На свободную тему

Выражение эмпирической функции распределения. Вариационный ряд. Полигон и гистограмма. Эмпирическая функция распределения, свойства

Лекция 13. Понятие о статистических оценках случайных величин

Пусть известно статистическое распределение частот количественного признака X. Обозначим через число наблюдений, при которых наблюдалось значение признака, меньшее x и через n – общее число наблюдений. Очевидно, относительная частота события X < x равна и является функцией x. Так как эта функция находится эмпирическим (опытным) путем, то ее называют эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого значения x относительную частоту события X < x. Таким образом, по определению ,где - число вариант, меньших x, n – объем выборки.

В отличие от эмпирической функции распределения выборки, функцию распределения генеральной совокупности называют теоретической функцией распределения. Различие между этими функциями состоит в том, что теоретическая функцияопределяет вероятность события X < x, тогда как эмпирическая – относительную частоту этого же события.

При росте n относительная частота события X < x, т.е. стремится по вероятности к вероятности этого события. Иными словами

Свойства эмпирической функции распределения :

1) Значения эмпирической функции принадлежат отрезку

2) - неубывающая функция

3) Если - наименьшая варианта, то = 0 при , если - наибольшая варианта, то =1 при .

Эмпирическая функция распределения выборки служит для оценки теоретической функции распределения генеральной совокупности.

Пример . Построим эмпирическую функцию по распределению выборки:

Варианты
Частоты

Найдем объем выборки: 12+18+30=60. Наименьшая варианта равна 2, поэтому =0 при x £ 2. Значение x<6, т.е. , наблюдалось 12 раз, следовательно, =12/60=0,2 при 2< x £6. Аналогично, значения X < 10, т.е. и наблюдались 12+18=30 раз, поэтому =30/60 =0,5 при 6< x £10. Так как x=10 – наибольшая варианта, то =1 при x> 10. таким образом, искомая эмпирическая функция имеет вид:

Важнейшие свойства статистических оценок

Пусть требуется изучить некоторый количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак и необходимо оценить параметры, которыми оно определяется. Например, если изучаемый признак распределен в генеральной совокупности нормально, то нужно оценить математическое ожидание и среднее квадратическое отклонение; если признак имеет распределение Пуассона – то необходимо оценить параметр l.

Обычно имеются лишь данные выборки, например значения количественного признака , полученные в результате n независимых наблюдений. Рассматривая как независимые случайные величины можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения – значит найти функцию от наблюдаемых случайных величин, которая дает приближенное значение оцениваемого параметра. Например, для оценки математического ожидания нормального распределения роль функции выполняет среднее арифметическое



Для того чтобы статистические оценки давали корректные приближения оцениваемых параметров, они должны удовлетворять некоторым требованиям, среди которых важнейшими являются требования несмещенности и состоятельности оценки.

Пусть - статистическая оценка неизвестного параметра теоретического распределения. Пусть по выборке объема n найдена оценка . Повторим опыт, т.е. извлечем из генеральной совокупности другую выборку того же объема и по ее данным получим другую оценку . Повторяя опыт многократно, получим различные числа . Оценку можно рассматривать как случайную величину, а числа - как ее возможные значения.

Если оценка дает приближенное значение с избытком , т.е. каждое число больше истинного значения то, как следствие, математическое ожидание (среднее значение) случайной величины больше, чем :. Аналогично, если дает оценку с недостатком , то .

Таким образом, использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, привело бы к систематическим (одного знака) ошибкам. Если, напротив, , то это гарантирует от систематических ошибок.

Несмещенной называют статистическую оценку , математическое ожидание которой равно оцениваемому параметру при любом объеме выборки .

Смещенной называют оценку, не удовлетворяющую этому условию.

Несмещенность оценки еще не гарантирует получения хорошего приближения для оцениваемого параметра, так как возможные значения могут быть сильно рассеяны вокруг своего среднего значения, т.е. дисперсия может быть значительной. В этом случае найденная по данным одной выборки оценка, например , может оказаться значительно удаленной от среднего значения ,а значит, и от самого оцениваемого параметра.

Эффективной называют статистическую оценку, которая, при заданном объеме выборки n, имеет наименьшую возможную дисперсию .

При рассмотрении выборок большого объема к статистическим оценкам предъявляется требование состоятельности .

