11 класс

Каковы угловая и линейная скорости точек. Линейная и угловая скорость. вращательное движение. Угловая и линейная скорости

6.1 .За какое время колесо, имеющее угловую скорость рад/с, сделает 100 оборотов?

6.2 .Какова линейная скорость точек земной поверхности на широте 60 0 при суточном вращении Земли? Радиус Земли принять равным 6400 км.

6.3 .При увеличении в 4 раза радиуса круговой орбиты искусственного спутника земли период его обращения увеличивается в 8 раз. Во сколько раз изменяется скорость движения спутника по орбите?

6.4 .Минутная стрелка часов в 3 раза длиннее секундной. Найти отношение линейных скоростей концов стрелок.

6.5 .Радиус рукоятки колодезного ворота в 3 раза больше радиуса вала, на который наматывается трос. Какова линейная скорость конца рукоятки при поднятии ведра с глубины 10 м за 20 с?

6.6 .Какое расстояние проедет велосипедист при 60 оборотах педалей, если диаметр колеса 70 см, ведущая зубчатая шестеренка имеет 48 зубцов, а ведомая - 18 зубцов?

6.7 .Колесо радиуса R катится по горизонтальной поверхности без скольжения с угловой скоростью . Чему равна скорость оси колеса, верхней точки, нижней точки колеса относительно горизонтальной поверхности.

6.8 .Модуль линейной скорости точки, лежащей на ободе колеса, в 2,5 раза больше модуля линейной скорости точки, лежащей на 0,03 м ближе к оси колеса. Найти радиус колеса.

6.9 .Когда колесо катится, то часто бывает, что нижние спицы видны отчетливо, а верхние спицы как будто сливаются. Почему так?

6.10 .Длина минутной стрелки башенных часов МГУ равна 4,5 м. Определите линейную скорость конца стрелки и угловую скорость движения стрелки.

6.11 .Определите ускорения точек земной поверхности на различных широтах за счет участия в суточном вращении Земли.

6.12 .Вектор линейной скорости (V= 2 м/с) точки, равномерно вращающейся по окружности, повернулся на 30 0 за 0,5 с. Найти ускорение этой точки.

6.13 .С блока радиусом 20 см сматывается нить с подвешенным на ней грузом. Ускорение груза 2 см/с 2 . Определите угловую скорость блока, когда груз пройдет из начального положения путь 100 см. Определите величину и направление ускорения нижней точки блока в этот момент времени.

6.14 .Снаряд вылетел со скоростью v 0 под углом к горизонту. Определите радиус кривизны, нормальное и тангенциальное ускорения снаряда в верхней точке траектории.

6.15 .Материальная точка движется по круговой траектории радиуса 10 см в соответствии с уравнением для пути S= t + 2,5t 2 . Найдите полное ускорение во 2-ю секунду движения.

6.16 .Снаряд вылетает под углом 45 0 к горизонту. Чему равна дальность полета снаряда, если радиус кривизны траектории в точке максимального подъема равен 15 км?



6.17 .Сферический резервуар, стоящий на земле, имеет радиус R. При какой наименьшей скорости камень, брошенный с поверхности земли, может перелететь через резервуар, коснувшись его вершины? Под каким углом к горизонту должен быть при этом брошен камень?

6.18 . Въезд на один из самых высоких в Японии мостов имеет форму винтовой линии, обвивающей цилиндр радиусом r. Полотно дороги составляет угол с горизонтальной плоскостью. Найдите модуль ускорения автомобиля, движущегося по въезду с постоянной по модулю скоростью v.

6.19 .Точка начинает двигаться равноускоренно по окружности радиусом 1 м и за 10 с проходит путь 50 м. Чему равно нормальное ускорение точки через 8 с после начала движения?

6.20 . Автомобиль движется со скоростью v= 60 км/ч. Сколько оборотов в секунду делают его колеса, если они катятся по шоссе без скольжения, и внешний диаметр покрышек колес равен d= 60 см?

6.21 .Круг радиуса 2 м вращается вокруг неподвижной оси так, что угол его поворота зависит от времени по закону . Найти линейную скорость различных точек круга и угловое ускорение.

