Про природу

Спиновая физика. Проблемные вопросы — выявляем потребности. Аналог спина в классической механике

Спин (spin – вращение) это наиболее простая вещь на которой можно продемонстрировать отличия квантовой механики от классической. Из определения кажется, что связан он с вращением, но не надо представлять себе электрон или протон вращающимися шариками. Как и в случае многих других устоявшихся научных терминов было доказано что это не так, но терминология уже устоялась. Электрон – точечная частица (нулевого радиуса). А спин отвечает за магнитные свойства. Если электрически заряженная частица движется по кривой траектории (в том числе вращается), то образуется магнитное поле. Электромагниты так работают – электроны движутся по проводам катушки. Но спин отличается от классического магнита. Вот неплохая анимация:

Если магнитики пропускать через неоднородное магнитное поле (обратите внимание на различную форму северного и южного полюсов магнита, задающего поле), то в зависимости от ориентации магнитика (его вектора магнитного момента) они будут притягиваться (отталкиваться) от полюса с большей концентрацией силовых линий магнитного поля (заостренный полюс магнита). В случае перпендикулярной ориентации магнитик вообще никуда не отклонится и попадет в центр экрана.

Пропуская электроны мы будем наблюдать только отклонение вверх или вниз на одно и то же расстояние . Это пример квантования (дискретности). Спин электрона может принимать только одно из двух значений относительно заданной оси ориентации магнита – «вверх» или «вниз». Поскольку электрон мысленно представить себе нельзя (у него нет ни цвета, ни формы, ни даже траектории движения), как и во всех подобных анимациях цветные шарики не отражают реальность, но суть думаю понятна.

Если электрон отклонился вверх, то говорят, что его спин направлен «вверх» (+1/2 условно обозначают) относительно оси магнита. Если вниз, то -1/2. И казалось бы спин можно описать обычным вектором, указывающим направление. У тех электронов, где он был направлен вверх, они и отклонятся вверх в магнитном поле, а у которых вниз – те соответственно вниз. Но не все так просто! Электрон отклоняется вверх (вниз) на одно и тоже расстояние относительно любой ориентации магнита . На видео выше можно было бы менять не ориентацию пропускаемых магнитиков, а поворачивать сам магнит, создающий магнитное поле. Эффект в случае обычных магнитиков был бы тот же. Что будет в случае электронов – в отличие от магнитиков они всегда будут отклонятся на одно и тоже расстояние вверх или вниз.

Если, например, пропустить вертикально расположенный классический магнитик через два перпендикулярно ориентированных друг относительно друга магнита, то отклоняясь вверх в первом, он не отклонится во втором вообще никак – его вектор магнитного момента будет перпендикулярен линиям магнитного поля. На видео выше это тот случай когда магнитик попадает в центр экрана. Электрон же обязан куда-нибудь отклонится.

Если мы будем пропускать через второй магнит только электроны со спином вверх, как на рисунке, то окажется что часть из них оказались еще и со спином вверх (вниз) относительно другой перпендикулярной оси. Вправо и влево фактически, но спин измеряют относительно выбранной оси, поэтому «вверх» и «вниз» общепринятая терминология вместе с указанием оси. Вектор не может быть направлен сразу вверх и вправо. Делаем вывод, что спин – это не классический вектор, прикрепленный к электрону наподобие вектора магнитного момента магнитика. Более того, зная, что спин электрона направлен вверх после прохождения первого магнита (отклоняющиеся вниз блокируем), невозможно предсказать куда он отклонится во втором случае: вправо или влево.

Ну и можно еще чуть-чуть усложнить эксперимент – блокировать электроны, отклонившиеся влево и пропустить через третий магнит, ориентированный как и первый.

И мы увидим, что электроны будут отклонятся как вверх, так и вниз. То есть электроны, попадающие во второй магнит все имели спин вверх относительно ориентации первого магнита, а потом часть из них стала вдруг со спином вниз относительно той же самой оси.