Состоятельной называется статистическая оценка, которая при n®¥ стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при n®¥ стремится к нулю, то такая оценка оказывается и состоятельной.

Теоретической базой для математической статистики служит теория вероятностей, которая изучает закономерности случайных явлений в абстрактном виде. На основе этих закономерностей разрабатываются модели или законы распределения случайных величии.

Закон распределения дискретной величины - это задание вероятностей ее возможных значений X = х i . Закон распределения непрерывной случайной величины представляют в виде функции распределения значений X < x i , т. е. в интегральной форме и в виде плотности распределения. Вероятность отдельного значения непрерывной случайной величины равна 0, а вероятность значений, входящих в заданную градацию, равна приращению функции распределения на участке, занимаемом данной градацией Δх.

Каждое теоретическое распределение имеет характеристики, аналогичные характеристикам статистических распределений (математическое ожидание М, дисперсию D, коэффициенты вариации, асимметрии и эксцесса). Эти или другие константы, связанные с ними, носят название параметров распределения.

Подыскание теоретического распределения, соответствующего эмпирическому, или «выравнивание» его является одной из важных задач климатологической обработки. Если найдено и найдено удачно теоретическое распределение, то климатолог получает не только удобную форму представления изучаемой величины, которую можно закладывать в машинные расчеты, но и возможность расчета характеристик, непосредственно не содержащихся в исходном ряду, а также выявления определенных закономерностей. Так, наблюдавшиеся в пункте экстремумы, безусловно, представляют интерес. Однако их появление в имеющейся выборке в значительной степени случайно, поэтому они плохо картируются и иногда существенно различаются на соседних станциях. Если же с помощью найденных распределений определять экстремальные характеристики определенной обеспеченности, то они в значительной мере свободны от указанных недостатков и поэтому являются более представительными. Именно на расчетных экстремумах основаны различные нормативные требования. Поэтому подысканию теоретического распределения и проверке его правильности должно быть уделено особое внимание.

Параметры распределения можно определить разными способами, наиболее точным, но и одновременно сложным является метод максимума правдоподобия. В климатологической практике используется метод моментов.

Статистические характеристики рассматриваются как оценки параметров распределений, характеризующих генеральную совокупность значений данной случайной величины.

Метод моментов определения оценок параметров состоит в следующем. Математическое ожидание, теоретические коэффициенты асимметрии и эксцесса просто заменяются эмпирическим средним и эмпирическими коэффициентами; теоретическая дисперсия равна эмпирической, умноженной на . Если параметрами служат функции моментов, то они вычисляются по эмпирическим моментам.


Рассмотрим некоторые вероятностные модели, часто используемые в климатологии.

Для дискретных случайных величин используются биномиальные распределения и распределения Пуассона (простое и сложное).

Биномиальное распределение (Бернулли) возникает в результате повторения при постоянных условиях одного и того же испытания, имеющего два исхода: появления или непоявления события (в климатологии, например, отсутствие или наличие явления в каждый день года или месяца).

Случайная дискретная величина понимается при этом как число случаев осуществления некоторого случайного события (явления) из n возможных случаев и может принимать значения 0, 1, 2, ..., n.

Аналитическое выражение биномиального закона распределения имеет вид (5.1)

Закон определяет вероятность того, что событие, вероятность которого р, будет наблюдаться х раз при n испытаниях. Например, в климатологии день может быть либо с явлением, либо без явления (с туманом, с определенным количеством осадков, температурой воздуха определенных градаций и т. д.). Во всех этих случаях возможны два исхода, и на вопрос, сколько раз будет наблюдаться событие (например, день с туманом), ответ можно получить с помощью биномиального закона (5.1). При этом р принимается равным р*, т. е. относительной частоте - отношению числа случаев с явлением к общему числу случаев (формула (2.3)).

Например, если рассматривается число дней с туманом в августе и по многолетнему ряду установлено, что в среднем в августе бывает 5 дней с туманом, то относительная частота (вероятность) дня с туманом в августе {31 день) равна

Параметрами биномиального распределения являются n и р, которые связаны с математическим ожиданием (средним значением), средним квадратическим отклонением, коэффициентами асимметрии и эксцесса этого распределения следующими выражениями:

На рис. 5.1 приведены графики биномиального распределения при разных параметрах n и р.

