Сочинения

Источник звука звуковые колебания конспект. Источники звука и звуковые колебания. Объяснение нового материала

Данный урок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.

Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком (рис. 1).

Рис. 1. Звуковая волна

Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние (рис. 2).

Рис. 2. Распространение звуковой волны

К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна .

Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц (рис. 3).

Рис. 3. Диапазоны звуковых волн

Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.

Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.

Волны, имеющие частоту более миллиарда герц, называют гиперзвуком .

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.

Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией .

Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.

Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.

Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.

Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления (рис. 4).

Рис. 4. Применение инфразвука

Скорость звука зависит от условий среды и температуры (рис. 5).

Рис. 5. Скорость распространения звуковой волны в различных средах

Обратите внимание: в воздухе скорость звука при равна , при скорость увеличивается на . Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука . Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: (рис. 6).

Рис. 6. Скорость распространения звуковой волны

Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.

Самые интересные звуковые волны – музыкальные звуки и шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться музыкальным звуком. Этими источниками звуковых волн могут быть, например, струны гитары или рояля. Это может быть звуковая волна, которая создана в зазоре воздушном трубы (органа или трубы). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. В акустике они называются тонами (рис. 7).

Рис. 7. Музыкальные тоны

У всех предметов, которые могут издавать тоны, будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом.

Шум – беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Понятие шума есть бытовое и есть физическое, они очень схожи, и поэтому мы его вводим как отдельный важный объект рассмотрения.

Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические звуковые колебания. Итак, громкость звука . Чем определяется громкость звука? Рассмотрим распространение звуковой волны во времени или колебания источника звуковой волны (рис. 8).

Рис. 8. Громкость звука

При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по клавише фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукнув по клавише, получим громкий звук. От чего это зависит? У тихого звука амплитуда колебаний меньше, чем у громкого звука .

Следующая важная характеристика музыкального звука и любого другого - высота . От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить его колебаться не очень быстро (то есть совершать за единицу времени меньшее количество колебаний). Рассмотрим развертку по времени высокого и низкого звука одной амплитуды (рис. 9).

Рис. 9. Высота звука

Можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который поет сопрано. Во втором случае голосовые связки колеблются чаще, поэтому чаще вызывают очаги сжатия и разряжения в распространении волны.

Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр . Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды, чтобы была одинакова громкость звука. Это как в случае оркестра: если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается. Если бы мы нарисовали звук, который извлекают из одного инструмента, из другого, с помощью диаграмм, то они были бы одинаковыми. Но вы легко отличаете эти инструменты по звуку.

Еще один пример важности тембра. Представьте себе двух певцов, которые заканчивают один и тот же музыкальный вуз у одинаковых педагогов. Они учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т. е. у них отличаются голоса по тембру.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «msk.edu.ua» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Как распространяется звук? Что может служить источником звука?
  2. Может ли звук распространяться в космосе?
  3. Всякая ли волна, достигшая органа слуха человека, воспринимается им?

Цель урока: Сформировать представление о звуке.

Задачи урока:

Образовательные:

  • создать условия для активизации знаний учащихся о звуке, полученные при изучении естествознания,
  • способствовать расширению и систематизации знаний учащихся о звуке.

Развивающие:

  • продолжить развивать умение применять знания и собственный опыт в различных ситуациях,
  • способствовать развитию мышления, анализу полученных знаний, выделения главного, обобщения и систематизации.

Воспитательные:

  • способствовать формированию бережного отношения к себе и окружающим,
  • содействовать формированию гуманности, доброты, ответственности.

Тип урока: раскрывающий содержание.

Оборудование: камертон, шарик на нити, воздушный колокол, язычковый частотомер, набор дисков с разным количеством зубцов, открытка, линейка металлическая, мультимедийное оборудование, диск с презентацией , разработанной учителем к данному уроку.

Ход урока

Среди разнообразных колебательных и волновых движений, встречающихся в природе и технике, особо важное значение в жизни человека имеют звуковые колебания и волны, и просто звуки. В повседневной жизни – это чаще всего волны, распространяющиеся в воздухе. Известно, что звук распространяется и в других упругих средах: в земле, в металлах. Погрузившись с головой в воду, можно издали отчетливо услышать стук двигателя приближающегося катера. При осаде в крепостных стенах помещали «слухачей», которые следили за земляными работами противника. Иногда это были слепцы, у которых особенно обострен слух. По звукам, передающимся в Земле, был, например, своевременно обнаружен подкоп врага к стенам Загорского монастыря. Благодаря наличию у человека органа слуха он получает из окружающей среды с помощью звуков большую и разнообразную информацию. Посредством звуков осуществляется и человеческая речь.

