По литературе

Классическая физика принцип эквивалентности. Смотреть что такое "Принцип эквивалентности" в других словарях. Тяготение и свойства пространства и времени

Другой взгляд на вещи, и в частности, на принцип эквивалентности очень даже может быть.
Например, по моему мнению, гравитация - достаточно запущенное заблуждение, вероятно продиктованное авторитетом, его высказавшего – Ньютоном.

«Сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними».

И все поверили Ньютону. Ну да, яблоко упало, планеты там по законам Кеплера вращаются, приливы - отливы, и даже черные дыры.

А теперь вернемся к обсуждаемому принципу эквивалентности. Как рассказано выше про ракету летящую с ускорением 1g, то я спокойно буду стоять на полу ракеты точно так же, как если бы эта ракета стояла на поверхности Земли. И чем же я, буду отличаться от человека, ускоряющегося вместе с ракетой. Тем, что в одном случае меня надо рассматривать по 2му закону Ньютона, а в другом случае, - по закону, того же Ньютона, но уже о всемирном тяготении. И так во всем: будь то линейное, центростремительное, кариолисово ускорения, везде действуют силы инерции, и только сила гравитации стоит отдельно, как Цаца, и требует для себя отдельного закона. Казалось бы, почему одно и то же явление (у меня есть вес, и меня придавливает к полу) надо рассматривать с помощью двух различных законов. Не проще ли предположить, что поверхность Земли, как та ракета, перемещает меня в пространстве с ускорением 1g.

Если это так, то необходимо сформулировать один новый закон vloma, слегка дополняющий 2й закон Ньютона.
«В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе,….
Но, при этом материальная точка относительно расширяет пространство. Мгновенная скорость расширения пространства пропорциональна массе рассматриваемой системы точек (тел) и обратно пропорциональна квадрату мгновенного расстояния от их центра массы».
Зная, что все относительно, тем не менее, мы привыкли считать, что только тела могут перемещаться в пространстве. То, что пространство может перемещаться относительно тел, как-то упустили.
Расширив слегка принцип эквивалентности, мы можем гравитационное поле заменить полем расширения пространства-материи (массы). Коль скоро гравитационное поле потенциально, то эквивалентное ему поле расширения пространства-материи (массы) является также потенциальным. Любой точке пространства соответствует свой (относительно рассматриваемой системы масс) потенциал расширения. Для системы «земля-солнце» он один, для «земля - центр вселенной» - другой, «солнечная система – центр галактики» - третий, и так далее. Принцип суперпозиции применим.

Остается выяснить, как (равномерно или равноускоренно) расширяется пространство? Если предположить, что тело движется в трехмерном пространстве с какой-либо постоянной (относительно пространства) скоростью, то любое изменение самого пространства должно приводить к ускорению в трехмерном пространстве. Даже если представить себе тело, находящееся в состоянии покоя, то, самое движение пространства тут же порождает (изменяет) скорость, ну, и, поскольку имеется изменение скорости в пространстве, опять появляется ускорение. Т.е., нахождение тела в состоянии покоя – абсолютно неустойчивое состояние, и, значит, в природе не существует. Неизбежен вывод, что любое тело, обладающее массой, обязано перемещаться* относительно другого тела обладающего массой. Переходя к принципу эквивалентности и зная, что в инерционном трехмерном пространстве тела должны «сближаться»* хоть и с нелинейным ускорением, приходиться сделать заключение, что скорость расширения пространства в точках с одинаковым относительным потенциалом расширения постоянна.

* На самом деле (тут уместно вспомнить 1й закон Ньютона) тела остаются в своем положении, точнее продолжают двигаться независимо от «гравитации», в реальности изменяется само пространство – увеличиваясь, оно сокращает относительное (видимое) расстояние между телами. Отсюда и заблуждение, что тела притягиваются.
Расширение пространства можно наглядно представить в виде резинового шнура переменного сечения. Представим два материальных тела, вдоль тел натянут резиновый шнур переменного сечения, утолщающийся в обе стороны от общего центра масс. Напротив тел на шнуре стоят метки. Шнур растягивают (расширяют пространство), метки перемещаются. Наблюдатели (мы с вами), считаем, что метки на шнуре неподвижны, и для нас тела сближаются. На самом деле тела остаются на своих местах (1й закон Ньютона).