Рассчитаем, например, пользуясь биномиальным законом, вероятность того, что в августе на станции будет наблюдаться три дня с туманом, если вероятность образования тумана в любой день августа (т. е. отношение среднего числа дней с туманом в августе к общему числу дней за месяц) составляет 0,16.

Так как n= 31, а 1 - р = 0,84, по формуле (5.1) получим

p(3)=0.1334≈0.13

Пределом биномиального распределения при условии, что рассматриваются маловероятные события в длинной серии независимых испытаний (наблюдений), является распределение Пуассона.

Случайная величина, распределенная по закону Пуассона, может принимать ряд значений, образующих бесконечную последовательность целых чисел 0, 1, 2, ∞ с вероятностью

где λ. -параметр, являющийся математическим ожиданием распределения.

Закон определяет вероятность того, что случайная величина будет наблюдаться х раз, если среднее ее значение (математическое ожидание) равно λ.

Обратим внимание на то, что параметром биномиального закона служит вероятность события р, и поэтому надо указать, из какого общего количества случаев n определяется вероятность р(х). В законе Пуассона параметром является среднее число случаев λ за рассматриваемый период, поэтому продолжительность периода непосредственно не входит в формулу.

Дисперсия распределения Пуассона и третий центральный момент равны математическому ожиданию, т. е. тоже равны λ.

При больших различиях между средним и дисперсией законом Пуассона пользоваться нельзя. Распределение Пуассона затабулировано и приводится во всех сборниках статистических таблиц, справочниках и учебниках по статистике. На рис. 5.2 приведено распределение числа дней с грозой (редкое событие) по закону Пуассона. Для Архангельска за год λ,= 11 дней и за июль λ = 4 дня. Как видно из рис. 5.2, в Архангельске вероятность восьми дней с грозой в июле составляет примерно 0,03, а вероятность восьми дней в году -около 0,10. Обратим внимание на одно обстоятельство. Часто среднее число дней с явлением в году λ при λ≤1 трактуют как величину, обратную периоду повторения T (например, λ= 0,3 - один день в три года, λ = 1-практически ежегодно).

Такой «осредненный» подход чреват ошибками, тем большим, чем больше λ. Даже если дни с явлением не связаны между собой, вероятны годы не с одним, а с несколькими днями. В результат соотношение Т = 1/λ оказывается неправильным. Так, при λ= 1 явление, как легко убедиться из формулы закона Пуассона, наблюдается не ежегодно, а только в 6-7 годах из 10. Вероятность того, что в году явление наблюдаться не будет, равна вероятности, что будет один день с явлением (0,37) и почти такая же, как вероятность, что будет два и более дней. Только при λ≤ 0,2 указанным соотношением можно пользоваться с достаточным основанием; потому что вероятность двух и более дней в году в этом случае менее 0,02 (реже, чем один раз в 50 лет).

Применение закона Пуассона к редким метеорологическим явлениям не всегда оказывается полезным. Например, иногда редкие явления могут следовать одно за другим вследствие того, что условия, их вызывающие, сохраняются длительное время, и условия закона Пуассона не выполняются.

Больше соответствует природе редких метеорологических явлений сложное распределение Пуассона (отрицательное биномиальное распределение). Оно возникает, когда ряд явлений можно рассматривать как значения разных случайных величин (выборки из разных генеральных совокупностей). Все эти величины имеют распределение Пуассона, но с разными параметрами λ 1 , λ 2 ..., λ k .

Сложное распределение Пуассона зависит с одной стороны от распределения совокупности параметров, а с другой - от распределения каждой из величин. Выражение для вероятности в случае данного распределения имеет вид

(5.2)

или в более удобной для расчетов форме

Математическое ожидание М и дисперсия D этого распределения связаны с его параметрами γ и λ формулами

(5.3)

Заменяя величины М и D их оценками и , получим

(5.4)

Расчеты p(x) можно упростить, пользуясь тем, что существует равенство

, (5.5)

. (5.6)

Следовательно,

Пример расчета . Рассчитаем распределение числа дней с сильным ветром на ст. Чулым для июля, если =1 день, σ=1,7 дня. Определим α и γ:

α≈

γ≈

Вероятность того, что не будет ни одного дня с сильным ветром, составит

p(0)=

Вероятность того, что будет один день с сильным ветром, равна p(1)= . График сложного распределения Пуассона представлен на рис. 5.3.