Перед вами на столе находятся рабочие листы со строками из произведения Чарльза Диккенса «Сверчок за очагом». Каждый из вас должен подчеркнуть те слова, которые выражают звук.

1 вариант

  • Перепуганный косец пришел в себя только тогда, когда часы перестали трястись под ним, а скрежет и лязг их цепей и гирь окончательно прекратился. Немудрено, что он так разволновался: ведь эти дребезжащие, костлявые часы – не часы, а сущий скелет! – способны на кого угодно нагнать страху, когда начнут щелкать костями…
  • ….Тогда-то, заметьте себе, чайник и решил приятно провести вечерок. Что-то неудержимо заклокотало у него в горле, и он уже начал издавать отрывистое звонкое фырканье, которое тотчас обрывал, словно еще не решив окончательно, стоит ли ему сейчас показывать себя компанейским малым. Тогда-то, после двух-трех тщетных попыток заглушить в себе стремление к общительности, он отбросил всю свою угрюмость, всю свою сдержанность и залился такой уютной, такой веселой песенкой, что никакой плакса-соловей не мог за ним угнаться….
  • ….Чайник пел свою песенку так весело и бодро, что все его железное тело гудело и подпрыгивало над огнем; и даже сама крышка стала выплясывать что-то вроде джиги и стучать по чайнику (скрежет, лязг, дребезжащие, щелкать, звонкое фырканье, песенкой, залился, пел, гудело, стучать).

2 вариант:

  • Вот тут-то, если хотите, сверчок и вправду начал вторить чайнику! Он так громко подхватил припев на свой собственный стрекочущий лад – стрек, стрек, стрек! – голос его был столь поразительно несоразмерен с его ростом по сравнению с чайником, что если бы он тут же разорвался, как ружье, в которое заложен чересчур большой заряд, это показалось бы вам естественным и неизбежным концом, к которому он сам изо всех сил стремился.
  • ….Чайнику больше уже не пришлось петь соло. Он продолжал исполнять свою партию с неослабленным рвением, но сверчок захватил роль первой скрипки и удержал её. Боже ты мой, как он стрекотал! Тонкий, резкий, пронзительный голосок его звенел по всему дому и, наверное, даже мерцал, как звезда во мраке, за стенами. Иногда на самых громких звуках он пускал вдруг такую неописуемую трель, что невольно казалось – сам он высоко подпрыгивает в порыве вдохновения, а затем снова падает на ножки. Тем не менее они пели в полном согласии, и сверчок и чайник… Тема песенки оставалась все та же, и соревнуясь, они распевались все громче, и громче, и громче. (громко, припев, стрекочущий лад – стрек, стрек, стрек, разорвался, соло, стрекотал, резкий, пронзительный голосок, звенел, громких звуков, трель, пели, песенки, распевали, громче)

Мы живем в мире звуков. Раздел физики, изучающий звуковые явления, называется акустикой (слайд 1).

Источниками звука являются колеблющиеся тела (слайд 2) .

«Все, что звучит, обязательно колеблется, но не все, что колеблется, звучит».

Приведем примеры колеблющихся, но не звучащих тел. Язычки частотомера, длинная линейка. Какие примеры вы можете привести? (ветка на ветру, поплавок на воде и т.д.)

Укоротим линейку и услышим звук. Воздушный колокол также издает звуки. Докажем, что звучащее тело колеблется. Для этого возьмем камертон. Камертон представляет собой дугообразный стержень, закрепленный на держателе, ударим по нему резиновым молоточком. Поднеся звучащий камертон к маленькому шарику, висящему на нити, мы увидим, что шарик отклоняется.

Если провести звучащим камертоном по стеклу, покрытому сажей, мы увидим график колебаний камертона. Как называется такой график? (камертон совершает гармонические колебания )

Источниками звука могут быть жидкие тела, и даже газы. Воздух гудит в дымоходе и вода поет в трубах.

А какие примеры источников звука приведете вы? (механические часы, кипящий чайник, звук, издаваемый двигателем )

Когда тело звучит, оно колеблется, его колебания передаются близлежащим частицам воздуха, которые начинают колебаться и передают колебания соседним частицам, а те в свою очередь передают колебания дальше. В результате в воздухе образуются и распространяются звуковые волны.

Звуковая волна представляет собой зоны сжатия и разряжения упругой среды (воздуха), звуковая волна – продольная волна (слайд 3).

Мы воспринимаем звук благодаря нашему органу слуха – уху.

(Один из учеников рассказывает, как это происходит) (слайд 4).

(Другой ученик рассказывает о вреде наушников .)