Или, иначе сказать, пространство Земли расширяется относительно своего центра масс. Пространство системы Земля – Луна - относительно своего центра масс (отсюда приливы), пространство пальца, которым я сейчас печатаю, тоже расширяется относительно своего, пальца, центра масс, и т.д. Ну а Вселенная расширяется относительно своего центра масс. Т.е., «Всемирное тяготение» надо заменить «Всемирным расширением».

Наивный пример. Представим себе ребенка, родившегося на космическом корабле, равномерно перемещавшемся в пространстве, и которому ничего не успели рассказать о гравитации Ньютона. В какой-то момент корабль попадает в область уже заметного влияния «гравитации», например, Земли. Корабль, естественно, начинает «падать» на ее поверхность. Что увидит ребенок? Он увидит, что за стеклом иллюминатора вдруг (сначала медленно, затем все быстрее) начинает расти голубенький шар. При этом ребенок (пусть это будет мальчик, девочку жалко) ничего не ощущает, на него не действуют никакие силы. С его (правильной, кстати) точки зрения какая-то Земля расширяется до неимоверных размеров, а уже потом силой сопротивления своей атмосферы его сначала поджаривает, и уже потом размазывает тонким слоем по асфальту. Хотя, давайте пожалеем ребенка. Пусть его корабль обладал достаточной (и с правильным вектором направления) скоростью, позволившей ему удрать от расширяющейся Земли («пролететь мимо»), или попасть в колебательный процесс убегания и приближения («стать спутником»). Однако это не меняет сути.

Или возьмем черные дыры, поглощающие даже свет. Почему? Да просто масса черной дыры настолько велика, что скорость расширения пространства черной дыры не позволяет свету покинуть это пространство (не успевает он). Черная дыра захватывает все вокруг не в силу своего громадного притяжения, а по причине громадного расширения своего пространства.

Теперь, отменив закон всемирного тяготения, и поменяв понятие «сила гравитационного притяжения» на понятие «сила инерции всеобщего расширения», мы абсолютно не меняем наблюдаемую картину мира. Однако мы избавляемся от одного, надо отдать должное, нужного в прикладном смысле, но вводящего в заблуждение массу ученых, а также простых школьников, закона о всемирном тяготении.

Взаимное положение тел, обладающих массой во Вселенной, объясняется не гравитацией, а силами инерции!

Я формулирую постулат:
«Масса равномерно расширяет пространство. Скорость расширения пространства потенциально – равномерна, пропорциональна массе и обратно пропорциональна квадрату расстояния до центра массы».

Или «Масса излучает пространство».

Отсюда очевидно, то, что пространство может существовать только при наличии массы. Где нет массы, там не может быть пространства. У Эйнштейна и Миньковского имеет место быть понятие «пространство-время», однако в реальности существует «пространство - масса», а время есть их относительная производная.

К чему все вышесказанное:
Ну чем лучше теория гравитационного поля, которого до сих пор никто не обнаружил (коллайдеры, бозоны, поиски гравитационных волн), данной гипотезы о расширении пространства относительно массы.
Приняв за основу мою гипотезу, не надо будет искать гравитоны и строить громадные дорогущие интерферометры для обнаружения гравитационных волн. Просто потому, что их нет. Тот же коллайдер надо будет отправить в металлолом, кажется, там ищут какие-то бозоны, объясняющие гравитацию.
Хотя, ученые- люди любопытные, начнут искать расширение пространства, а будет ли это дешевле?
Подтверждений в пользу высказанной гипотезе бесконечно больше по сравнению с мифическим гравитационным полем уже в силу очевидных фактов: практически никто уже не оспаривает расширение Вселенной, вручили уже Нобелевскую премию за обнаружение ускоренного (я думаю, в трехмерном пространстве) расширения Вселенной.
Очевидно, что и результаты опыта Майкельсона можно чуть пересмотреть (хотя, мне кажется, там что-то напутано с принципами сложения скоростей и с частотой света). Думаю, что прикладники (даже в модели Майкельсона) решат вопрос, как должно изменяться пространство, что бы не было интерференции. Это, в свою очередь, даст ответ на то, каким образом свет распространяется в пространстве. Можно связать между собой две пока известные нам универсальные физические константы – скорость света и гравитационную постоянную. Только это уже будет не гравитационная постоянная, а постоянная расширения пространства.