Для непрерывных случайных величин в климатологии чаще всего используются нормальное, логнормальное распределения, распределение Шарлье, гамма-распределение, распределения Вейбулла и Гумбеля, а также композиционный закон нормальной и равномерной плотности.

Наибольшее теоретическое и практическое значение имеет нормальный, или гауссовский, закон распределения. Этот закон является предельным для многих других теоретических распределений и образуется тогда, когда каждое значение случайной величины можно рассматривать как сумму достаточно большого числа независимых случайных величин.

Нормальный закон задается выражениями для плотности и функции распределения вида

Эмпирическое распределение отличается от теоретического тем, что на значения признака в нем влияют случайные факторы. С увеличением объема статистической совокупности влияние случайных факторов ослабевает, и эмпирическое распределение все менее отличается от теоретического.

Для оценки близости распределений используются особые показатели - критерии согласия.

Они основаны на использовании различных мер расстояний между эмпирическим и теоретическим распределением.

Наиболее часто на практике используются следующие критерия согласия:

_ «хи-квадрат»- критерий (критерий Пирсона); формат:

_ «лямбда»- критерий» (критерий Колмогорова).

5.9.1. «Хи-квадрат» - критерий является случайной величиной, имеющей распределение, близкое к распределению «хи-квадрат». Его величина определяется по формуле:

2 = у (ni - nT)2

Чем меньше эмпирические и теоретические частоты в отдельных группах отличаются друг от друга, тем меньше эмпирическое распределение отличается от теоретического, то есть тем в большей степени эмпирическое и теоретическое распределения согласуются между собой.

Для оценки существенности расчетной величины «хи- квадрат.» - критерия оно сравнивается с табличным (критическим) значением х2, определяемым по статистическим таблицам значений х2-

критерия. х2 определяют в зависимости от уровня значимости а и параметра k=m- т1 -1, где а - вероятность ошибки, ml - число оцененных параметров теоретического распределения по наблюдаемым значениям признака.

Уровень значимости т выбирается таким образом, что Р(хР > х2)=а.

Обычно а принимается равным 0,05 или 0,01, что соответствует вероятности 95% или 99%.

Если хр ^ Xt , то считают, что распределения близки друг другу,

различия между ними несущественны.

Критерий Пирсона можно использовать можно при соблюдении ф°рмат: спис°к следующих условий:

в совокупности не менее 50 единиц наблюдения (N > 50),

теоретические частоты п, >5,- если это условие не соблюдается, то следует объединить интервалы.

Рассчитаем в таблице 4.6.

Значения отклонений (nt -nh) и фактическое значение х2- критерия. По расчету хр = 1,66. Это значение

сравнивается с табличным, определенном при числе степеней свободы k=4 и уровне значимости = 0,05. Оно равно хр =9,49.

Таким образом хрраспределения признаются близкими друг другу с вероятностью 95%, расхождения между ними - несущественными, вызываемыми случайной вариацией признака в совокупности.

На основе? - критерия может быть рассчитан ещё один критерий согласия - критерий Романовского:

л/2 (т - 3) "

Эмпирическое и теоретическое распределения признаются близкими друг другу, если С 5.9.2. Критерий согласия Колмогорова основан на другой мере близости распределений. Для оценки близости эмпирического распределения к нормальному используется максимальная разница между накопленными эмпирическими и накопленными теоретическими частотами. Расчетное значение «лямбда»- критерия» определяется по формуле:

где Д = max{N - N }

Nt - накопленная эмпирическая частота, N,. - накопленная теоретическая частота.

По рассчитанному значению Хр по специальной таблице вероятностей «лямбда»- критерия» определяется вероятность того, что рассматриваемое эмпирическое распределение подчиняется закону нормального распределения. Для рассматриваемого примера Д=2 - в соответствии с расчетом, приведенным в таблице 4.6.

Тогда Яр = -= = = 0,283.

По таблице вероятностей Р(Я) определяем, что Я =0,283 соответствует вероятность Р(Я), близкая к 1.

Полученное значение вероятности свидетельствует о том, что расхождение между эмпирическим и теоретическим распределениями несущественны, вызваны случайной вариацией признака в статистической совокупности. В основе эмпирического распределения рабочих по стажу лежит закон нормального распределения.

