По литературе

В состав костной ткани входит соляная кислота. Строение и состав костей. Надкостница: строение и значение

Химический состав костной ткани

Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества – 70% и вода – 10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33-40%. Количество воды приблизительно то же, что и в компактной кости.

Органический матрикс костной ткани. Приблизительно 95% органического матрикса приходится на коллаген типа I. Данный тип коллагена входит также в состав сухожилий и кожи, однако коллаген костной ткани обладает некоторыми особенностями. В нем несколько больше оксипролина, а также свободных аминогрупп лизиновых и оксилизиновых остатков. Это обусловливает наличие большего количества поперечных связей в коллагеновых волокнах и их большую прочность. По сравнению с коллагеном других тканей костный коллаген характеризуется повышенным содержанием фосфата, который в основном связан с остатками серина.

Белки неколлагеновой природы представлены гликопротеинами, белковыми компонентами протеогликанов. Принимают участие в росте и развитии кости, процессе минерализации, водно-солевом обмене. Альбумины участвуют в транспорте гормонов и других веществ из крови.

Преобладающим белком неколлагеновой природы является остеокальцин . Он присутствует только в костях и зубах. Это небольшой (49 аминокислотных остатков) белок, называемаый также костным глутаминовым белком или gla-белком. В молекуле остеокальцина обнаружены три остатка
γ-карбоксиглутаминовой кислоты. За счет этих остатков он способен связывать кальций. Для синтеза остеокальцина необходим витамин К (рис. 34).

Рис. 34. Посттрансляционная модификация остеокальцина

В состав органического матрикса костной ткани входят гликозаминогликаны, основным представителем которых является хондроитин-4-сульфат. Хондроитин-6-сульфат, кератансульфат и гиалуроновая кислота содержатся в небольших количествах. Окостенение сопровождается изменением гликозаминогликанов: сульфатированные соединения уступают место несульфатированным. Гликозаминогликаны участвуют в связывании коллагена с кальцием, регуляции водного и солевого обмена.

Цитрат необходим для минерализации костной ткани. Он образует комплексные соединения с солями кальция и фосфора, обеспечивая возможность повышения концентрации их в ткани до такого уровня, при котором могут начаться кристаллизация и минерализация. Также принимет участие в регуляции уровня кальция в крови. Кроме цитрата, в костной ткани обнаружены сукцинат, фумарат, малат, лактат и другие органические кислоты.

Костный матрикс содержит небольшое количество липидов. Липиды играют существенную роль в образовании ядер кристаллизации при минерализации кости.

Остеобласты богаты РНК. Высокое содержание РНК в костных клетках отражает их активность и постоянную биосинтетическую функцию.

В состав свежей кости взрослого человека входит вода – 50%, жир – 16%, прочие органические вещества – 12%, неорганические в-ва – 22%.

Обезжиренные и высушенные кости содержат приблизительно 2/3 неорганических и 1/3 органических веществ. Кроме того, в составе костей имеются витамины А, Д и С.

Органическое вещество костной ткани – оссеин – придает им эластичность. Он растворяется при кипячении в воде, образуя костный клей. Неорганическое в-во костей представлено главным образом солями кальция, которые с небольшой примесью других минеральных в-в образуют кристаллы гидрооксиапатита.

Сочетание органических и неорганических в-в обуславливают прочность и легкость костной ткани. Так, при малом удельном весе, равном 1.87, т.е. в два раза не превышающим удельный вес воды, прочность кости превосходит прочность гранита. Бедренная кость, например, при сжатии по продольной оси выдерживает нагрузки свыше 1500 кг. Если кость подвергнуть обжиганию, то органическое в-во сгорает, а неорганическое остается и сохраняет форму кости и ее твердость, но такая кость становится очень хрупкой и при надавливании крошится. Наоборот, после вымачивания в растворе, кислот, в результате которого растворяются минеральные соли, а органическое в-во остается, кость также сохраняет свою форму, но становится настолько эластичной, что ее можно завязать в узел. Следовательно, эластичность кости зависит от оссеина, а твердость ее – от минеральных в-в.