Странно! Если через такую конструкцию пропускать классические магнитики, повернутые под одним и тем же произвольно выбранным углом, то они всегда будут попадать в конце в одну и ту же точку экрана. Это называется детерминизмом. Повторив эксперимент при полном соответствии начальных условий мы должны получить тот же результат. В этом заключается основа предсказательной силы науки. Даже наша интуиция основана на повторяемости результатов в схожих ситуациях. В квантовой механике предсказать куда отклонится конкретно взятый электрон в общем случае невозможно. Хотя в некоторых ситуациях есть исключения: если поставить два магнита с одинаковой ориентацией, то если электрон отклонится вверх в первом, то он точно отклонится вверх и во втором. А если магниты повернуты на 180 градусов друг относительно друга и в первом электрон отклонился, например, вниз, то во втором он точно отклонится вверх. И наоборот. Сам по себе спин не меняется. Это уже хорошо)

Какие из всего этого можно сделать общие выводы.

  1. Многие величины, которые могли принимать любые значения в классической механике, могут иметь только некоторые дискретные (квантованные) значения в квантовой теории. Помимо спина энергия электронов в атомах является ярким примером.
  2. Объектам микромира нельзя приписать никакие классические характеристики до момента измерения. Нельзя полагать, что спин имел какое-то определенное направление до того как мы посмотрели куда отклонился электрон. Это общее положение и оно касается всех измеряемых величин: координат, скорости и т.п. Квантовая механика . Она утверждает, что объективный, не зависимый ни от кого классический мир, просто не существует. наиболее наглядно демонстрирует данный факт. (наблюдателя) в квантовой механике чрезвычайно важна.
  3. Процесс измерения затирает (делает неактуальной) информацию о предыдущем измерении. Если спин оказался направлен вверх относительно оси y , то неважно, что раньше он был направлен вверх относительно оси x , он может оказаться и спином вниз относительно той же самой оси x впоследствии. Опять же данное обстоятельство касается не только спина. Например, если электрон обнаружен в точке с координатами (x , y , z ) это в общем случае не значит, что он был в этой точке до этого. Данный факт известен под названием «коллапс волновой функции».
  4. Есть такие физические величины значения которых невозможно знать одновременно. Например, нельзя измерить спин относительно оси x и одновременно относительно перпендикулярной ей оси y . Если мы попытаемся сделать это одновременно, то магнитные поля двух повернутых магнитов наложатся и мы вместо двух разных осей получим одну новую и измерим спин относительно нее. Последовательно измерять тоже не удастся вследствие предыдуще изложенного вывода №3. Это тоже общий принцип. Например, координату и импульс (скорость) тоже нельзя измерить одновременно с большой точностью — знаменитый принцип неопределенности Гейзенберга.
  5. Предсказать результат единичного измерения невозможно в принципе. Квантовая механика позволяет лишь вычислять вероятности того или иного события. Например, можно посчитать, что в опыте на первой картинке при ориентации магнитов 90° друг к другу 50% отклонится влево и 50% вправо. Предсказать куда отклонится конкретно взятый электрон нельзя. Данное общее обстоятельство известно как «правило Борна» и является центральным в .
  6. Детерминированные классические законы выводятся из вероятностных квантовомеханических за счет того, что в макроскопическом объекте очень много частиц и вероятностные флуктуации усредняются. Например, если в опыте на первой картинке пропускать вертикально ориентированный классический магнитик, то 50% составляющих его частиц будут «тянуть» его вправо, а 50% влево. В итоге он никуда не отклонится. При других ориентациях углов магнита меняется процентное соотношение, что в итоге и влияет на отклоняемое расстояние. Квантовая механика позволяет рассчитать конкретные вероятности и как следствие из нее можно вывести формулу для отклоняемого расстояния в зависимости от угла ориентации магнитика, получаемую обычно из классической электродинамики. Так классическая физика выводится и является следствием квантовой.

Да, описанные действия с магнитиками называются эксперимент Штерна-Герлаха.

Существует видеоверсия данного поста в и элементарного введения в квантовую механику.

Положительное число - так называемое спиновое квантовое число , которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия .

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике . Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами ; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы .

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы .

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются шестикомпонентной волновой функцией (тензор) .

Энциклопедичный YouTube

  • 1 / 5

    Хотя термин спин относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже может быть описаны неким числом, которое показывает на сколько частей нужно разделить цикл вращения некого элемента системы, для того, чтобы она вернулась в состояние, неотличимое от начального.

