71). 5.4. Ограниченность сходящихся последовательностей (74). 5.5. Бесконечно малые последовательности (75). 5.6. Свойства пределов, связанные с арифметическими действиями над числовыми последовательностями (77). 5.7. Монотонные последовательности (80). 5.8. Принцип компактности (83). 5.9. Критерий Коши (86). 5.10*. Изображение действительных чисел бесконечными десятичными дробями (88). 5.11. Предел последовательности комплексных чисел (94).
§ 6. Предел и непрерывность функций 95
6.1. Первое определение предела функции (95). 6.2. Определение непрерывности функции (100). 6.3. Второе определение предела функции (101). 6.4. Условие существования предела функции (103). 6.5. Предел функции по объединению множеств (104). 6.6. Односторонние пределы и односторонняя непрерывность (105). 6.7. Свойства пределов функций (107). 6.8. Бесконечно малые (110). 6.9. Непрерывные функции (111). 6.10. Классификация точек разрыва (114). 6.11. Пределы монотонных функций (115). 6.12. Критерий Коши существования предела функции (118). 6.13. Предел и непрерывность композиции функций (119). 6.14. Предел и непрерывность функций комплексного аргумента (120).
§ 7. Свойства непрерывных функций 122
7.1. Ограниченность непрерывных функций. Достижимость экстремальных значений (122). 7.2. Промежуточные значения непрерывных функций (123). 7.3. Обратные функции (124). 7.4. Равномерная непрерывность (128).
§ 8. Непрерывность элементарных функций 130
8.1.Многочлены и рациональные функции (130). 8.2. Показательная и логарифмическая функции (131). 8.3. Степенная функция (138). 8.4. Тригонометрические и обратные тригонометрические функции (139). 8.5. Элементарные функции (140).
§ 9. Сравнение функций 140
9.1. Замечательные пределы (140). 9.2. Сравнение функций в окрестности заданной точки (143). 9.3. Эквивалентные функции (146).
§ 10. Производная и дифференциал 148
10.1. Определение производной (148). 10.2. Дифференциал функции (150). 10.3. Геометрический смысл производной и дифференциала (152). 10.4. Физический смысл производной и дифференциала (154). 10.5. Свойства производных, связанные с арифметическими действиями над функциями (155). 10.6. Производная обратной функции (157). 10.7. Производная и дифференциал сложной функции (158). 10.8. Гиперболические функции и их производные (160). 10.9. Производные комплекснозначных функций действительного аргумента (160).
§ 11. Производные и дифференциалы высших порядков 161
11.1. Производные высших порядков (161). 11.2. Производные высших порядков сложных функций, обратных функций и функций, заданных параметрически (163). 11.3. Дифференциалы высших порядков (164).
§ 12. Дифференциальные теоремы о среднем 165
12.1. Теорема Ферма (165). 12.2. Теоремы Ролля, Лагранжа и Коши о средних значениях (167).
§13. Раскрытие неопределенностей по правилу Лопиталя 172
13.1. Неопределенности вида jj (172). 13.2. Неопределенности вида ^ (173).
§ 14. Формула Тейлора 178
14.1. Вывод формулы Тейлора (178). 14.2. Примеры разложения по формуле Тейлора (182). 14.3*. Применение метода выделения главной части функций для вычисления пределов (185).
§ 15. Исследование функций 186
15.1. Признак монотонности функций (186). 15.2. Локальные экстремумы функций (187). 15.3. Выпуклость и точки перегиба (194). 15.4. Асимптоты (198). 15.5*. Построение графиков функций (200).
§ 16. Векторные функции 201
16.1.Предел и непрерывность векторной функции (201). 16.2. Производная и дифференциал векторной функции (205).
§ 17. Длина кривой 211
17.1. Понятие кривой (211). 17.2. Касательная к кривой (216). 17.3. Определение длины кривой. Спрямляемые кривые (218).