Химический состав костей связан с возрастом, функциональной нагрузкой, общим состоянием организма. Чем большее нагрузка на кость, тем больше неорганических в-в. Так, например бедренная кость и поясничные позвонки содержат наибольшее количество углекислого кальция. С увеличением возраста количество органических в-в уменьшается, а неорганических увеличивается. У маленьких детей оссеина сравнительно больше, соответственно, кости отличаются большой гибкостью и поэтому редко ломаются. Наоборот, в старости соотношение органических и неорганических в-в изменяется в пользу последних. Кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Классификация костей

По форме, функции и развитию кости делятся на три части: трубчатые, губчатые, смешанные.

Трубчатые кости входят в состав скелета конечностей, играя роль рычагов в тех отделах тела, где преобладают движения с большим размахом. Трубчатые кости делятся на длинные – плечевая кость, кости предплечья, бедренная кость, кости голени и короткие – кости пясти, плюсны и фаланг пальцев. Трубчатые кости характеризуются наличием средней части – диафиза , содержащего полость (костномозговая полость), и двух расширенных концов – эпифизов . Один из эпифизов располагается ближе к туловищу – проксимальный , другой находится дальше от него – дистальный . Участок трубчатой кости, расположенный между диафизом и эпифизом, носит название метафиза . Отростки кости, служащие для прикрепления мышц, называются апофизами.

Губчатые кости находятся в тех отделах скелета, где необходимо обеспечить достаточную прочность и опору при небольшом размахе движений. Среди губчатых костей различают длинные (ребра, грудина), короткие (позвонки, кости запястья, предплюсны) и плоские (кости черепа, кости поясов). К губчатым костям относятся и сесамовидные кости (коленная чашечка, гороховидная кость, сесамовидные кости пальцев кисти и стопы). Они располагаются около суставов, с костями скелета непосредственно не связаны и развиваются в толще сухожилий мышц. Присутствие этих костей способствует увеличению плеча силы мышцы и, следовательно, увеличению ее момента вращения.

Смешанные кости – сюда относятся кости, сливающиеся из нескольких частей, имеющих разную функцию, строение и развитие (кости основания черепа).