    Самый простой пример спина - это целый спин равный 1:

    если взять вектор (для примера - положить ручку на стол) и повернуть его на 360 градусов , то этот вектор вернется в своё первоначальное состояние (ручка опять будет лежать так же, как и до поворота).

    Также легко представить себе спин равный 0 :

    это точка - она со всех сторон выглядит одинаково , как её ни крути.

    Чуть сложнее с целым спином равным 2 :

    нужно будет придумать объект, который ведёт себя так же, как в предыдущем примере со спином 1, но при повороте на 180 градусов (то есть вдвое меньше полного оборота) - это тоже просто - нужно взять двунаправленный вектор (примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще - главное чтобы был без надписей и однотонный, Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы ) - и тогда после поворота на 180 градусов он вернется в положение, не отличимое от исходного.

    А вот c полуцелым спином равным 1 / 2 уже придётся выходить в 3 измерения:

    • Если взять лист Мёбиуса и представить, что по нему ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов .
    • Еще один пример - четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернется в исходное положение (например, верхнюю мертвую точку), но распределительный вал вращается в 2 раза медленное и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте колечатого вала на 2 оборота двигатель внутреннего сгорания вернется в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

    На подобных примерах можно проиллюстрировать сложение спинов:

    • Два заточенных только с одной стороны одинаковых карандаша ("спин" каждого - 1), скрепленные друг с другом, так, что острый конец одного будет рядом с тупым концом другого. Такая система вернется в неотличимое от начального состояния при повороте всего на 180 градусов, то есть "спин" системы стал равным двум.
    • Многоцилиндровый четырехтактный двигатель внутреннего сгорания ("спин" каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный "спин" - 1), четырехцилиндровый - через 180 градусов ("спин" - 2), восьмицилиндровый - через 90 градусов ("спин" - 4).

    Свойства спина

    Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

    В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

    «В частности было бы совершенно бессмысленным представлять себе собственный момент элементарной частицы, как результат ее вращения „вокруг собственной оси“»

    Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина s → ^ , {\displaystyle {\hat {\vec {s}}},} алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента ℓ → ^ . {\displaystyle {\hat {\vec {\ell }}}.} Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

    Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например . При этом компоненты J x , J y {\displaystyle J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J z {\displaystyle J_{z}} равно J {\displaystyle J} . В то же время квадрат J 2 {\displaystyle J^{2}} всего вектора спина равен J (J + 1) {\displaystyle J(J+1)} . Таким образом J x 2 + J y 2 = J 2 − J z 2 ⩾ J {\displaystyle J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\geqslant J} . При J = 1 2 {\displaystyle J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны J x 2 ^ = J y 2 ^ = J z 2 ^ = 1 4 {\displaystyle {\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}} .

    Вектор спина меняет своё направление при преобразовании Лоренца. Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта .

    Примеры

    Ниже указаны спины некоторых микрочастиц.

    спин общее название частиц примеры
    0 скалярные частицы π -мезоны , K-мезоны , хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
    1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
    1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
    3/2 спин-векторные частицы Ω-гиперон , Δ-резонансы
    2 тензорные частицы гравитон , тензорные мезоны

    На июль 2004 года, максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать 9 2 ℏ {\displaystyle {\frac {9}{2}}\hbar } .

    История

    Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

    Спин и магнитный момент

    Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ( μ 0 {\displaystyle \mu _{0}} ):

    μ → ^ = g ⋅ μ 0 s → ^ . {\displaystyle {\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.}

    Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

    Спин и статистика

    Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

    Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами .

    1/2, для фотона 1, для p - и К-мезонов 0.

    Спином наз. также собств. момент кол-ва движения , мол. системы; в этом случае спин системы определяется как векторная сумма спинов отдельных частиц: S s = S. Так, спин ядра равен целому или полуцелому числу (обозначается обычно I) в зависимости от того, включает ли ядро четное или нечетное число и . Напр., для 1 Н I = 1/2, для 10 В I = 3, для 11 В I = 3/2, для 17 О I = 5/2, для 16 О I = 0. Для Не в основном состоя нии полный электронный спин S = 0, в первом S = 1. В совр. теоретич. физике, гл. обр. в теории , спином часто называют полный момент кол-ва движения частицы, равный сумме орбитального и собств. моментов.