Соответственно, можно чуть поправить теорию относительности Эйнштейна. Но думаю, что прикладники легко смогут применить известные преобразования Лоренса только не к времени, а к пространству.

Есть также мнение, что Ньютон, формулируя закон всемирного тяготения, не мог не принять во внимание свои же 1й и 2й законы, он должен был понимать, что существует альтернатива, но видимо, постеснялся. Заявить в 17 веке, что мы все раздуваемся – еще тот поступок. Думаю, именно этим объясняется поведение Ньютона при датировании своего закона о всемирном тяготении. Как известно, сам он датировал закон 1666 годом, а опубликовал лишь 1687 году. Двадцать лет сомневался.

Сила тяготения отличается от всех других сил тем, что она пропорциональна массе того тела, на которое действует. С другой стороны, в уравнениях движения классической механики (2.13) компоненты силы, действующей на тело, также пропорциональны его массе. Поэтому постоянный множитель с обеих сторон сокращается, и мы получаем, что ускорение тела в гравитационном поле не зависит от его массы.

Теория гравитации Ньютона констатирует этот факт, но не объясняет его. С точки зрения классической физики едва ли даже можно требовать какого-либо „объяснения". Другие силовые законы - закон Кулона для электростатических сил, природа сил Ван-дер-Ваальса также не могут быть „объяснены. Однако закон Ньютона имеет особое, более широкое значение. Масса тела, отношение силы к ускорению, является постоянной, характеризующей поведение тела под действием сил. Эту постоянную можно назвать „инертной массой, так как она является мерой «инертной сопротивляемости ускорению. Электростатическая сила, действующая на частицу, есть произведение напряженности электрического поля, не зависящего от частицы, на заряд частицы, который является ее характеристикой. Точно так же гравитационная сила есть произведение „напряженности гравитационного поля [отрицательного градиента гравитационного потенциала (10.3)] на массу частицы. В том случае, когда масса играет роль „гравитационного заряда, мы будем ее называть „гравитационной или тяжелой

массой. Согласно ньютоновской теории гравитации инертная и гравитационная массы одного и того же тела всегда равны. Это положение по причинам, которые будут ясны из дальнейшего, носит название принципа эквивалентности.

Вообще говоря, могло бы случиться, что „инертная и „гравитационная массы большинства тел только приблизительно равны, что это приближенное равенство случайно и что при точном измерении обе массы в действительности окажутся различными. К счастью, утверждаемое равенство инертной и гравитационной масс возможно подвергнуть очень точной проверке. Для этого достаточно показать равенство ускорений всех тел в одном и том же гравитационном поле.

Ускорения свободно падающих тел нельзя измерять непосредственно, так как невозможно с достаточной степенью точности измерять интервалы времени; поэтому необходимо прибегнуть к косвенным методам. Существует тип ускорения, „инерциальное ускорение, которое определенно не зависит от массы ускоряемого тела. Если относить движение тел к неинерциальной системе отсчета, возникают ускорения, обусловленные не действующими на тело силами, а ускорением выбранной системы отсчета относительно какой-либо ииерциальной системы. В главе II эти „силы инерции были исследованы в специальном случае, когда система отсчета вращается с постоянной угловой скоростью относительно ииерциальной системы.

„Сила инерции пропорциональна „инертной массе тела. Поэтому, если на тело одновременно действуют и „силы инерции и гравитационные силы, направление равнодействующей будет зависеть от отношения „инертной "массы тела к „гравитационной. Определение направления этой равнодействующей для различных тел является чувствительным критерием того, одинаково ли это отношение для всех испытуемых тел.