«Изучая в течение двух месяцев поведение молодежи в столичном метрополитене, специалисты пришли к выводам, что в московском метро каждые 8 из 10 активных пользователей портативных электронных устройств слушают музыку. Для сравнения: при интенсивности звука в 160 децибел деформируются барабанные перепонки. Мощность звука, воспроизводимая плеерами через наушники, приравнивается к 110–120 децибел. Таким образом, на уши человека идет воздействие, равное тому, которое оказывается на человека, стоящего в 10 метрах от ревущего реактивного двигателя. Если такое давление на барабанные перепонки оказывается ежедневно, человек рискует оглохнуть. "За последние пять лет на прием стали чаще приходить молодые парни и девушки, – рассказала НИ отоларинголог Кристина Ананькина. – Все они хотят быть модными, постоянно слушать музыку. Однако длительное воздействие громкой музыки просто убивает слух". Если после рок-концерта организму нужно несколько дней, чтобы восстановиться, то при каждодневной атаке на уши времени на приведение слуха в порядок уже не остается. Слуховая система перестает воспринимать высокие частоты."Любой шум интенсивностью более 80 децибел негативно влияет на внутреннее ухо, – сообщает кандидат медицинских наук, сурдолог Василий Корвяков. – Громкая музыка поражает клетки, отвечающие за восприятие звука, особенно если атака идет прямо из наушников. Ситуацию ухудшает еще и вибрация в метро, которая также негативно влияет на структуру уха. В сочетании эти два фактора провоцируют острую тугоухость. Основная ее опасность в том, что она наступает буквально в одночасье, однако вылечить ее очень проблематично". Из-за шумового воздействия в нашем ухе отмирают волосковые клетки, отвечающие за передачу звукового сигнала в мозг. А способа восстановить эти клетки медицина пока не нашла».

Человеческое ухо воспринимает колебания частотой от 16–20000Гц. Все, что лежит до 16 Гц, – инфразвук, что после 20000Гц – ультразвук (слайд 6).

Сейчас мы прослушаем диапазон от 20 до 20000 Гц, и каждый из вас определит свой порог слышимости (слайд 5). (Генератор см. в Приложении 2)

Mногие животные слышат инфра- и ультра- звуки. Выступление учащегося (слайд 6).

Звуковые волны распространяются в твердых, жидких и газообразных телах, но не могут распространяться в безвоздушном пространстве.

Измерения показывают, что скорость звука в воздухе при 00С и нормальном атмосферном давлении равна 332 м/с. При повышении температуры скорость увеличивается. Для задач мы берем 340 м/с.

(Один из учеников решает задачу.)

Задача. Скорость звука в чугуне впервые была определена французским ученым Био следующим образом. У одного конца чугунной трубы ударяли в колокол, у другого конца наблюдатель слышал два звука: сначала – один, пришедший по чугуну, а, спустя некоторое время, – второй, пришедший по воздуху. Длина трубы 930 метров, промежуток времени между распространением звуков оказался равным 2,5с. Найдите по этим данным скорость звука в чугуне. Скорость звука в воздухе равна 340 м/с (Ответ: 3950 м/с).

Скорость звука в различных средах (слайд 7).

Мягкие и пористые тела – плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. Такими материалами являются: войлок, прессованная пробка, пористые камни, свинец. Звуковые волны в таких прослойках быстро затухают.

Мы видим, как многообразен звук, охарактеризуем его.

Звук, издаваемый гармонически колеблющимся телом, называется музыкальным тоном. Каждому музыкальному тону (до, ре, ми, фа, соль, ля, си) соответствует определенная длина и частота звуковой волны (слайд 8).

У нашего камертона тон ля, частота 440 Гц.

Шум – хаотическая смесь гармонических звуков.

Музыкальные звуки (тоны) характеризуются громкостью и высотой тона, тембром.

Слабый удар по ножке камертона вызовет колебания малой амплитудой, мы услышим тихий звук.

Сильный удар вызовет колебания с большей амплитудой, мы услышим громкий звук.

Громкость звука определяется амплитудой колебаний в звуковой волне (слайд 9).

Сейчас я буду вращать 4 диска, у которых разное количество зубцов. Я буду касаться открыткой этих зубцов. У диска с большими зубцами открытка колеблется чаще и звук выше. У диска с меньшим количеством зубцов открытка колеблется меньше и звук ниже.

Высота звука определяется частотой звуковых колебаний. Чем больше частота, тем выше звук. (слайд 10)

Самая высокая человеческая нота сопрано около 1300 Гц

Самая низкая человеческая нота басовая около 80 Гц.

У кого выше тон у комара или у шмеля? А как вы думаете, кто чаще машет крыльями комар или шмель.

Тембр звука – это своеобразная окраска звука, по которой мы различаем голоса людей различных инструментов (слайд 11).