§ 18. Кривизна кривой 223
18.1. Определение кривизны и радиуса кривизны кривой (223). 18.2. Формула для кривизны (224). 18.3. Главная нормаль. Соприкасающаяся плоскость (225). 18.4. Центр кривизны. Эволюта (228). 18.5. Кривизна и эволюта плоской кривой (229).
ГЛАВА 2
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ
§ 19. Определение и свойства неопределенного интеграла 233
19.1.Первообразная и неопределенный интеграл (233). 19.2. Основные свойства интеграла (235). 19.3. Табличные интегралы (237). 19.4. Формула замены переменной (238) 19.5. Формула интегрирования по частям (241).
§ 20. Интегрирование рациональных дробей 242
20.1. Интегрирование элементарных рациональных дробей (242). 20.2. Общий случай (244).
§ 21. Интегрирование некоторых иррациональностей 244
21.1. Рациональные функции от функций (244). 21.2. Интегралы виДа/Я(^МГ"-"(^Г) <М245)- 21.3* Интегралы от дифференциального бинома (246).
§ 22. Интегрирование некоторых трансцендентных функций 247
22.1. Интегралы f R(sinx, cos ж) dx (247). 22.2. Интегралы J sinm x cosn x dx (248). 22.3. Интегралы J sin ax cos f3x dx, J sin ax sin f3xdx, J cos ax cos f3x dx (249). 22.4. Интегралы от трансцендентных функций, вычисляющиеся с помощью интегрирования по частям (250).
§ 23. Определенный интеграл 251
23.1.Определенный интеграл Римана (251). 23.2. Ограниченность интегрируемых функций (253). 23.3. Верхние и нижние суммы Дарбу (255). 23.4. Нижний и верхний интегралы (258). 23.5. Необходимые и достаточные условия интегрируемости функций (259). 23.6. Интегрируемость непрерывных и монотонных функций (260).
§ 24. Свойства интегрируемых функций 262
24.1.Основные свойства определенного интеграла (262). 24.2. Интегральная теорема о среднем (271).
§ 25. Определенный и неопределенный интегралы 274
25.1. Дифференцирование определенного интеграла по пределам интегрирования (274). 25.2. Существование первообразной (276).
§ 26. Формулы замены переменной и интегрирования по частям в определенном интеграле 278
26.1. Формула замены переменной (278). 26.2. Формула интегрирования по частям (279).
§ 27. Площади и объемы 282
27.1. Понятие площади плоского множества (282). 27.2*. Пример неограниченного множества положительной конечной пло¬щади (283). 27.3. Понятие объема (285).
§ 28. Геометрические и физические приложения определенного интеграла 286
28.1. Вычисление площадей криволинейных трапеций (286). 28.2. Вычисление площадей в полярных координатах. (288). 28.3. Вычисление длины кривой (290). 28.4. Площадь поверхности вращения (290). 28.5. Объем тел вращения (294). 28.6*. Теоремы Гульдина. Центры тяжести плоских фигур и их моменты относительно осей (294).
§ 29. Несобственные интегралы 299
29.1. Определение несобственных интегралов (299). 29.2. Формулы интегрального исчисления для несобственных интегралов (304). 29.3. Несобственные интегралы от неотрицательных функций (307). 29.4. Критерий Коши (312). 29.5. Абсолютно сходящиеся интегралы (313). 29.6. Признаки сходимости Дирихле и Абеля (316). 29.7. Интегралы от комплекснозначных функций действительного аргумента (319).
ГЛАВА 3

РЯДЫ
§ 30. Числовые ряды 321
30.1. Определение ряда (321). 30.2. Свойства сходящихся рядов (322). 30.3. Критерий Коши (324). 30.4. Признаки сходимости рядов с неотрицательными членами (325). 30.5. Знакочередующиеся ряды (332). 30.6. Абсолютно сходящиеся ряды (334). 30.7. Условно сходящиеся ряды (338). 30.8*. Признаки сходимости рядов Дирихле и Абеля (342). 30.9. Исследование сходимости рядов методом выделения главной части ряда (345). 30.10. Суммирование рядов методом средних арифметических (347).