6.22 . Колесо радиуса 0,1 м вращается вокруг неподвижной оси так, что угол его поворота зависит от времени по закону . Найти среднее значение угловой скорости за промежуток времени от t=0 до остановки. Найти угловую и линейную скорость, а также нормальное, тангенциальное и полное ускорение точек обода колеса в моменты времени 10 с и 40 с.

6.23 . Используя условие задачи 6.7, определить величину и направление векторов скорости и ускорения для двух точек обода колеса, расположенных в данный момент времени на противоположных концах горизонтального диаметра колес.

6.24 . Твердое тело вращается с угловой скоростью , где a = 0,5 рад/с 2 и b=0,06 рад/с 2 . Найти модули угловой скорости и углового ускорения в момент времени t=10 с, а также угол между векторами углового ускорения и угловой скорости в этот момент времени.



6.25 . Шар радиусом R начинает скатываться без скольжения по наклонной плоскости так, что его центр движется с постоянным ускорением (рис.12). Найти через t секунд после начала движения скорости и ускорения точек А, В и О.

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ

Задача

На шнуре, перекинутом через неподвижный блок, помещены грузы массами 0,3 и 0,2 кг. С каким ускорением движется система? Какова сила натяжения шнура во время движения?

Используем указанный выше порядок решения задач на динамику.
1. Сделаем чертеж и расставим силы, действующие на каждое тело, исходя из его взаимодействий с другими телами.


Тело массой m 1 взаимодействует с Землей и нитью; на него действует сила тяжести и сила натяжения нити . Тело массой m 2 также взаимодействует с Землей и с нитью; на него действует сила тяжести и сила натяжения нити .

2. Выбираем направление движения для каждого тела независимо. Поскольку мы расставили все силы, действующие на каждое тело, теперь можно рассматривать их движение независимо друг от друга вдоль своего направления движения.

3. Записываем уравнение движения (2-ой закон Ньютона) для каждого тела:

4. Проектируем эти векторные уравнения на выбранные направления движения:
F H – F т1 = m 1 a
F H – Fт 2 = m 2 a

5. Решаем полученную систему уравнений, для этого сложим их:
F т2 – F т1 = (m 2 + m 1)
Найдем ускорение тел:
- 2 м/с 2
Знак минус означает, что реальное движение происходит с отрицательным ускорением, т.е. направление движения противоположно выбранному направлению в начале решения задачи.

Найдем силу натяжения нити:
= 2,4 Н

Задача

На наклонной плоскости длиной 13 м и высотой 5 м лежит груз массой 26 кг. Коэффициент трения равен 0,5. Какую силу надо приложить к грузу вдоль наклонной плоскости, чтобы:
а) равномерно втащить груз;
б) равномерно стащить груз.


а) б)

Расставим силы, действующие на груз. На груз действует сила тяжести , направленная вертикально вниз, сила упругости , направленная перпендикулярно взаимодействующим поверхностям и, при движении груза по наклонной плоскости, сила трения скольжения , направленная противоположно скорости движения тела. Кроме того, к телу приложена еще внешняя сила , которая осуществляет равномерное движение тела по наклонной плоскости.
Для равномерного движения необходимо (это следует из 1-го закона Ньютона) следующее условие: сумма всех сил, действующих на тело, равна нулю.

F= 218,8 Н

  1. Используем тот же порядок действий (рис.57б).

В этом случае сила трения скольжения направлена вверх, т.е. в сторону, противоположную скорости движения тела. Запишем условие равномерного движения груза вниз по наклонной плоскости:

В проекциях на ось ох:

F +F тяж х - F тр = 0

Вращательное движение вокруг неподвижной оси - еще один частный случай движения твердого тела.
Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, называемой осью вращения, при этом плоскости, которым принадлежат эти окружности, перпендикулярны оси вращения (рис.2.4 ).

В технике такой вид движения встречается очень часто: например, вращение валов двигателей и генераторов, турбин и пропеллеров самолетов.
Угловая скорость . Каждая точка вращающегося вокруг оси тела, проходящей через точку О , движется по окружности, и различные точки проходят за время разные пути. Так, , поэтому модуль скорости точки А больше, чем у точки В (рис.2.5 ). Но радиусы окружностей поворачиваются за время на один и тот же угол . Угол - угол между осью ОХ и радиус-вектором , определяющим положение точки А (см. рис.2.5).