Необходимая экспериментальная установка создана самой природой: Земля, вращающаяся вокруг своей оси с постоянной угловой скоростью, является неинерциальной

системой. На тело, покоящееся относительно Земли, действуют две силы: гравитационное притяжение Земли и «центробежная сила". Полное ускорение этого тела относительно Земли получается векторным сложением гравитационного и „центробежного" ускорений. Для точек, расположенных не на экваторе, эти две составляющие не параллельны, и направление равнодействующей является мерой отношения инертной массы к гравитационной.

Этвеш) подвешивал на коромыслах крутильных весов две гири из различных материалов, но с одной и той же гравитационной массой. Если бы их инертные массы не были равны, результирующие силы, действующие на гири, были бы не параллельны, и весы получили бы крутильный момент. Отсутствие такого момента показывает, что отношение инертной массы к гравитационной одно и то же для различных материалов. Этот результат был получен с относительной точностью 10-8.

В специальной теории относительности было показано, что по крайней мере часть инертной массы тела обусловлена внутренней энергией. В радиоактивных веществах эта, прибавка к полной массе значительна. Является ли эта часть „инертной массы" также и „гравитационной массой"? Ответ на этот вопрос был дан Саузернсома), который повторил эксперимент Этвеша с радиоактивными веществами. Результат был тот же: „гравитационная масса" оказалась равной „инертной массе", хотя последняя в известной степени была обусловлена энергией связи. Принцип эквивалентности, таким образом, является основным свойством, гравитационных сил.

Что позволяет оперировать в физике единым понятием . Другим выражением этого принципа можно считать независимость свободного падения тел от их состава. Принцип эквивалентности много раз проверялся на Земле и в ее окрестностях и считается надежно проверенным экспериментально, поэтому его нередко считают универсальным. Так представление об эквивалентности двух типов масс позволило Эйнштейну развить общую об эквивалентности поля тяготения отсчета.

Полевая физика указывает на причину видимой эквивалентности инертных и гравитационных масс тел на Земле и в пределах любой другой небольшой области космоса. Однако оказывается, что принцип эквивалентности справедлив лишь в частных случаях и не является универсальным. Согласно отношение тела к его возрастает по мере приближения к сильным гравитационным источникам, например, к центру нашей Галактики, и падает по мере удаления от них, что во многом является реализацией . Это обстоятельство приводит к кардинальному пересмотру принципа эквивалентности в полевой физике.

Полевой принцип эквивалентности

1. Инертная и гравитационная являются принципиально разными физическими характеристиками объектов. Инертная масса (просто масса или инертность) характеризует величину изменения объекта под действием внешних , а гравитационная масса (гравитационный заряд) - участия объекта в .

2. В подавляющем большинстве земных явлений основной вклад в инертность объектов вносит взаимодействие с Вселенной - Глобальное . Когда все остальные взаимодействия пренебрежимо малы по сравнению с ним наблюдается эффект пропорциональности тела его .

3. Коэффициент пропорциональности между двумя типами зависит от области космоса, возрастая по мере приближения к сильногравитирующим объектам и уменьшаясь по мере удаления от них.

4. Равенство коэффициента пропорциональности единице в области Земли и Солнечной системы обеспечивается путем введения с известным значением. Этот прием создает видимость равенства инертной и объектов на Земле.

5. Наличие полей негравитационной природы приводит к нарушению пропорциональности между двумя типами масс и предоставляет возможность независимого изменения этих свойств объектов. А также экспериментального обнаружения отклонения от равенства инертной и гравитационной масс.

Эквивалентность гравитационных сил силам инерции

Важнейшей особенностью полей тяготения является то, что тяготение совершенно одинаково действует на разные тела, сообщая им одинаковые ускорения, независимо от свойств тел. Это было известно еще в ньютоновской теории и положено в основу новой, эйнштейновской теории тяготения. Под действием гравитационной силы:

все тела на поверхности Земли падают с одинаковым ускорением - ускорением свободного падения. Этот факт был установлен Ньютоном и может быть сформулирован как принцип строгой пропорциональности гравитационной массы $m_{g} $, определяющей взаимодействие тела с полем тяготения, и инертной массы $m_{in} $, определяющей сопротивление тела действующей на него силе и входящей во второй закон Ньютона :

Уравнение движения тела в поле тяготения записывается так:

где $\overline{a}$ - ускорение, приобретаемое телом под действием поля тяготения, напряженностью $\overline{G}=\overline{g}$. В этом случае, согласно Ньютону, для всех тел $m_g=m_{in}$ и $\overline{a}=\overline{g}$ - ускорение не зависит от массы и равно напряженности поля тяготения.