    Концепция спина введена в 1925 Дж. Уленбеком и С. Гаудсмитом, к-рые для интерпретации эксперим. данных о расщеплении пучка в магн. поле предположили, что можно рассматривать Как вращающийся вокруг своей оси волчок с проекцией на направление поля, равной В том же году В. Паули ввел понятие спина в математич. аппарат нерелятивистской и сформулировал принцип запрета, утверждающий, что две тождеств. частицы с полуцелым спином не могут одновременно находиться в системе в одном и том же (см. ). Согласно подходу В. Паули, существуют s 2 и s z , к-рые обладают собств. значениями ђ 2 s(s + 1) и ђs z соотв. и действуют нат. наз. спиновые части волновой ф-ции a и b (спин-функции) так же, как орбитального момента кол-ва движения I 2 и I z действуют на пространств. часть волновой ф-ции Y (r), где r-радиус-вектор частицы. s 2 и s z подчиняются тем же правилам коммутации, что и I 2 и I z .

    Спиновый . В Брейта-Паули Н ВР входят два члена, линейно зависящие от компонент векторного потенциала А, определяющего внеш. магн. поле:


    Для однородного поля А = 1/2 В x r , знак x означает векторное произведение, и


    Где -магнетон . Векторная величина наз. магн. моментом частицы с зарядом е и массой т (в данном случае-электрона), векторная же величина получила назв. спинового магн. момента. Отношение коэффициентов перед s и l наз. g-фактор ом частицы. Для 1 Н (спин I = 1/2) g-фактор равен 5,5854, для ядра 13 С с тем же спином I = 1/2 g-фактор равен 1,4042; возможны и отрицат. g-факторы, напр.: для ядра 29 Si g-фактор равен - 1,1094 (спин равен 1/2). Экспериментально определяемая величина g-фактора составляет 2,002319.

    Как для одного , так и для системы или др. частиц спином S ориентируется относительно направления однородного поля. Проекция спина S z на направление поля принимает 2S + 1 значение: - S, - S + 1, ... , S. Число разл. проекций спина наз. системы со спином S.

    Магн. поле, действующее на или ядро в , м.б. не только внешним, оно может создаваться и др. либо возникать при вращении системы заряженных частиц как целого. Так, взаимод. магн. поля, создаваемого i, с ядром v приводит к появлению в гамильтониане члена вида:

    где n v - единичный в направлении радиуса-вектора ядра R v , Z v и М v -заряд и масса ядра. Члены вида I v ·I i отвечают , члены вида I v ·s i - . Для атомных и мол. систем наряду с указанными возникают и члены, пропорциональные (s i ·s j), (I v ·I m ) и т.п. Эти члены обусловливают расщепление вырожденных энергетич. уровней, а также приводят к разл. сдвигам уровней, что определяет тонкую структуру и сверхтонкую структуру (см. , ).

    Экспериментальные проявления спина. Наличие отличного от нуля спина электронной подсистемы приводит к тому, что у в однородном магн. поле наблюдается расщеп-ление уровней энергии, причем на величину этого расщепления влияет хим. (см. ). Наличие ненулевых спинов также приводит к расщеплению уровней, причем это расщепление зависит от экранирования внеш. поля ближайшим к данному ядру окружением (см. ). Спин-орбитальное взаимод. приводит к сильным расщеплениям уровней электронных состояний, достигающим величин порядка неск. десятых эВ и даже неск. единиц эВ. Особенно сильно оно проявляется у тяжелых элементов, когда становится невозможным говорить о том или ином спине или , а можно говорить лишь о полном моменте импульса системы. Более слабыми, но тем не менее отчетливо устанавливаемыми при исследовании спектров являются спин-вращательные и .

    Для конденсир. сред наличие спинов частиц проявляется в магн. св-вах этих сред. При определенной т-ре возможно возникновение упорядоченного состояния спинов частиц ( , ), находящихся, напр., в узлах кристаллич. решетки, а следовательно, и связанных со спинами магн. моментов, что ведет к появлению у системы сильного парамагнетизма (ферромагнетизма, антиферромагнетизма). Нарушение упорядоченности спинов частиц проявляется в виде спиновых волн (см. ). Взаимод. собственных магн. моментов с упругими колебаниями среды наз. спин-фонон-ным взаимод. (см. ); оно определяет спин-решеточную и спин-фононное поглощение звука.