Строение костной ткани. В состав костной ткани входят, как известно, костные клетки и межклеточная субстанция, которая состоит из основного бесструктурного вещества и оформленной части в виде волокон. Каждая кость по периферии построена из очень плотной , местами тонкой, местами, наоборот, очень толстой стенки, состоящей из компактного костного вещества. Внутри кость по­строена из губчатого костного вещества, состоящего из целого ряда тонких, соединенных со стенкой и между собой костных перекладин, которые в своей массе напоминают мелкопетлистую губку.
Костные перекладины, или трабекулы, распределены в губчатом веществе по траектории сжатия и растяжения, т. е. как бы строго следуя законам механики. Благодаря такой конструкции, они отвечают на испытываемые костью «сжатие», «растяжение» и «скру­чивание», причем каждая перекладина имеет свое специальное значение, а при длительных изменениях условий, в которых находится кость, наступает перестройка внутренней архитектуры кости.
В образовании формы костей имеют значение, наряду с другими причинами (кормление, содержание, эксплуатация и пр.), также и те условия, в которых развивается данная кость. В этом отношении важнейшими факторами являются прилежащие к ней смежные кости и мышцы, а также сосуды, нервы, железы и другие тканевые элементы, влияющие на формообразование кости.
Известно, что поверхность костей, где прикрепляются мышцы, сухожилия и связки, отличается неровностью: она в этом месте вогнута или (чаще) выпукла. При сухожильном способе прикрепле­ния на кости развиваются бугры. Если же мышечные пучки непосредственно вплетаются в надкостницу (при так называемом пери-остальном способе прикрепления), то на кости образуется ровная или даже вогнутая поверхность (различные ямки).
В общем, несмотря на многообразие форм костей, для удобства описания их подразделяют по форме на длинные, короткие, широкие и смешанные. Для рассматриваемого нами вопроса наиболее инте­ресны первые две формы - длинные и короткие кости.
У длинных костей один размер значительно преобладает над остальными. Средняя часть (диафиз), или тело такой кости имеет цилиндрическую или призматическую форму; концы (эпифизы) более или менее утолщены и соединяются с соседними сочленяющи­мися костями. Кости этого типа образуют основу конечностей и играют роль рычагов, приводимых в движение мышцами И сухожилиями.
В коротких костях все три размера приблизительно одинаковы. Кости этого типа встречаются там, где, при прочности соединений, в то же время необходима известная гибкость; сюда относятся кости запястья и заплюсны.
При исследовании наружной формы кости обращают внимание па характер ее поверхностей ; они могут быть плоские, вогнутые или выпуклые, гладкие или шероховатые. Наибольшей гладкостью отличаются суставные поверхности (fades articulares), которые имеются на концах длинных костей и на местах соединения их между собой. В этом случае иногда конец одной кости закругляется, образуя головку, а на другой соответственно этому образуется суставная ямка, причем головка может быть отделена от тела кости перехватом (шейкой). Если суставной конец представляет обширную, но слабо изогнутую поверхность, то он относится к числу сочлененных отростков, примером которых являются суставные отростки позвонков. Короткие кости целиком состоят из губчатого вещества и только снаружи покрыты сравнительно тонким слоем компактного кост­ного вещества.
Концы длинных костей построены так же, как и короткие кости. Тело устроено иначе: оно по всей длине представляет полый ци­линдр, стенку которого образует довольно толстая корка плотного вещества, а полость представляет собой костномозговой канал, сообщающийся с пустотами в substantia spongiosa концов кости. Внутреннее строение костей таково, что при наименьшей затрате материала они имеют наибольшую прочность. В частности, длинные кости, выполняющие роль стоек и рычагов, в большей своей части состоят из плотного вещества, причем тело их полое. Такие кости, будучи легкими и занимая мало места, способны выдерживать наибольшее сопротивление механической силе, которая действует на периферические слои кости. Губчатое вещество встречается там, где при известной прочности и легкости налицо и значительный объем, что наблюдается в коротких костях и на концах длинных; таким путем увеличивается поверхность соприкосновения костей. Расположение пластинок губчатого вещества, кажущееся на первый взгляд беспорядочным, в общем совпадает с направлением наибольшего функционального сжатия и растяжения. Кроме того, в костной ткани нередко образуются еще особые системы скреп. В результате каждая кость имеет строение, наиболее соответствую­щее тем функциональным условиям, в которых она находится , при­чем кривые растяжения или сжатия могут составлять в нескольких смежных костях одну общую систему. Таким образом, структура и функция кости взаимно обусловливают друг друга; это взаимодей­ствие легко обнаруживается при изучении архитектуры губчатого вещества, каждая перекладина которого имеет свое специальное назначение. При изменении условий расположение перекладин меняется, все ненужное, излишнее уничтожается (рассасывается),развиваются системы новых пластинок, примером чему может служить изменение внутреннего строения костей при заживлении перелома.
При микроскопическом изучении строения костной ткани можно обнаружить, что компактное костное вещество состоит из тесно рас-положенных костных пластинок и пронизано многочисленными га-версовыми каналами, которые идут большей частью параллельно длинному разрезу кости, многократно между собой анастомозируясь. Различают пластинки трех родов:общие гаверсовы и промежуточные. Главная масса кости построена из гаверсовых пластинок, которые образуют концентрические наслоения вокруг каналов того же на­звания и в целом представляют собой ряд цилиндров разного диа­метра, вложенных друг в друга. Пространства между отдельными гаверсовыми системами выполнены вставочными или промежуточ­ными пластинками. Общие или главные пластинки составляют самые наружные и самые внутренние (ограничивающие костно­мозговой канал) слои кости.
В каждой пластинке пучки фибрилл идут преимущественно по одному определенному направлению, притом так, что в соседних пластинках эти направления пересекаются между собой.
Гаверсовы каналы содержат, кроме нежной соединительной ткани, кровеносные сосуды, питающие кость.
Отдельные перекладины губчатого вещества состоят из костных пластинок, не имеющих такого правильного расположения, как в плотном веществе; гаверсовы каналы там почти не встречаются.
Гистологическое строение костной ткани трубчатых костей перед­них и задних конечностей у лошади, как показали исследования проф. Н. Ф. Богдашева, находится в прямой зависимости от их физиологической функции. Характерным отличием для пястной кости лошади является сравнительно редкое расположение гавер­совых каналов с большими площадями, занятыми промежуточными пластинками.
В компактном же веществе плюсневой кости гаверсовы системы расположены гуще, но с меньшим количеством промежуточных пла­стинок. Установлена зависимость микроструктуры кости от тол­щины ее стенки; степень развития их находится в зависимости от неодинаковой функциональной нагрузки, падающей на разные участки поперечного сечения трубки. У жеребят до 2-3-месячного возраста гистоструктура костной ткани трубчатых костей иден­тична. Однако в старшем возрасте, по мере диференциации формы самих трубчатых костей, начинают появляться функциональные отличия в гистологическом строении трубчатых костей. Уже в 2- 3-летнем возрасте у лошадей, по данным проф. Н. Ф. Богдашева, «хорошо заметно, что волярный участок стенки всегда имеет значи­тельно гуще расположенные гаверсовы каналы по сравнению с дру­гими участками. В то же время толщина волярной стенки к этому возрасту становится значительно тоньше». На дорзальной стенке в этом возрасте отмечается ее утолщение и наиболее редкое расположение гаверсовых каналов; между ними хорошо выделяются поля , занятые промежуточными пластинками.