Таким образом, все тела в поле тяготения и в поле сил инерции, при $\overline{a}=\overline{g}$, движутся совершенно одинаково. Например, движение тел в космическом корабле, летящем с ускорением $\overline{a}=\overline{g}$, и в корабле, находящемся на Земле в поле тяжести с напряженностью $\overline{G}=\overline{g}$, будет одинаковым. Силы инерции в ускоренно движущемся корабле будут неотличимы от гравитационных сил, действующих в истинном поле тяготения. Поэтому силы инерции можно считать эквивалентными гравитационным силам .

Определение 1

Тождественность инерциальной и гравитационной масс является следствием эквивалентности сил инерции и сил тяготения. Этот факт называется принципом эквивалентности Эйнштейна.

Принцип относительности Эйнштейна

Определение 2

Исторически принцип относительности был сформулирован Эйнштейном так: все явления в гравитационном поле происходят точно так, же как в соответствующем поле сил инерции, если совпадают напряжённости этих полей и одинаковы начальные условия для тел системы.

Согласно этому принципу, все физические процессы в истинном поле тяготения и в ускоренной системе отсчета, при отсутствии тяготения, протекают одинаковым образом. Это фундаментальный закон природы.

Для доказательства этого принципа Эйнштейн предложил следующий мысленный эксперимент. Пусть тела находятся в лифте, который бесконечно удален от гравитирующих тел и движется с ускорением. Тогда на все тела находящиеся в лифте действует сила инерции, а тела под действием этих сил будут давить на опору или подвес. То есть тела будут обладать весом. Если лифт не движется, а висит над какой-то гравитирующей массой в однородном поле, то все тела также будут обладать весом. Находясь в лифте, невозможно отличить эти две силы. Поэтому все механические явления будут в обоих лифтах происходить одинаково. Эйнштейн обобщил это положение на все физические явления.

Следствием этого закона является то, что, находясь внутри закрытой кабины, невозможно определить, чем вызвана сила $m_g$. Тем, что кабина движется с ускорением или действием притяжения Земли?

Ярчайшим доказательством равенства сил инерции и гравитации является состояние невесомости космонавтов в космическом корабле (падают под действием гравитационных сил и отлетают под действием центробежных сил инерции). Принцип эквивалентности -- основополагающий в ОТО Эйнштейна.

Принципы эквивалентности

Следует различать «слабый принцип эквивалентности» и «сильный принцип эквивалентности».

Сильный принцип эквивалентност и можно сформулировать так: в каждой точке пространства-времени в произвольномгравитационном поле можно выбрать «локально-инерциальную систему координат», такую, что в достаточно малой окрестности рассматриваемой точки законы природы будут иметь такую же форму, как и в не ускоренных декартовых системах координат СТО, где под «законами природы» подразумевают все законы природы.

Слабый принцип отличается тем, что слова «законы природы» заменяются в нем словами «законы движения свободно падающих частиц». Слабый принцип - это не что иное, как другая формулировка наблюдаемого равенства гравитационной и инертной масс, в то время как сильный принцип представляет собой обобщение наблюдений за влиянием гравитации налюбые физические объекты.