    Л 3 -12

    Спин электрона. Спиновое квантовое число. При классическом движении по орбите электрон обладает магнитным моментом. Причем классическое отношение магнитного момента к механическому имеет значение

    , (1) гдеи– соответственно магнитный и механический момент. К аналогичному результату приводит и квантовая механика. Так как проекция орбитального момента на некоторое направление может принимать только дискретные значения, то это же относится и к магнитному моменту. Поэтому, проекция магнитного момента на направление вектораB при заданном значении орбитального квантового числаl может принимать значения

    Где
    – так называемыймагнетон Бора .

    О. Штерн и В. Герлах в своих опытах проводили прямые измерения магнитных моментов. Они обнаружили, что узкий пучок атомов водорода, заведомо находящихся в s -состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса, а с ним и магнитный момент электрона равен нулю. Таким образом, магнитное поле не должно оказывать влияние на движение атомов водорода, т.е. расщепления быть не должно.

    Для объяснения этого и других явлений Гаудсмит и Уленбек выдвинули предпо­ложение, что электрон обладает собственным моментом импульса , не связанным с движением электрона в пространстве. Этот собственный момент был названспином .

    Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Согласно этим представлениям для отношения магнитного и механического моментов должно выполняться соотношение (1). Экспериментально было установлено, что это отношение в действительности в два раза больше, чем для орбитальных моментов

    . По этой причине, представление электрона как о вращающемся шарике оказывается несостоятельным. В квантовой механике спин электрона (и всех других микрочастиц) рассматривается как внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.

    Величина собственного момента импульса микрочастицы определяется в квантовой механике с помощью спинового квантового числа s (для электрона
    )

    . Проекция спина на заданное направление может принимать квантованные значения, отличающиеся друг от друга на. Для электрона

    Гдемагнитное спиновое квантовое число .

    Для полного описания электрона в атоме, таким образом, необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще магнитное спиновое квантовое число.

    Тождественность частиц. В классической механике одинаковые частицы (скажем, электроны), несмотря на тождественность их физических свойств, можно пометить, пронумеровав, и в этом смысле считать частицы различимыми. В квантовой механике ситуация кардинально меняется. Понятие траектории теряет смысл, и, следовательно, при движении частицы перепутываются. Это означает, что нельзя сказать, какой из первоначально помеченных электронов попал в ту или иную точку.

    Таким образом, в квантовой механике одинаковые частицы полностью теряют свою индивидуальность и становятся неразличимыми. Это утверждение или, как говорят, принцип неразличимости одинаковых частиц имеет важные следствия.

    Рассмотрим систему, состоящую из двух одинаковых частиц. В силу их тождественности состояния системы, получающиеся друг из друга перестановкой обеих частиц должны быть физически полностью эквивалентными. На языке квантовой механики это означает, что

    Где,– совокупности пространственных и спиновых координат первой и второй частицы. В итоге возможны два случая

    Таким образом, волновая функция либо симметрична (не меняется при перестановки частиц), либо антисимметрична (т.е. при перестановке меняет знак). Оба этих случая встречаются в природе.

    Релятивистская квантовая механика устанавливает, что симметрия или антисимметрия волновых функций определяется спином частиц. Частицы с полуцелым спином (электроны, протоны, нейтроны) описываются антисимметричными волновыми функциями. Такие частицы называют фермионами , и говорят, что они подчиняются статистике Ферми-Дирака. Частицы с нулевым или целочисленным спином (например, фотоны) описываются симметричными волновыми функциями. Эти частицы называютбозонами , и говорят, что они подчиняются статистике Бозе-Эйнштейна. Сложные частицы (например, атомные ядра), состоящие из нечетного числа фермионов, являются фермионами (суммарный спин – полуцелый), а из четного – бозонами (суммарный спин целый).

    Принцип Паули. Атомные оболочки. Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два фермиона, входящих в эту систему, не могут находиться в одинаковых состояниях, так как для фермионов волновая функция должна быть антисимметричной.