Химический состав костной ткани. Бесструктурное костное ве­щество в своей основе состоит из слизеподобного и белковоподобного органических веществ, находящихся в тесном соединении с мине­ральными веществами, главным образом с фосфорнокислыми солями. Волокнистая часть костной ткани состоит из клейдагощих коллаге-новых волокон. Известно, что коллагены являются главной состав­ной частью основного вещества рыхлой соединительной ткани, сухо­жилий, фасций, связок, оссеина костей и хрящей. Коллаген нерастворим ни в воде, ни в слабых кислотах и щелочах; при кипячении с водой он переходит в клей (глютин, желатина).
Коллагены по своему составу характеризуются повышенным содержанием азота (18%) и пониженным содержанием углерода (49%). Они содержат очень большое количество гликоколя, про­теина и оксипролина и совсем не содержат цистина, тирозина и триптофана, являясь, таким образом, неполноценным белком.

Волокнистое вещество вместе со слизеподобным и белковоподобным образует органическую основу костной ткани - оссеин (или костный хрящ). Соединение оссеина с неорганическим веществом (солями извести) создает необходимые физические свойства - упругость и прочность костной ткани. Химический анализ трубча­тых костей у лошадей, по данным проф. Н. Ф. Богдашева, содержит: воды - 9,18%, органических веществ-28,58%. золы - 62,24%, в том числе окиси кальция - 34,37%.

Нормальное количественное соотношение между оссеином и неорганическим веществом под влиянием различных физиологиче­ских и патологических причин может измениться. Как известно, в молодом возрасте кости бывают гораздо беднее минеральными со­лями и отличаются повышенной своей гибкостью и меньшей твер­достью по сравнению с костями взрослого животного. В старом возрасте, наоборот, уменьшается количество содержащегося в ко­стях оссеина, вследствие чего кости этих животных менее устой­чивы к механическому воздействию и больше подвержены перело­мам.

Физические свойства костной ткани. Соединение оссеина с неор­ганическим веществом создает необходимые физические свойства для костной ткани. Упругость костной ткани превосходит упругость дубового дерева. По своей прочности (крепости) костная ткань прочнее гранита и приближается к некоторым металлам - чугуну и железу.