Часто считают, что принцип эквивалентности является основным принципом общей теории относительности и вообще многих релятивистских теорий гравитации , так как якобы в соответствии с принципом эквивалентности гравитационное поле можно рассматривать как неинерциальную систему отсчёта. Это верно лишь с оговорками. Любая неинерциальная система отсчёта в специальной теории относительности всё равно имеет в основе плоское, неискривлённое пространство-время. В метрических же теориях гравитации, к которым принадлежит иобщая теория относительности, пространство-время искривлено. Неполнота соответствия выявляется тем фактом, что глобальных инерциальных систем отсчёта в метрических теориях просто нет, там все системы - неинерциальные. Даже переход в локально-инерциальную систему отсчёта не удаляет гравитационных эффектов, связанных с кривизной пространства-времени (например, девиацию геодезических или приливные силы). Только если выбирать размеры изучаемой системы намного меньше характерной кривизны, то приблизительно физическими проявлениями искривления можно пренебречь и получить «принцип эквивалентности». В точной же формулировке законов природы кривизна пространства-времени всё равно появляется в некоторых местах, что отличает их от соответствующих законов в специальной теории относительности.

С точки зрения математики во всех метрических теориях гравитации принцип эквивалентности с точностью до оговорок предыдущего пункта тривиально следует из того факта, что в окрестности любого события пространства-времени возможно ввести локально геодезическую систему координат или риманову системукоординат, в которых в заданной точке символы Кристоффеля исчезают, то есть равны $0$. В физикепредпочитают говорить об этом как о существовании локально инерциальных систем отсчёта.

Пример 1

Шарик массы $m$ подвешен внутри пустой цистерны на невесомой нити длиной $l$. В начальный момент времени цистерна начинает двигаться в горизонтальном направлении с постоянным ускорением $a$. Какое движение будет при этом совершать шарик?

Дано: $m, l, а.$

Найти: уравнение движения шарика.

Рисунок 1.

Решение: Вместо того чтобы рассматривать ускоренно движущуюся цистерну, будем считать, что она неподвижна, но на все тела в ней действует дополнительно гравитационное поле $-a=g_{1} $. Это поле, складываясь с истинным полем тяжести Земли, дает эффективное поле тяжести, напряженность которого:

Вектор $g_{2} $ отклонен от истинной вертикали на угол $\alpha _{0} $, тангенс которого определяется соотношением:

Напряженность эффективного поля тяжести находится по теореме Пифагора:

Ясно, что в положении равновесия нить маятника направлена вдоль вектора $g_{2} $. В начальный момент, когда цистерна начинает двигаться с ускорением $a$ шарик неподвижен, а нить вертикальна, т.е. маятник отклонен от нового положения равновесия на угол $\alpha _{0} $ влево. Поэтому маятник в пустой цистерне будет совершать относительно нового положения равновесия колебания с угловой амплитудой $\alpha _{0} $. Если ускорение цистерны мало по сравнению с ускорением свободного падения, то амплитуда колебаний мала и колебания будут гармоническими. Угол отклонения от нового положения равновесия $\alpha (t)$ будет при этом изменяться со временем по закону:

\[\alpha (t)=-\alpha _{0} \cos \omega t,\]

где частота определяется соотношением:

\[\omega =\frac{g_{2} }{l} .\]

Ответ: $\alpha (t)=-\alpha _{0} \cos \omega t$.

ЭКВИВАЛЕНТНОСТИ

Теория

Относительности

Вам, возможно, доводилось испытывать странные физические ощущения в скоростных лифтах: когда лифт трогается вверх (или тормозит при движении вниз), вас придавливает к полу и вам кажется, что вы на мгновение потяжелели; а в момент торможения при движении вверх (или старта при движении вниз) пол лифта буквально уходит у вас из-под ног. Сами, возможно, того не сознавая, вы испытываете при этом на себе действие принципа эквивалентности инертной и гравитационной масс. Когда лифт трогается вверх, он движется с ускорением, которое приплюсовывается к ускорению свободного падения в неинерциальной (движущейся с ускорением) системе отсчета, связанной с лифтом, и ваш вес увеличивается. Однако как только лифт набрал «крейсерскую скорость», он начинает двигаться равномерно, «прибавка» в весе исчезает, и ваш вес возвращается к привычному для вас значению. Таким образом, ускорение производит тот же эффект, что и гравитация.