Пусть тело вращается равномерно, т. е. за любые равные промежутки времени поворачивается на одинаковые углы. Быстрота вращения тела зависит от угла поворота радиус-вектора, определяющего положение одной из точек твердого тела за данный промежуток времени; она характеризуется угловой скоростью . Например, если одно тело за каждую секунду поворачивается на угол , а другое - на угол , то мы говорим, что первое тело вращается быстрее второго в 2 раза.
Угловой скоростью тела при равномерном вращении называется величина, равная отношению угла поворота тела к промежутку времени , за который этот поворот произошел.
Будем обозначать угловую скорость греческой буквой ω (омега). Тогда по определению

Угловая скорость выражается в радианах в секунду (рад/с).
Например, угловая скорость вращения Земли вокруг оси равна 0,0000727 рад/с, а точильного диска - около 140 рад/с 1 .
Угловую скорость можно выразить через частоту вращения , т. е. число полных оборотов за 1с. Если тело совершает (греческая буква «ню») оборотов за 1с, то время одного оборота равно секунд. Это время называют периодом вращения и обозначают буквой T . Таким образом, связь между частотой и периодом вращения можно представить в виде:

Полному обороту тела соответствует угол . Поэтому согласно формуле (2.1)

Если при равномерном вращении угловая скорость известна и в начальный момент времени угол поворота , то угол поворота тела за время t согласно уравнению (2.1) равен:

Если , то , или .
Угловая скорость принимает положительные значения, если угол между радиус-вектором, определяющим положение одной из точек твердого тела, и осью ОХ увеличивается, и отрицательные, когда он уменьшается.
Тем самым мы можем описать положение точек вращающегося тела в любой момент времени.
Связь между линейной и угловой скоростями . Скорость точки, движущейся по окружности, часто называют линейной скоростью , чтобы подчеркнуть ее отличие от угловой скорости.
Мы уже отмечали, что при вращении твердого тела разные его точки имеют неодинаковые линейные скорости, но угловая скорость для всех точек одинакова.
Между линейной скоростью любой точки вращающегося тела и его угловой скоростью существует связь. Установим ее. Точка, лежащая на окружности радиусом R , за один оборот пройдет путь . Поскольку время одного оборота тела есть период T , то модуль линейной скорости точки можно найти так:

Рассмотрим движение тела по окружности. Скорость, с которой тело движется по окружности , называют линейной скоростью . Она находится по формуле

Выясним, какова связь между линейными и угловыми величинами при движении тела по окружности. Линейными величинами являются путь, скорость, касательное и нормальное ускорения, а угловыми угол поворота, угловая скорость и угловое ускорение.

Найдём связь между угловой и линейной скоростью. Из геометрии известно, что длина дуги l центрального угла равна произведению угла, измеренного в радианах, на радиус окружностиR , т.е.l = R . Продифференцируем это выражение по времени:(R вынесена за знак производной, поскольку она постоянная). НоТогда получаем, что

= R . (8)

Продифференцируем выражение (8) по времени Ноамодуль углового ускорения. Поэтому

a = R . (9)

Подставляя выражение (7) в формулу (4), получаем для модуля нормального ускорения

a n =   R . (10)

Таким образом, при движении материальной точки по окружности для описания её движения можно пользоваться как линейными, так и угловыми величинами. Однако при вращении твёрдого тела удобно использовать угловые величины, а не линейные, поскольку уравнения движения разных точек, выраженные в угловых величинах, одинаковы для всех точек тела, в то время как при пользовании линейными величинами они различны.

Кинематика твёрдого тела

До сих пор изучалось движение тел, которые можно было рассматривать как материальные точки. Рассмотрим теперь движение протяжённых тел. При этом будем считать тела абсолютно твёрдыми (твёрдыми). Под твёрдым телом в механике понимается тело, взаимное расположение частей которого в условиях данной задачи считается неизменным.