Еще по теме 5.9. Оценка близости эмпирического и теоретического распределений:

  1. Эмпирический и теоретический уровни политического знания
  2. Раздел II УПРАВЛЕНИЕ ПРОДАЖАМИ В КАНАЛАХ РАСПРЕДЕЛЕНИЯ: ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ГЛАВА 8 Каналы распределения: сущность, функции, виды участников

Вариационный ряд. Полигон и гистограмма.

Ряд распределения - представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

§ Ряды распределения, построенные в порядке возрастания или убывания значений количественного признака называются вариационными .

Вариационный ряд распределения состоит из двух столбцов:

В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются . Дискретная варианта - выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд.
Во втором столбце содержится количество конкретных вариант , выраженное через частоты или частости:

Частоты - это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака, которые обозначают . Сумма всех частот равна должна быть равна численности единиц всей совокупности.

Частости () - это частоты выраженные в процентах к итогу. Сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:

§ Полигона

§ Гистограммы

§ Кумуляты

Полигон

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) - частоты или частости.

1. Полигон на рис. 6.1 построен по данным микропереписи населения России в 1994 г.


Гистограмма



Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

На рис. 6.2. изображена гистограмма распределения населения России в 1997 г. по возрастным группам.

Рис.1. Распределение населения России по возрастным группам

Эмпирическая функция распределения, свойства.

Пусть известно статистическое распределение частот количественного признака X. Обозначим через число наблюдений, при которых наблюдалось значение признака, меньшее x и через n – общее число наблюдений. Очевидно, относительная частота события X

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого значения x относительную частоту события X

В отличие от эмпирической функции распределения выборки, функцию распределения генеральной совокупности называют теоретической функцией распределения. Различие между этими функциями состоит в том, что теоретическая функция определяет вероятность события X

При росте n относительная частота события X

Основные свойства

Пусть зафиксирован элементарный исход . Тогда является функцией распределения дискретного распределения, задаваемого следующейфункцией вероятности:

где , а - количество элементов выборки, равных . В частности, если все элементы выборки различны, то .

Математическое ожидание этого распределения имеет вид:

.

Таким образом выборочное среднее - это теоретическое среднее выборочного распределения.

Аналогично, выборочная дисперсия - это теоретическая дисперсия выборочного распределения.

Случайная величина имеет биномиальное распределение:

Выборочная функция распределения является несмещённой оценкой функции распределения :

.

Дисперсия выборочной функции распределения имеет вид:

.

Согласно усиленному закону больших чисел, выборочная функция распределения сходится почти наверное к теоретической функции распределения:

почти наверное при .

Выборочная функция распределения является асимптотически нормальной оценкой теоретической функции распределения. Если , то

По распределению при .

При рассмотрении основных положений теории вероятностей и математической статистики, определении параметров распределения мы исходили из предположения, что осуществляется достаточно большое, в пределе бесконечное число испытаний n®N (N®¥), что практически осуществить невозможно.

Однако имеются методы, которые позволяют оценить эти параметры по выборке (части) случайных событий.

Генеральной называется совокупность всех мыслимых значений наблюдений, которые мы могли бы сделать при данном комплексе условий. Другими словами все возможные реализации случайной величины, теоретически в пределе их может быть бесконечное число (N®¥). Часть этой совокупности nÎN, т.е. результаты ограниченного ряда наблюдений x 1 ,x 2 ,...,x n случайной величины, можно рассматривать как выборочное значение случайной величины (например, при определении химического состава сплавов, их механической прочности и т.п.). Если все слитки данной марки стали, чугуна, сплава разделать на образцы и исследовать их химический состав, механическую прочность и другие физические характеристики, то имели бы генеральную совокупность наблюдений. Фактически доступно, возможно (целесообразно), исследовать свойства весьма ограниченного числа образцов – это и есть выборка их генеральной совокупности.

По результатам такого ограниченного числа наблюдений можно определить точечные оценки законов распределения и их параметров. Оценкой (или выборочной статистикой) Q* какого-либо параметра Q называется произвольная функция Q*=Q*(x 1 , x 2 ,..., x n) наблюдаемых значений x 1 , x 2 ,..., x n , в той или иной степени отражающая действительное значение параметра Q.

Если говорить о характеристиках распределений вероятностей, то характеристики теоретических распределений (M x , s x 2 , M o , M e) можно рассматривать как характеристики, существующие в генеральной совокупности, а характеризующие эмпирическое распределение – как выборочные их характеристики (оценки). Числовые параметры для оценки M x , s x 2 и др. – называются иногда статистиками.