    Из этого положения вытекает принцип запрета Паули : любые два фермиона не могут одновременно находиться в одном и том же состоянии.

    Состояние электрона в атоме определяется набором четырех квантовых чисел:

    главного n (
    ,

    орбитального l (
    ),

    магнитного (
    ),

    магнитного спинового (
    ).

    Распределение электронов в атоме по состояниям подчиняется принципу Паули, поэтому два электрона, находящихся атоме, различаются значениями, по крайней мере, одного квантового числа.

    Определенному значению n соответствуетразличных состояний, отличающихсяl и. Так какможет принимать лишь два значения (
    ), то максимальное число электронов, находящихся в состояниях с даннымn , будет равно
    . Совокупность электронов в многоэлектронном атоме, имеющих одно и то же квантовое числоn , называютэлектронной оболочкой . В каждой электроны распределяются поподоболочкам , соответствующих данномуl . Максимальное число электронов в подоболочке с даннымl равно
    . Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам представлены в таблице.

    Периодическая система элементов Менделеева. С помощью принципа Паули можно объяснить Периодическую систему элементов. Химические и некоторые физические свойства элементов определяются внешними валентными электронами. Поэтому периодичность свойств химических элементов непосредственно связана с характером заполнения электронных оболочек в атоме.

    Элементы таблице отличаются друг от друга зарядом ядра и количеством электронов. При переходе к соседнему элементу последние увеличиваются на единицу. Электроны заполняют уровни так, чтобы энергия атома была минимальной.

    В многоэлектронном атоме каждый отдельный электрон движется в поле, которое отличается от кулоновского. Это приводит к тому, что вырождение по орбитальному моменту снимается
    . Причемc увеличениемl энергия уровней с одинаковымиn возрастает. Когда число электронов невелико, отличие в энергии с различнымиl и одинаковымиn не так велико, как между состояниями с различнымиn . Поэтому, сначала электроны заполняют оболочки с меньшимиn , начиная сs подоболочки, последовательно переходя к большим значениямl .

    Единственный электрон атома водорода находится в состоянии 1s . Оба электрона атомаHeнаходятся в состоянии 1s с антипараллельными ориентациями спина. На атоме гелия заканчивается заполнениеK -оболочки, что соответствует завершениюIпериода таблицы Менделеева.

    Третий электрон атома Li(Z 3)занимает наинизшее свободное энергетическое состояние сn 2 (L -оболочка), т.е. 2s -состояние. Так как он слабее других электронов связан с ядром атома, то им определяются оптические и химические свойства атома. Процесс заполнения электронов во втором периоде не нарушается. Заканчивается период неоном, у которогоL -оболочка целиком заполнена.

    В третьем периоде начинается заполнение M -оболочки. Одиннадцатый электрон первого элемента данного периодаNa(Z 11) занимает наинизшее свободное состояние 3s . 3s -электронявляется единственным валентным электроном. В связи с этим оптические и химические свойства натрия подобны свойствам лития. У следующих за натрием элементов нормально заполняются подоболочки 3s и 3p .

    Впервые нарушение обычной последовательности заполнения уровней происходит у K(Z 19). Его девятнадцатый электрон должен был бы занять 3d -состояние вM-оболочке. При данной общей конфигурации подоболочка 4s оказывается энергетически ниже подоболочки 3d . В связи с чем, при незавершенном в целом заполнении оболочкиMначинается заполнение оболочкиN. В оптическом и химическом отношении атомKподобен атомамLiиNa. Все эти элементы имеют валентный электрон вs -состоянии.

    С аналогичными отступлениями от обычной последовательности, повторяющимися время от времени, осуществляется застройка электронных уровней всех атомов. При этом периодически повторяются сходные конфигурации внешних (валентных) электронов (например, 1s , 2s , 3s и т.д.), чем обуславливается повторяемость химических и оптических свойств атомов.

    Рентгеновские спектры. Самым распространенным источником рентгеновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод. При торможении электронов возникает рентгеновское излучение. Спектральный состав рентгеновского излучения представляет собой наложение сплошного спектра, ограниченного со стороны коротких волн граничной длиной
    , и линейчатого спектра – совокупности отдельных линий на фоне сплошного спектра.