Существует два вида движения твёрдого тела: поступательное и вращательное. Поступательным называется движение, при котором прямая, соединяющая любые две точки тела, движется в пространстве параллельно самой себе. Привращательном движении все точки тела движутся по окружностям, центры которых лежат на одной прямой, называемойосью вращения . Любое сложное движение можно представить как результат сложения поступательного и вращательного движений.

Рассмотрим поступательное движение. При этом движении все точки тела проходят одинаковые пути. Поэтому они имеют одинаковые скорости и ускорения. Отсюда следует, что для описания такого движения тела достаточно выбрать на нём произвольную точку и использовать формулы кинематики материальной точки. Обычно выбирают его центр тяжести.

При вращательном движении разные точки твёрдого тела проходят различные пути и, следовательно, обладают разными скоростями и ускорениями. Вследствие этого для характеристики такого движения надо выбирать такие величины, которые будут одинаковыми в данный момент времени для всех точек тела. Ими являются угол поворота, угловая скорость и угловое ускорение.

Динамика поступательного движения

Из первой лекции видно, что кинематика описывает движение и не рассматривает причины его вызывающие. Однако именно этот вопрос важен с практической точки зрения. Изучением взаимосвязи движения и сил, действующих в механической системе, и занимается динамика. Основу динамики составляют три закона Ньютона, являющиеся обобщением большого числа опытных данных. Прежде, чем перейти к их рассмотрению, введём понятия силы и массы тела.

СИЛА.

В повседневной жизни нам постоянно приходится сталкиваться с различными взаимодействиями. Например, с притяжением тел к Земле, отталкиванием и притяжением магнитов и токов, текущих по проводам, отклонением электронных пучков в электронно-лучевых трубках при действии на них электрических и магнитных полей и т.д. Для характеристики взаимодействия тел и вводится понятие силы. В механике сила, действующая на тело, является мерой его взаимодействия с окружающими телами. Действие силы проявляется в деформации тела или в приобретении им ускорения. Сила -это вектор. Поэтому она характеризуется модулем, направлением и точкой приложения.

МАССА

Как следует из опыта, тела обладают способностью противодействовать изменению скорости, которой они обладают, т.е. они противодействуют приобретению ускорения. Это свойство тел было названо инертностью . Для характеристики инертных свойств тел используют физическую величину, называемуюмассой . Чем больше масса тела, тем оно инертнее. Кроме того, вследствие гравитационных сил все тела притягиваются друг к другу. Модуль этих сил зависит от массы тел. Таким образом, масса характеризует и гравитационные свойства тел. Чем она больше, тем больше сила их гравитационного притяжения. Итак,масса - это мера инертности тел при поступательном движении и мера их гравитационного взаимодействия.

В системе единиц СИ масса измеряется в килограммах (кг).

«Физика - 10 класс»

Угловая скорость.


Каждая точка тела, вращающегося вокруг неподвижной оси, проходящей через точку О, движется по окружности, и различные точки проходят за время Δt разные пути. Так, АА 1 > ВВ 1 (рис. 1.62), поэтому модуль скорости точки А больше, чем модуль скорости точки В. Но радиус-векторы, определяющие положение точек А и В, поворачиваются за время Δt на один и тот же угол Δφ.

Угол φ - угол между осью ОХ и радиус-вектором определяющим положение точки А (см. рис. 1.62).

Пусть тело вращается равномерно, т. е. за любые равные промежутки времени радиус-векторы поворачиваются на одинаковые углы.

Чем больше угол поворота радиус-вектора, определяющего положение какой-то точки твёрдого тела, за определённый промежуток времени, тем быстрее вращается тело и тем больше его угловая скорость.

Угловой скоростью тела при равномерном вращении называется величина, равная отношению угла поворота тела υφ к промежутку времени υt, за который этот поворот произошёл.

Будем обозначать угловую скорость греческой буквой ω (омега). Тогда по определению

Угловая скорость в СИ выражается в радианах в секунду (рад/с). Например, угловая скорость вращения Земли вокруг оси 0,0000727 рад/с, а точильного диска - около 140 рад/с.

Угловую скорость можно связать с частотой вращения.