Для оценки математического ожидания используется среднеарифметическое (среднее значение) ряда измерений по выборке:

где х i – реализация либо дискретной, либо отдельная точка для непрерывной случайной величины; n – объем выборки.

Для характеристики разброса случайной величины используется оценка теоретической дисперсии – выборочные дисперсии (см.рис.2.4):

(3.2а)

(3.2б)

Неотрицательное значение квадратного корня из выборочной дисперсии – это выборочное стандартное отклонение (выборочное среднеквадратичное) отклонение

Следует отметить, что в любой задаче, связанной с выполнением измерений, возможны два способа получения оценки значения s x 2 .

При использовании первого способа снимается последовательность показаний прибора и путем сравнения полученных результатов с известным или калиброванным значением измеряемой величины находится последовательность отклонений. Затем полученная последовательность отклонений используется для вычисления среднего квадратичного отклонения по формуле (3.3а).

Второй способ получения оценки значения s x 2 состоит в определении среднего арифметического , т.к. в этом случае действительное (точное) значение измеряемой величины неизвестно. В этом случае целесообразно использовать другую, формулу для нахождения среднеквадратичного отклонения (3.2б, 3.3б). Деление на (n-1) производится по той причине, что наилучшая оценка, получаемая путем усреднения массива Х, будет отличаться от точного значения на некоторую величину, если рассматривается выборка, а не вся генеральная совокупность.

В этом случае сумма квадратов отклонений будет несколько меньше, чем при использовании истинного среднего . При делении на (n-1) вместо n эта погрешность будет частично скорректирована. В некоторых руководствах по математической статистике рекомендуется при вычислении выборочного среднеквадратичного отклонения всегда делить на , хотя иногда этого делать не следует. Нужно делить на лишь в тех случаях, когда истинное значение не было получено независимым способом.

Выборочное значение коэффициента вариации n, являющееся мерой относительной изменчивости случайной величины, вычисляют по формуле

или в процентах

(3.4б)

Та из выборок имеет большее рассеяние, у которой вариация больше.

К оценкам , S x 2 предъявляются требования состоятельности, несмещенности и эффективности.

Оценка параметра Q* называется состоятельной, если по мере роста числа наблюдений n (т.е. n®N в случае конечной генеральной совокупности объема N и при n®¥ в случае бесконечной генеральной совокупности) она стремится к оцениваемому теоретическому значению параметра

Например, для дисперсии

(3.5)

Оценка параметра Q* называется несмещенной, если ее математическое ожидание M(Q*) при любом n асимптотически стремится к истинному значению M(Q*)=Q. Удовлетворение требованию несмещенности устраняет систематическую погрешность оценки параметра, которая зависит от объема выборки n и в случае состоятельности стремится к нулю при n®¥. Выше было определены две оценки для дисперсии и . В случае неизвестного значения математического ожидания (истинного значения измеряемой величины) обе оценки состоятельны, но только вторая (3.2б), (3.3б), как было показано ранее, является несмещенной. Требование несмещенности особенно важно при малом числе наблюдений, так как при n®¥ ® .

Оценка параметра Q 1 * называется эффективной, если среди прочих оценок того же параметра Q 2 *, Q 3 * она обладает наименьшей дисперсией.

(3.6)

где Q i * – любая другая оценка.

Так, если имеется выборка х 1 , х 2 ,..., х n из генеральной совокупности, то среднее математическое ожидание можно оценить двумя способами:

(3.7)

где x max (n), x min (n) – соответственно максимальное и минимальное значения случайной величины из выборки n.

Обе оценки обладают свойствами состоятельности и несмещенности, однако можно показать, что дисперсия при первом способе оценки равна S x 2 /n, а во втором p 2 S x 2 /, т.е. существенно больше. Таким образом, первый способ оценки математического ожидания является состоятельным, несмещенным и эффективным, а второй – только состоятельным и несмещенным. Заметим, что из всех несмещенных и состоятельных оценок следует предпочесть такую, которая оказывается наиболее близкой к оцениваемому параметру.

Заметим, что все сказанное относится к равноточным измерениям, т.е. к измерениям, которые содержат только случайную погрешность, подчиняющуюся нормальному закону распределения.