    Сплошной спектр обусловлен излучением электронов при их торможении. Поэтому его называют тормозным излучением . Максимальная энергия кванта тормозного излучения соответствует случаю, когда вся кинетическая энергия электрона переходит в энергию рентгеновского фотона, т.е.

    , гдеU – ускоряющая разность потенциалов рентгеновской трубки. Отсюда граничная длина волны. (2) Измерив коротковолновую границу тормозного излучения, можно определить постоян­ную Планка. Из всех методов определенияданный метод считается самым точным.

    При достаточно большой энергии электронов на фоне сплошного спектра появ­ляются отдельные резкие линии. Линейчатый спектр определяется только материалом анода, поэтому данное излучение называется характеристическим излучением .

    Характеристические спектры отличается заметной простотой. Они состоят из нескольких серий, обозначаемых буквами K ,L ,M , N иO . Каждая серия насчитывает небольшое число линий, обозначаемых в порядке возрастания частоты индексами,,… (
    ,,, …;,,, … и т.д.). Спектры разных элементов имеют сходный характер. При увеличении атомного номераZ весь рентгеновский спектр целиком смещается в коротковолновую часть, не меняя своей структуры (рис.). Это объясняется тем, что рентгеновские спектры возникают при переходах внутренних электронов, которые для разных атомов являются сходными.

    Схема возникновения рентгеновских спектров дана на рис. Возбуждение атома состоит в удалении одного из внутренних электронов. Если вырывается один из двух электронов K -слоя, то освободившееся место может быть занято электроном из какого-либо внешнего слоя (L ,M ,N и т.д.). При этом возникаетK -серия. Аналогично возникают и другие серии, наблюдаемые, впрочем, только для тяжелых элементов. СерияK обязательно сопровождается остальными сериями, так как при испускании ее линий освобождаются уровни в слояхL ,M и т.д., которые будут в свою очередь заполнятся электронами из более высоких слоев.

    Исследуя рентгеновские спектры элементов, Г. Мозли установил соотношение, называемое законом Мозли

    , (3) где– частота линии характеристического рентгеновского излучения,R – постоянная Ридберга,
    (определяет рентгеновскую серию),
    (определяет линию соответствующей серии), – постоянная экранирования.

    Закон Мозли позволяет по измеренной длине волны рентгеновских линий точно установить атомный номер данного элемента; этот закон сыграл большую роль при размещении элементов в периодической таблице.

    Закону Мозли можно дать простое объяснение. Линии с частотами (3), возникают при переходе электрона, находящегося в поле заряда
    , с уровня с номеромn на уровень с номеромm . Постоянная экранирования возникает из-за экранирования ядраZe другими электронами. Ее значение зависит от линии. Например, для
    -линии
    и закон Мозли запишется в виде

    .

    Связь в молекулах. Молекулярные спектры. Различают два вида связи между атомами в молекуле: ионную и ковалентную связь.

    Ионная связь. Если два нейтральных атома постепенно сближать друг с другом, то в случае ионной связи наступает момент, когда внешний электрон одного из атомов предпочитает присоединиться к другому атому. Атом, потерявший электрон, ведет себя как частица с положительным зарядомe , а атом, приобретший лишний электрон, – как частица с отрицательным зарядомe . Примером молекулы с ионной связью может служитьHCl, LiF, идр.

    Ковалентная связь. Другим распространенным типом молекулярной связи является ковалентная связь (например, в молекулахH 2 ,O 2 ,CO). В образовании ковалентной связи участвуют два валентных электрона соседних атома с противоположно направленными спинами. В результате специфического квантового движения электронов между атомами образуется электронное облако, которое обуславливает притяжение атомов.

    Молекулярные спектры сложнее атомных спектров, так как кроме движения электронов относительно ядер в молекуле происходятколебательные движения ядер (вместе с окружающими их внутренними электронами) около положений равновесия ивращательные движения молекул.

    Молекулярные спектры возникают в результате квантовых переходов между уровнями энергий
    и
    молекул согласно соотношению

    , где
    –энергия испущенного или поглощаемого кванта частоты. При комбинационном рассеянии света
    равна разности энергий падающего и рассеянного фотона.