Частота вращения - число полных оборотов за единицу времени (в СИ за 1 с).

Если тело совершает ν (греческая буква «ню») оборотов за 1 с, то время одного оборота равно 1/ν секунд.

Время, за которое тело совершает один полный оборот, называют периодом вращения и обозначают буквой Т.

Если φ 0 ≠ 0, то φ - φ 0 = ωt, или φ = φ 0 ± ωt.

Радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности, 1 рад = 57°17"48". В радианной мере угол равен отношению длины дуги окружности к её радиусу: φ = l/R.

Угловая скорость принимает положительные значения, если угол между радиус-вектором, определяющим положение одной из точек твёрдого тела, и осью ОХ увеличивается (рис. 1.63, а), и отрицательные, когда он уменьшается (рис. 1.63, б).

Тем самым мы можем найти положение точек вращающегося тела в любой момент времени.


Связь между линейной и угловой скоростями.


Скорость точки, движущейся по окружности, часто называют линейной скоростью , чтобы подчеркнуть её отличие от угловой скорости.

Мы уже отмечали, что при вращении абсолютно твёрдого тела разные его точки имеют неодинаковые линейные скорости, но угловая скорость для всех точек одинакова.


Установим связь между линейной скоростью любой точки вращающегося тела и его угловой скоростью. Точка, лежащая на окружности радиусом R, за один оборот пройдёт путь 2πR. Поскольку время одного оборота тела есть период Т, то модуль линейной скорости точки можно найти так:

Так как ω = 2πν, то

Модуль центростремительного ускорения точки тела, движущейся равномерно по окружности, можно выразить через угловую скорость тела и радиус окружности:

Следовательно,

а цс = ω 2 R.

Запишем все возможные расчётные формулы для центростремительного ускорения:

Мы рассмотрели два простейших движения абсолютно твёрдого тела - поступательное и вращательное. Однако любое сложное движение абсолютно твёрдого тела можно представить как сумму двух независимых движений: поступательного и вращательного.

На основании закона независимости движений можно описать сложное движение абсолютно твёрдого тела.

Й семестр.

1. Материальная точка (частица) - простейшая физическая модель в механике - обладающее массой тело, размерами, формой, вращением и внутренней структурой которого можно пренебречь в условиях исследуемой задачи. Положение материальной точки в пространстве определяется как положение геометрической точки.

Система координат - комплекс определений, реализующий метод координат , то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

Система отсчёта - это совокупность тела отсчёта, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение каких-либо тел.

Путь - это расстояние, которое прошло тело. Путь - скалярная величина. Для полного описания движения, необходимо знать не только пройденный путь, но и направление движения.

Перемещение - это направленный отрезок прямой, который сочетает начальное положение тела с его последующим положением. Перемещение, так же как и путь, обозначается буквой S и измеряется в метрах. Но это две разные величины, которые необходимо различать.

Относительное движение - это движение материальной точки/тела относительно подвижной системы отсчёта. В этой СО радиус-вектор тела - , скорость тела - .

2. Скорость - векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта; по определению, равна производной радиус-вектора точки по времени.

Равномерное и неравномерное движения.

рав­но­мер­ным на­зы­ва­ет­ся такое дви­же­ние, при ко­то­ром за любые рав­ные про­ме­жут­ки вре­ме­ни тело про­хо­дит оди­на­ко­вые от­рез­ки пути.

Нерав­но­мер­ным на­зы­ва­ет­ся такое дви­же­ние, при ко­то­ром за рав­ные про­ме­жут­ки вре­ме­ни тело про­хо­дит раз­лич­ные от­рез­ки пути.

Теорема о сложении скоростей .Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.



3. Ускорение - физическая величина, определяющая быстроту изменения скорости тела, то есть первая производная от скорости по времени. Ускорение является векторной величиной, показывающей, на сколько изменяется вектор скорости тела при его движении за единицу времени:

Равноускоренное движение - движение, при котором ускорение постоянно по модулю и направлению.

Прямолинейное равноускоренное движение самый простой вид неравномерного движения, при котором тело движется вдоль прямой линии, а его скорость за любые равные промежутки времени меняется одинаково.