Физиологические свойства костей находятся в некоторой зависимости от их удельного веса. По данным проф. Н. Ф. Богдашева, удельный вес компактного вещества воздушно-сухих костей пясти и плюсны лошади в среднем равен 1,985, причем им отмечено, что удельный вес пястных костей несколько больше удельного веса костей плюсны. Так, например, удельный вес пясти равен 1,995, а удельный вес костей плюсны у той же лошади - 1,976.

Механические свойства (крепость) трубчатых костей у живот­ных находятся в некоторой зависимости от содержания в них каль­ция. Наличие известковых солей в костной ткани увеличивает ее сопротивляемость более чем в 6 раз. По данным проф. Н. Ф. Богдашева, образцы из пястных костей лошадей от 4 до 16-летнего возраста разрушаются лишь при нагрузке от 1840 до 2805 кг/см2, кости жере­бят до 2-летнего возраста выдерживают груз всего лишь от 1300 до 1510 кг/aw2.

Сопоставляя различную механическую устойчивость при сжатии тех или иных участков из стенок трубчатых костей с их микрострук­турой, можно заключить, что самые устойчивые, разрушающиеся при наибольшей нагрузке участки кости - волярная стенка МС3, ко­торая имеет в строении наиболее густо расположенную сеть гаверсовых каналов. Дорзо-медиальные стенки пястных костей, имеющих более редкое расположение гаверсовых систем, с большими про­светами гаверсовых каналов и значительными полями проме­жуточных пластинок, отличаются меньшей сопротивляемостью сжатию.
Отсюда следует, что количество и качество гаверсовых систем и костных полостей на дорзо-медиальной и волярной стенках костей пясти, с одной стороны, и степень устойчивости соответствующих участков при разрушении их, с другой, представляют собой опре­деленную закономерность, которая, по всей вероятности, харак­терна для анатомо-гистологического строения костной ткани вообще.
Сопротивляемость трубчатых костей излому в дорзо-каудальном направлении значительно ниже сопротивляемости в медиально-латеральном направлении. Это положение согласуется с анатоми­ческой формой пястных костей, у которых поперечный диаметр трубок больше продольного диаметра их. Отсюда можно сделать вывод, что при жизни лошади допустима большая возможность перелома костей пясти в дорзо-волярном направлении, чем в латерально-медиальном, если в этих направлениях будет действовать одна и та же механическая сила.

Строение надкостницы и ее роль в физиологии и патологии костной ткани
Вся наружная поверхность кости, за исключением тех мест, где расположен суставной хрящ , и мест прикреплений сухожилий и связок, покрыта надкостницей. Она представляет собой довольно крепкую соединительнотканную пленку бледнорозового цвета, богатую нервами, кровеносными и лимфатическими сосудами. Над­костница плотно удерживается на поверхности кости, благодаря существованию особых прободающих тонких соединительноткан­ных пучков или так называемых шарпеевских волокон, которые, отделяясь от надкостницы, проникают в костную ткань и залегают в ней в особых канальцах.
198
Надкостница очень чувствительна ко всякого рода раздражите­лям, от нее зависит питание прилегающих слоев костной ткани и рост кости в толщину.
Микроскопически можно обнаружить, что надкостница состоит из трех слоев - наружного адвентициального слоя (tunica adven-titia), среднего фиброзно-эластического слоя (tunica fibroblastica) и внутреннего остеобластического слоя (tunica osteoblastica). На­ружный, или поверхностный, слой надкостницы построен из более грубых коллагеновых пучков. В нем заложено большое количество нервных волокон, кровеносных сосудов и лимфатических щелей, питающих костную ткань. Средний слой содержит много эластиче­ских волокон, но мало сосудов.
Внутренний, или глубокий (остеогенный), слой более нежен и беден сосудами. Он состоит из рыхлой соединительной ткани и кле­ток камбиального слоя. В этом остеобластическом слое находятся многочисленные камбиальные клеточные элементы, сохраняющие способность давать поколения образующих кость остеобластов. У молодых животных с растущей костью, так же как и во время эмбрионального развития, остеобласты и дающие им начало индиферентные скелетогенные клетки в этом слое особенно многочисленны и образуют на поверхности кости особую прослойку, называемую костным камбием или просто камбиальным слоем, которым над­костница и обеспечивает рост кости.