Теперь представьте, что вы находитесь в открытом космосе вдали от любых сколько-нибудь значительных гравитационных полей, но при этом ваш корабль движется с ускорением 9,8 м/с 2 . Если вы встанете на весы, то обнаружите, что вес вашего тела не отличается от веса вашего тела на Земле. Если вы возьмете шар и отпустите его, он, как и на Земле, упадет на пол, и, если измерить изменение скорости его падения в пути, окажется, что он падал равноускоренно все с тем же ускорением 9,8 м/с 2 , то есть динамика его падения ничем не отличается от земной. Принцип эквивалентности как раз и гласит, что, находясь в какой-либо замкнутой системе, вы не можете определить, вызвано ускорение свободно движущегося тела в ней гравитационным полем или же оно является собственным ускорением неинерциальной системы отсчета, в которой вы находитесь, иными словами, обусловлено действием силы инерции.



Из принципа эквивалентности следуют интересные предсказания относительно поведения света в гравитационном поле. Представьте, что в момент ускоренного движения вверх при старте лифта вы послали световой импульс (например, при помощи лазерной указки) в направлении мишени на противоположной стене лифта. За то время, пока импульс света находится в пути, мишень вместе с лифтом ускорится и световая вспышка на стене окажется ниже мишени. (Конечно же, в земных условиях вы этого отклонения не заметите, так что просто представьте, будто вы способны рассмотреть отклонение на тысячные доли микрона.) Теперь, возвращаясь к принципу эквивалентности гравитации и ускорения, можно сделать вывод, что аналогичный эффект отклонения светового луча должен наблюдаться не только в не-инерциальной системе, но и в гравитационном поле. Для светового луча, согласно обобщенному принципу эквивалентности сил гравитации и инерции, введенному Эйнштейном в число постулатов общей теории относительности, отклонение светового луча

звезды, проходящего по касательной к периметру Солнца, должно составлять около 1,75 угловой секунды (примерно одна двухтысячная градуса), в то время как в рамках классической механики Ньютона луч также должен отклоняться в силу того, что свет обладает массой, но на значительно меньший угол (около 0,9 угловой секунды). Таким образом, измерения, проведенные сэром Артуром Эддингтоном (Arthur Eddington, 1882-1944) во время полного солнечного затмения 1919 года и выявившие отклонение луча на угол 1,6 угловой секунды, стали триумфальным экспериментальным подтверждением общей ТЕОРИИ ОТНОСИТЕЛЬНОСТИ.

Следуя аналогичным рассуждениям, нетрудно увидеть, что принцип эквивалентности предсказывает, что в спектре светового луча, направленного в сторону уменьшения интенсивности гравитационного поля (в земных условиях - вверх), должно наблюдаться красное смещение, и это предсказание также получило свое экспериментальное подтверждение.

Принцип эквивалентности лишь один из постулатов общей теории относительности. Он ограничивается рассмотрением эффектов гравитации и равноускоренного движения, однако каждое подтверждение принципа эквивалентности является одновременно и подтверждением общей теории относительности.

Проба на окрашивание пламени

Присутствие металлов можно идентифицировать по цвету пламени, образующегося при их горении

кон. XVIII ^ ПРОБА

НА ОКРАШИВАНИЕ ПЛАМЕНИ

1859 ОТКРЫТИЕ

КИРХГОФА-БУНЗЕНА

1859 ^ СПЕКТРОСКОПИЯ

1913 ^ АТОМ БОРА

При совершении электроном квантового скачка с одной разрешенной орбитали на другую (см. атом бора) атом испускает свет. А поскольку энергетические уровни атомов двух элементов различны, свет, испускаемый атомом одного элемента, будет отличаться от света, испускаемого атомом другого. Это положение лежит в основе науки, которую мы называем спектроскопией (см. открытие кирхго фа-бунзена).

На этом же положении (что атомы разных элементов испускают свет разной длины волны) основана проба на окрашивание пламени в химии. При нагревании в пламени газовой горелки раствора, содержащего ионы одного из щелочных металлов (то есть одного из элементов первой колонки периодической системы Менделеева), пламя окрасится в определенный цвет в зависимости от того, какой металл присутствует в растворе. К примеру, ярко-желтый цвет пламени выдает присутствие натрия, фиолетовый - калия, а карминно-красный - лития. Происходит это окрашивание пламени так: столкновение с горячими газами пламени переводит электроны в возбужденное состояние, из которого они возвращаются в исходное, одновременно испуская свет характерной длины волны.