Вычислить ускорение тела, движущегося прямолинейно и равноускоренно, можно с помощью уравнения, в которое входят проекции векторов ускорения и скорости:

v x – v 0x
a x = ---
t

4.Криволинейное движение - движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например, движение по окружности).

Угол поворота - это не геометрическая, а физическая величина, характеризующая поворот тела или поворот луча, исходящего из центра вращения тела, относительно другого луча, считающегося неподвижным. Это характеристика вращательной формы движения, лишь оцениваемая в единицах плоского угла.

Угловая и линейная скорости.

Угловая скорость - это физическая величина, равная отношению угла поворота к интервалу времени, в течение которого этот поворот произошел.

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной . Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

5. Нормальное и тангенциальное ускорение.

1.Центростремительное ускорение - компонента ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной. Направлено к центру кривизны траектории, чем и обусловлен термин. По величине равно квадрату скорости, поделённому на радиус кривизны. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение ».

2.Тангенциальное ускорение - компонента ускорения, направленная по касательной к траектории движения. Характеризует изменение модуля скорости в отличие от нормальной компоненты, характеризующей изменение направления скорости.

Полное ускоpение точки складывается из касательного и ноpмального ускоpений по пpавилу сложения вектоpов. Оно всегда будет напpавлено в стоpону вогнутости тpаектоpии, поскольку в эту стоpону напpавлено и ноpмальное ускоpение.

Период колебаний - наименьший промежуток времени, за который осциллятор совершает одно полное колебание (то есть возвращается в то же состояние, в котором он находился в первоначальный момент, выбранный произвольно).

Частота - физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени. Рассчитывается, как отношение количества повторений или возникновения событий (процессов) к промежутку времени, за которое они совершены.

6.Масса, физическая величина, одна из основных характеристикматерии, определяющая её инерционные и гравитационные свойства. Соответственно различают М.инертную и М. гравитационную (тяжёлую, тяготеющую).

Вес - сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести.

Невесомость - состояние, при котором сила взаимодействия тела с опорой (вес тела), возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела, отсутствует.

7. Сила трения - это сила, возникающая при соприкосновении двух тел и препятствующая(мешающимся) их относительному движению. Причиной возникновения трения является шероховатость трущихся поверхностей и взаимодействие молекул этих поверхностей. Сила трения зависит от материала трущихся поверхностей и от того, насколько сильно эти поверхности прижаты друг к другу.

Виды трения.

1. Трение скольжения - сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.

2. Трение качения- момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.

3. Трение покоя- сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.

Сила реакции опоры- это сила или система сил, выражающая механическое действие опоры на конструкцию, которая покоится на этих опорах.

8. Деформация - изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.

Виды деформации.

1.Растяжение - сжатие - в сопротивлении материалов - вид продольной деформации стержня или бруса, возникающий в том случае, если нагрузка к нему прикладывается по его продольной оси (равнодействующая сил, воздействующих на него, нормальна поперечному сечению стержня и проходит через его центр масс).

2.Сдвиг - в сопротивлении материалов - вид продольной деформации бруса, возникающий в том случае, если сила прикладывается касательно его поверхности (при этом нижняя часть бруска закреплена неподвижно).

3. Изгиб - в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов.

4.Кручение - один из видов деформации тела. Возникает в том случае, если нагрузка прикладывается к телу в виде пары сил в его поперечной плоскости. При этом в поперечных сечениях тела возникает только один внутренний силовой фактор - крутящий момент. На кручение работают пружины растяжения-сжатия и валы.

Сила упругости - сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное состояние.

Закон Гука - утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. п.), пропорциональна приложенной к этому телу силе. Открыт в 1660 году английским учёным Робертом Гуком. Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

Для тонкого растяжимого стержня закон Гука имеет вид:

9. Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции. Инерция - это свойство тела сохранять скорость своего движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность - это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела.

10. Импульс - векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v , направление импульса совпадает с направлением вектора скорости:

Закон сохранения импульса утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении системы в пустом пространстве импульс сохраняется во времени, а при наличии внешнего воздействия скорость изменения импульса определяется суммой приложенных сил.