При росте кости остеобласты энергично размножаются, выра­батывают промежуточную субстанцию костной ткани и одна за другой превращаются в настоящие костные клетки вновь сформи­рованных костных пластов.

У старых животных остеобласты расположены в надкостнице уже не сплошным слоем, как у молодых индивидуумов, а отдель­ными участками. Отсюда у них темпы регенеративных процессов в костной ткани при переломах бывают относительно замедленными.
Таким образом, при повреждении костей их восстановление идет главным образом со стороны надкостницы, которая, будучи обильно снабженной кровеносными сосудами, доставляет приток крови в толщу костной ткани. Известно, что кость, оголенная от надкост­ницы на значительном участке, отмирает из-за отсутствия притока питательных веществ.

При механических, химических или биологических поврежде­ниях в надкостнице развивается патологический процесс, характе­ризующийся в зависимости от причины серозным, гнойным, фиброз­ным или оссифицирующим воспалением.
Костный мозг и его значение в физиологии"и патологии костной ткани
Костный мозг заполняет костномозговой канал и костномозговые полости губчатого вещества. Он представляет собой очень нежную красного цвета массу , богатую кровеносными сосудами, основу которой составляет ретикулярная ткань; в петлях последней помещаются зрелые элементы крови, молодые формы их и особые гигантские клетки.
Физиологическое значение красного мозга очень велико и разносторонне. Прежде всего он относится к числу кроветворных орга­нов, причем у молодых животных кроветворение происходит по всему костному мозгу, тогда как у взрослых и старых животных оно осуществляется только в известной части костного мозга. Остальная же часть замещается жировой тканью, имеющей желтовато-красноватую окраску и называющейся желтым костным мозгом. Кроме того, кровеносные сосуды мозга обильно питают внутренний слой кости. Красный мозг играет важную роль в развитии и росте костной ткани. Остеобласты принимают такое же участие, как и надкостница, в формировании новой костной ткани, а остеокласты рассасывают и уничтожают избыточную костную ткань. Благодаря этой диаметрально противоположной работе остеобластов и остеокластов кость имеет возможность до глубокой старости перестраи­вать свою архитектонику соответственно механическим условиям сжатия, растяжения или скручивания.

В старческом возрасте желтый мозг превращается в студенистый или желатинозный костный мозг. Он также появляется у истощен­ных животных в молодом возрасте при голодании, различных xpo-i(нических заболеваниях (кахексии). Атрофия красного мозга и преждевременное замещение его желтым в молодом возрасте имеют место при тяжелых расстройствах питания, инфекции и интоксика­ции, а также возможны при остеосклерозе и развившихся новообра­зованиях.
При травмах и переломах костей в костном мозгу наблюдаются кровоизлияния от мелких, тёмнокрасных точек и пятен до крово­излияний значительной величины с разрушением костномозговой ткани.

Воспаление костного мозга может наступить при многих инфек­ционных, токсических и травматических заболеваниях. Наиболее частая форма воспаления - это серозный остеомиэлит, характери­зующийся гиперемией и серозной отечностью мозга. При геморраги­ческом остеомиэлите заметны сильная гиперемия, геморрагические инфильтраты и выраженная отечность мозга. Гнойный остеомиэлит ха­рактеризуется развитием в костном мозгу мелких или более крупных абсцессов или более разлитой, гнойной инфильтрации костного мозга.

Продуктивное воспаление костного мозга наблюдается при хро­ническом фиброзном остеомиэлите, сопровождающемся, как из­вестно, разращением ретикуло-эндотелиальной ткани с последую­щим фиброзным уплотнением костного мозга.