Это свойство атомов объясняет, почему лес, прибитый к океанскому берегу, так высоко ценится для топки каминов. Долгое время находясь в море, бревна адсорбируют большое количество разных веществ, и при горении бревен эти вещества окрашивают пламя во множество разных цветов.

Любое четное число больше чем 2 можно представить в виде суммы двух простых чисел

проблема гольдбаха

христиан гольдбах

(Christian Goldbach, 1690-1764) - немецкий математик. Родился в Кенигсберге в Пруссии (ныне Калининград, Россия). В 1725 году стал профессором математики в Санкт-Петербурге, тремя годами позже приехал в Москву в качестве домашнего учителя будущего царя Петра II. Во время путешествий по Европе Гольдбах познакомился со многими ведущими математиками своего времени, включая Готфрида Лейбница, Абрахама де Муавра и семью Бернулли. Многие его работы выросли из переписки с великим швейцарским математиком Леонардом Эйлером (Leonhard Euler, 1707-83). Утверждение, которое мы теперь называем проблемой Гольдбаха, впервые было выдвинуто в 1742 году в письме Гольдбаха к Эйлеру.

Самые простые математические утверждения иногда бывает сложнее всего доказать. Так, великая теорема ферма была окончательно доказана лишь в конце XX века - через несколько сот лет после того, как была сформулирована. Существует еще одно утверждение, чем-то похожее на теорему Ферма, которое математики не смогли доказать до сих пор. Его называют проблемой Гольдбаха, и формулировка этого утверждения предельно проста. В нем всего лишь говорится, что каждое четное число больше 2 можно представить как сумму двух простых чисел. (Поясним: простое число - это число, которое делится только на 1 и на себя само. Так, 2, 3, 5, 7 - простые числа, а 4 (2 х 2),

6 (3 х 2), 9 (3 х 3) - нет.) Впервые это утверждение выдвинул Христиан Гольдбах в 1742 году. Из него следует, что 10 (возьмем пример попроще) как четное число можно записать в виде суммы

7 + 3, где 7 и 3 - простые числа. Другая формулировка утверждения Гольдбаха, немного менее известная, - что любое нечетное число, большее или равное 9, можно представить в виде суммы трех простых чисел (например, 13 = 7 + 3 + 3 = 5 + 5 + 3).

С тех пор как Гольдбах выдвинул эту гипотезу, математики не сомневались, что она, как и Великая теорема Ферма, верна. Тем не менее в отличие от теоремы Ферма никто никогда не претендовал на то, что сумел ее доказать. К решению этой проблемы существует подход «в лоб» - надолго запустить компьютерную программу, которая бы последовательно проверяла это утверждение на все больших и больших четных числах. Таким способом можно было бы опровергнуть теорему, будь она неверна. Но так нельзя доказать теорему - по той простой причине, что никогда нельзя гарантировать, что число, которое программа могла бы проверить за следующий свой шаг, не окажется первым исключением из правила. В действительности мы знаем, что проблема Гольдбаха верна по крайней мере для всех четных чисел, не превышающих 100 000.

В 30-е годы XX века группа русских математиков установила, что количество простых чисел, которые при сложении образуют четное число, конечно, а также что проблема Гольдбаха верна для большого класса четных чисел. Однако доказательство теоремы до сих пор не найдено.

Почему математики тратят столько времени на решение таких задач, как Великая теорема Ферма или проблема Гольдбаха? Ведь в этом нет практического смысла, из их решения нельзя извлечь никакой выгоды. На мой взгляд, это очень древний и очень свойственный человеческой природе вид деятельности - поиск самоочевидной, бесспорной истины. Философы тысячелетиями ищут истину. Математики надеются обнаружить такие истины, работая с системами, построенными на чистой логике. И то, что эти доказательства столь трудно достижимы, наверное, объясняется скорее самой природой логики, невозможностью найти истину в этом ненадежном, изменчивом мире, а не свойством математики как таковой.