§ 31. Функциональные последовательности и ряды 349
31.1. Сходимость функциональных последовательностей и рядов (349). 31.2. Равномерная сходимость функциональных последовательностей и рядов (351). 31.3*. Специальные признаки равномерной сходимости рядов (359). 31.4. Свойства равномерно сходящихся последовательностей и рядов (362).
§ 32. Степенные ряды 369
32.1. Радиус сходимости и круг сходимости (369). 32.2. Аналитические функции в действительной области (376). 32.3. Разложение функций в степенные ряды. Различные способы записи остаточного члена формулы Тейлора (378). 32.4. Разложение элементарных функций в ряд Тейлора (383). 32.5. Формула Стир-линга (393).
Предметный указатель 395

Том 2. ОГЛАВЛЕНИЕ
ГЛАВА 4
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
§ 33. Многомерные пространства 7
33.1. Определение n-мерного пространства (7). 33.2. Сходимость последовательностей точек в n-мерном пространстве (12). 33.3. Различные типы множеств (20). 33.4. Компакты (27).
§ 34. Предел и непрерывность отображений 34
34.1. Функции многих переменных (34). 34.2 Предел отображений (35). 34.3. Непрерывность отображений в точке (39). 34.4. Свойства пределов отображений (41). 34.5. Предел и непрерывность композиции отображений (42). 34.6. Повторные пределы (44).
§ 35. Непрерывные отображения множеств 45
35.1. Непрерывные отображения компактов. Равномерная непрерывность отображений (45). 35.2. Непрерывное отображение линейно связных множеств (48). 35.3. Непрерывные отображения: общие свойства (50).
§ 36. Частные производные. Дифференцируемость функций многих переменных 52
36.1. Частные производные (52). 36.2. Дифференцируемость функций многих переменных (53). 36.3. Дифференцирование сложной функции (61). 36.4. Инвариантность формы первого дифференциала (63). 36.5. Геометрический смысл частных производных и дифференциала (64). 36.6. Производная по направлению. Градиент (66).
§ 37. Частные производные и дифференциалы высших порядков.... 69 37.1 Частные производные высших порядков (69). 37.2. Дифференциалы высших порядков (71).
§ 38. Формула Тейлора для функций многих переменных 72
38.1. Формула Тейлора для функций двух переменных (72). 38.2. Формула Тейлора для функций любого числа переменных (75).
§ 39. Экстремумы функций многих переменных 78
39.1. Необходимые условия экстремума (78). 39.2. Достаточные условия экстремума (79).
§ 40. Неявные функции. Отображения 85
40.1. Неявные функции задаваемые одним уравнением (85). 40.2. Декартово произведение множеств (92). 40.3. Неявные функции, задаваемые системой уравнений (93). 40.4. Свойства якобианов отображений (97). 40.5. Непрерывно дифференцируемые отображения (98).
§41. Условный экстремум 103
41.1. Прямой метод отыскания точек условного экстремума (103). 41.2. Метод неопределенных множителей Лагранжа (105). 41.3. Достаточные условия для условного экстремума (107).
ГЛАВА 5
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
§42. Кратные интегралы 112
42.1. Объем (мера) в n-мерном пространстве (112). 42.2. Множества меры нуль (128). 42.3. Разбиение измеримых множеств (131). 42.4. Интегральные суммы. Определение кратного интеграла (134). 42.5. Неполные интегральные суммы (136). 42.6. Существование кратного интеграла (139). 42.7. Свойства кратных интегралов (141)
§ 43. Сведение кратного интеграла к повторному 148
43.1. Сведение двойного интеграла к повторному (148). 43.2. Сведение интеграла произвольной кратности к повторному (153). 43.3. Объем n-мерного шара (155). 43.4. Независимость меры от выбора системы координат (156). 43.5*. Формулы Ньютона-Лейбница и Тейлора (158).
§ 44. Замена переменных в кратных интегралах 161
44.1. Линейные отображения (161). 44.2. Дифференцируемые отображения (165). 44.3 Формула замены переменного в кратном интеграле (174). 44.4 Геометрический смысл абсолютной величины якобиана отображения (181). 44.5. Криволинейные координаты. (182).