Кровоснабжение костей конечностей лошади
Громадное значение васкуляризации в физиологии и патологии костной ткани у животных неоспоримо. Отрадно отметить, что прио­ритет в изучении этого важного для ветеринарии вопроса принадлежит советским авторам. Рентгенографическим методом исследования установлено, что общим для всех костей, независимо от их формы и типа, является наличие периостальных и интраоссальных сосудов, причем периостальиые сосуды питают главным образом костную ткань , а интраоссальные - костный мозг. Обе сосудистые системы костей соединяются громадным количеством анастомозов через многочисленные каналы компактного и губчатого веществ. Сосуды надкостницы и костного мозга анастомозируются через перфорирующие каналы Фолькмана.

Неподатливость стенок каналов Фолькмана ограничивает диа­метр лежащих в них сосудов, что может служить при некоторых заболеваниях причиной тромбообразования. Кроме того, через сосуды этих каналов распространяется воспалительный процесс с периоста на костный мозг и обратно.

Периостальная сосудистая сеть, благодаря множеству анасто­мозов, имеет мелкопетлистое строение, иногда в виде очень краси­вого кружевного узора. Сети этих сосудов своими ветвями соединяются с крупными магистралями кости и с сосудами подкожной клетчатки.

Интраоссальные сосуды костей конечности подразделяются на три основных типа. Первый тип сосудов свой питающих эпифизы и метафизы, колеблется, особенно за счет добавочных ветвей, тогда как диафиз всегда имеет один доственен всем коротким костям, которые имеют несколько питающих сосудов, входящих в.кость через все прикрепляющие поверхности, свободные от сочленений. Второй тип - сосуды, располагающиеся в длинных трубчатых костях, в которых четко выступают три сосу­дистые области: сосуды эпифизов, метафизов и диафиза. Число довольно крупный сосуд, проникающий в кость. К третьему типу сосудов относится своеобразное построение артериальной системы копытной кости.

Лимфообращение в костной ткани
Анатомия лимфатической системы костей и, в частности, анато­мия отводящих лимфатических сосудов надкостницы костей и их компактного и губчатого костного вещества, а также костного мозга, как справедливо на это указывает проф. Д. А. Жданов, «принадлежит к наиболее трудным разделам учения о глубокой лимфатической системе». Литературные данные об анатомии лим­фатической системы костей у животных, к сожалению, очень незна­чительны и притом противоречивы; они основаны по преимуществу на отдельных, далеко не полных и не всегда безупречных опытах. Между тем актуальность изучения этой проблемы неоспорима. Иногда вопросы этиологии и патогенеза в патологии и терапии кост-J ной ткани, нам кажется, могли бы найти свое объяснение в раз­решении этой проблемы.

Наблюдениями некоторых авторов установлено, что костные полости своими отростками (канальцами), проникающими сквозь костные пластинки, соединяются с периваскулярными лимфатиче­скими пространствами гаверсовых каналов, которые в свою очередь переходят в периостальные лимфатические сети.

Баум (1912) инъицировал контрастную жидкость уколом в толщу | кости отводящих лимфатических сосудов костей крупных до­машних животных и установил две группы отводящих лимфа­тических сосудов костей: 1) входящие в места с кровеносными сосудами из питательных отверстий, преимущественно трубчатых костей, и 2) происходящие из субпериостальной лимфатической сети.

Г. М. Иосифов (1927) уколом в надкостницу большеберцовой кости инъицировал массу Герота в отводящие лимфатические со­суды, идущие к глубокому коллатеральному лимфатическому стволу, сопровождающему малоберцовую артерию. Через укол в надкост­ницу наружной лодыжки он инъицировал указанную массу в лим­фатические сосуды, впадающие в поверхностные лимфатические коллекторы конечности.