    Электронному, колебательному и вращательному движениям молекул соответствуют энергии
    ,
    и
    . Полная энергия молекулыE может быть представлена в виде суммы этих энергий

    , причем по порядку величины, гдеm – масса электрона,M – масса молекулы (
    ). Следовательно
    . Энергия
    эВ,
    эВ,
    эВ.

    Согласно законам квантовой механики, эти энергии принимают только квантованные значения. Схема энергетических уровней двухатомной молекулы представлена на рис. (для примера рассмотрены только два электронных уровня –показаны жирными линиями). Электронные уровни энергии далеко отстоят друг от друга. Колебательные уровни расположены значительно ближе друг к другу, а вращательные уровни энергии располагаются еще ближе друг к другу.

    Типичные молекулярные спектры – полосатые, в виде совокупности полос различной ширины в УФ, видимой и ИК области спектра.

    ) и равен где J - характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число - так называемое спиновое квантовое число , которое обычно называют просто спином (одно из квантовых чисел).

    В связи с этим говорят о целом или полуцелом спине частицы.

    Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия .

    Свойства спина

    Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

    В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

    Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

    Примеры

    Ниже указаны спины некоторых микрочастиц.

    спин общее название частиц примеры
    0 скалярные частицы π -мезоны , K-мезоны, хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
    1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
    1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
    3/2 спин-векторные частицы Δ-изобары
    2 тензорные частицы гравитон , тензорные мезоны

    На июль 2004 года, максимальным спином среди известных элементарных частиц обладает барионный резонанс Δ(2950) со спином 15/2. Спин ядер может превышать 20

    История

    Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

    Спин и магнитный момент

    Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ():

    Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

    Спин и статистика

    Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

    Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами.

    Обобщение спина

    Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина , который действует в особом изоспиновом пространстве. В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет » - более сложный аналог спина.

    Спин классических систем

    Понятие спина было введено в квантовой теории. Тем не менее, в релятивистской механике можно определить спин классической (не квантовой) системы как собственный момент импульса . Классический спин является 4-вектором и определяется следующим образом:

    В силу антисимметрии тензора Леви-Чивиты, 4-вектор спина всегда ортогонален к 4-скорости В системе отсчёта, в которой суммарный импульс системы равен нулю, пространственные компоненты спина совпадают с вектором момента импульса, а временная компонента равна нулю.

    Именно поэтому спин называют собственным моментом импульса.

    В квантовой теории поля это определение спина сохраняется. В качестве момента импульса и суммарного импульса выступают интегралы движения соответствующего поля. В результате процедуры вторичного квантования 4-вектор спина становится оператором с дискретными собственными значениями.

    См. также

    • Преобразование Гольштейна - Примакова

    Примечания

    Литература

    Статьи

    • Физики разделили электроны на две квазичастицы. Группа ученых из Кембриджского и Бирмингемского университетов зафиксировала явление разделения спина (спинон) и заряда (холон) в сверхтонких проводниках.
    • Физики разделили электроны на спинон и орбитон. Группа ученых из немецкого Института конденсированного состояния и материалов (IFW) добилась разделения электрона на орбитон и спинон.

    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Спин" в других словарях:

      СПИН - собственный момент импульса элементарной частицы или системы, образованной из этих частиц, напр. атомного ядра. Спин частицы не связан с её движением в пространстве и не может быть объяснён с позиций классической физики он обусловлен квантовой… … Большая политехническая энциклопедия

      А; м. [англ. spin вращение] Физ. Собственный момент количества движения элементарной частицы, атомного ядра, присущий им и определяющий их квантовые свойства. * * * спин (англ. spin, буквально вращение), собственный момент количества движения… … Энциклопедический словарь

      Спин - Спин. Спиновый момент, присущий, например, протону, можно наглядно представить, связав его с вращательным движением частицы. СПИН (английское spin, буквально вращение), собственный момент количества движения микрочастицы, имеющий квантовую… … Иллюстрированный энциклопедический словарь

      - (обозначение s), в КВАНТОВОЙ МЕХАНИКЕ собственный угловой момент, присущий некоторым ЭЛЕМЕНТАРНЫМ ЧАСТИЦАМ, атомам и ядрам. Спин может рассматриваться как вращение частицы вокруг своей оси. Спин является одним из квантовых чисел, посредством… … Научно-технический энциклопедический словарь