§ 45. Криволинейные интегралы 186
45.1. Криволинейный интеграл первого рода (186). 45.2. Криволинейный интеграл второго рода (188). 45.3*. Интеграл Стилтьеса (193). 45.4*. Обобщение понятия криволинейного интеграла второго рода (202). 45.5. Формула Грина (205). 45.6. Формула для площадей (210). 45.7. Геометрический смысл знака якобиана отображения плоской области (211).
§ 46. Элементы теории поверхностей 214
46.1. Основные определения (214). 46.2. Касательная плоскость и нормаль к поверхности (218). 46.3. Первая квадратичная форма поверхности (221). 46.4. Длина кривых на поверхности (222). 46.5. Площадь поверхности (223). 46.6. Ориентация поверхности (225).
§ 47. Поверхностные интегралы 228
47.1. Определения поверхностных интегралов (228). 47.2. Формулы для представления поверхностного интеграла второго рода в виде двойного интеграла (231). 47.3. Некоторые специальные случаи поверхностных интегралов второго рода (232).
§ 48. Скалярные и векторные поля 235
48.1. Основные понятия (235). 48.2. Формула Гаусса-Остроградского (238). 48.3. Геометрическое определение дивергенции (241). 48.4. Формула Стокса (242). 48.5. Геометрическое определение вихря (246). 48.6. Соленоидальные векторные поля (247). 48.7. Потенциальные векторные поля (249).
§ 49. Интегралы, зависящие от параметра 254
49.1. Равномерная сходимость по параметру семейства функций (254). 49.2. Свойства интегралов, зависящих от параметра (257).
§ 50. Несобственные интегралы, зависящие от параметра 261
50.1. Равномерно сходящиеся интегралы (261). 50.2. Свойства несобственных интегралов, зависящих от параметра (267). 50.3. Интегралы Эйлера (270). 50.4*. Интеграл Дирихле (271).
ГЛАВА 6

ГАРМОНИЧЕСКИЙ АНАЛИЗ
§51. Тригонометрические ряды Фурье 274
51.1. Основные понятия (274). 51.2. Приближение функций ступенчатыми функциями (277). 51.3. Теорема Римана. Стремление коэффициентов Фурье к нулю (281). 51.4. Интеграл Дирихле. Принцип локализации (283). 51.5. Сходимость ряда Фурье в точке (287). 51.6. Суммирование рядов Фурье методом средних арифметических (292). 51.7. Приближение непрерывных функций многочленами (296).

§ 52. Функциональные пространства 299

52.1. Метрические пространства (299). 52.2. Линейные пространства (309). 52.3. Нормированные и полунормированные пространства (310). 52.4. Гильбертовы пространства (317). 52.5. Фактор-пространства (327). 52.6. Пространство Li (331). 52.7. Пространство L\ (339).
§ 53. Ряды Фурье в гильбертовых пространствах 341
53.1. Ортогональные системы (341). 53.2. Полные системы (345). 53.3. Ряды Фурье (349). 53.4. Дифференцирование тригонометрических рядов Фурье и порядок убывания их коэффициентов (360). 53.5. Скорость сходимости тригонометрических рядов (362). 53.6*. Ряды Фурье функций с произвольным периодом (364). 53.7*. Запись рядов Фурье в комплексной форме (365).
§ 54. Интеграл Фурье и преобразование Фурье 366
54.1. Представление функций интегралом Фурье (366). 54.2. Главное значение интеграла (372). 54.3. Преобразование Фурье (373). 54.4. Свойства преобразования Фурье абсолютно интегрируемых функций (377).
§ 55. Обобщенные функции 381
55.1. Пространства D и D" (381). 55.2. Дифференцирование обобщенных функций (385). 55.3. Пространство S (388). 55.4. Преобразование Фурье обобщенных функций (391).
Краткий очерк развития математического анализа 396
Предметный указатель 420