[В. П. Гуков (1937) инъицировал суспензии туши в костный мозг бедра живой собаке и констатиров"ал распространение этой туши по гаверсовым каналам , а также поглощение ее костными клетками и их отростками, заполняющими костные канальцы.
|Д. А. Жданов (1940) инъицировал контрастную жидкость в над­костничные лимфатические сосуды большеберцовой кости и наблю­дал, что начальная надкостничная лимфатическая сеть открывается с большим трудом только у краев инъекционного пятна. Яснее на­полняются сосуды в верхних слоях надкостницы на медиальной и латеральной поверхностях кости. По его данным, лимфатические сосуды идут в трех направлениях: одни у переднего гребня и ме­диального края кости переходят, прободая фасцию, в медиальную группу подкожных коллекторов голени; другие направляются, пере­секая латеральную поверхность кости, к передней большеберцовой артерии и вступают в сопровождающий ее путь глубоких лимфати­ческих коллекторов; третьи у медиального края кости уходят под фасцию и идут к задней большеберцовой артерии и с нею в напра­влении к подколенной ямке.
Из приведенного литературного обзора видно, что в вопросе периваскуляризации лимфатических пространств компактной кости.

Нет противоречивых мнений. Однако остались невыясненными взаи­моотношения периваскулярных пространств с настоящими оформ­ленными лимфатическими сосудами. Некоторые авторы отрицают существование в костных полостях щелевидных пространств вокруг остеоцитов, а также сомнительно и наличие соковых щелей вокруг островков костных клеток в канальцах, пронизывающих костные пластинки. Нет ясности в анатомии отводящих лимфатических со­судов костей у животных вообще и у лошади в частности. Не решен вопрос о наличии или отсутствии лимфатических сосудов в костному мозгу.
Совершенно не выяснена роль и значение костной лимфати­ческой системы при патологии и терапии костной ткани. Все эти вопросы требуют своего ближайшего разрешения путем проведения экспериментальных и клинических исследований.

То есть в ней так же, как и в других видах соединительной ткани, имеются клетки и межклеточное вещество. Именно межклеточное вещество придает кости такую прочность. Например, большеберцовая кость способна выдержать около 3 000 кг статической нагрузки. Но кость от камня отличается тем, что кость является организованной структурой. Организуют (создают) кость клетки, которые называются остеобласты. Другие клетки, остеокласты, наоборот разрушают её в силу тех или иных причин. Таким образом, благодаря этим двум видам клеток происходит непрерывная регенерация костной ткани. Скелет взрослого человека обновляется полностью в течение 7 лет.


Состав костной ткани

В состав костной ткани входят клетки (остеобласты и остеокласты), соединительнотканные волокна (каллоген и оссеин) и аморфное вещество (70 %). Таким образом, химический состав кости составляют органические и неорганические соединения.

Химический состав костей

Кость на 30% состоит из органических соединений, к которым относятся костные клетки (остеобласты, остекласты и другие) и соединительнотканные волокна (каллоген, оссеин и другие).

Помимо этого, к органическим образованиям кости можно отнести:

  • красный (орган кроветворения) и жёлтый костный мозг;
  • кровеносные и лимфатические сосуды, входящие и выходящие из кости;
  • надкостницу, которая покрывает кость и обуславливает рост кости и её регенерацию при переломах.

Основной компонент аморфного вещества – это соли кальция и фосфорной кислоты. Помимо этого, в химическом составе костной ткани присутсвтуют более 30 химических элементов. Такое обилие твёрдых минералов обуславливает прочность кости, наличие же каллогеновых волокон придают кости упругость, гибкость. При повышении или понижении минерализации кости её хрупкость и ломкость увеличиваются.

Минеральная основа кости (а соли – это ничто иное как заряженные частицы) способна создавать разность потенциалов между отдельными её полюсами, благодаря чему в костях возможно явление слабого электрического поля, которое возникает при движении и, по некоторым данным, благотворно влияет на работу нервной системы.

Кости также можно рассматривать как депо кальция. Когда кальция в организме много, он запасается костной тканью вплоть до избыточной минерализации костной ткани. Когда кальций крови снижается, то он выходит из кости, благодаря активации остеокластов. В костях же в таком случае может развиться остеопороз.

Помимо солей кальция и фосфатов в аморфном веществе содержатся и органические соединения, такие как хондроитинсульфат и гиалуроновая кислота.

Видео: Скелет. Строение и состав костей