Всякий сложный музыкальный звук состоит из ряда простых гармонических звуков. Самый низкий из них является основным. Остальные выше его в целое число раз, например, в 2 или 3–4 раза. Их называют обертонами. Чем больше к основному тону примешано обертонов, тем богаче будет звук. Высокие обертоны придают тембру «блеск» и «яркость» и «металличность». Низкие придают «мощность» и «сочность». А.Г.Столетов писал: «Простые тоны, какие мы имеем от наших камертонов – не употребляются в музыке, они так же пресны и безвкусны, как дистиллированная вода».

Закрепление

  1. Как называется учение о звуке?
  2. На Луне произошел сильный взрыв. Например, извержение вулкана. Услышим мы его на Земле?
  3. Голосовые связки колеблются с меньшей частотой у человека, поющего басом или тенором?
  4. При полете большинства насекомых издается звук. Чем он вызван?
  5. Как могли бы люди переговариваться на Луне?
  6. Почему при проверке колес вагонов во время остановки поезда их простукивают?

Домашнее задание: §34-38. Упражнение 30 (№ 2, 3).

Литература

  1. Курс физики, Ч II, для средней школы/Перышкин А.В. – М.: Просвещение, 1968. – 240с.
  2. Колебания и волны в курсе физике для средней школы. Пособие для учителей/Орехов В.П. – М.: Просвещение, 1977. – 176с.
  3. Сверчок за очагом/Диккенс Ч. – М.: Эксмо, 2003. – 640с.

Звуковая волна (звуковые колебания) — это передающиеся в пространстве механические колебания молекул вещества (например, воздуха).

Но далеко не всякое колеблющееся тело является источником звука. Например, не издает звука колеблющийся грузик, подвешенный на нити или пружине. Перестанет звучать и металлическая линейка, если переместить ее в тисках вверх и тем самым удлинить свободный конец настолько, чтобы частота его колебаний стала меньше 20 Гц. Исследования показали, что человеческое ухо способно воспри¬нимать как звук механические колебания тел, происходящие с час¬тотой от 20 Гц до 20000 Гц. Поэтому колебания, частоты которых находятся в этом диапазоне, называются звуковыми. Механические колебания, частота которых превышает 20 000 Гц, называются ультразвуковыми, а колебания с частотами менее 20 Гц — инфразвуковыми. Следует отметить, что указанные границы звукового диапазона условны, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно с возрастом верхняя частотная граница воспринимаемых звуков значительно понижается — некоторые пожилые люди могут слышать звуки с частотами, не превышающими 6000 Гц. Дети же, наоборот, могут воспринимать звуки, частота которых несколько больше 20000 Гц. Колебания, частоты которых больше 20 000 Гц или меньше 20 Гц, слышат некоторые животные. Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, шелест листьев и завывание ветра, пение птиц и голоса людей. О том, как рождаются звуки, и что они собой представляют, люди начали догадываться очень давно. Замечали, к примеру, что звук создают вибрирующие в воздухе тела. Еще древнегреческий философ и ученый-энциклопедист Аристотель, исходя из наблюдений, верно объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то уплотняет, то разрежает воздух, а благодаря упругости воздуха эти чередующиеся воздействия передаются дальше в пространство — от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука. На слух человек воспринимает упругие волны, имеющие частоту в пределах примерно от 16 Гц до 20 кГц (1 Гц — 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В воздухе при температуре 0° С и нормальном давлении звук распространяется со скоростью 330 м/с, в морской воде — около 1500 м/с, в некоторых металлах скорость звука достигает 7000 м/с. Упругие волны с частотой меньше 16 Гц называют инфразвуком, а волны, частота которых превышает 20 кГц, — ультразвуком.

Источником звука в газах и жидкостях могут быть не только вибрирующие тела. Например, свистят в полете пуля и стрела, завывает ветер. И рев турбореактивного самолета складывается не только из шума работающих агрегатов — вентилятора, компрессора, турбины, камеры сгорания и т. д., но также из шума реактивной струи, вихревых, турбулентных потоков воздуха, возникающих при обтекании самолета на больших скоростях. Стремительно несущееся в воздухе или в воде тело как бы разрывает обтекающий его поток, периодически порождает в среде области разрежения и сжатия. В результате возникают звуковые волны. Звук может распространяться в виде продольных и поперечных волн. В газообразной и жидкой среде возникают только продольные волны, когда колебательное движение частиц происходит лишь в том направлении, в каком распространяется волна. В твердых телах помимо продольных возникают также и поперечные волны, когда частицы среды колеблются в направлениях, перпендикулярны к направлению распространения волны. Там ударяя по струне перпендикулярно ее направлению, мы заставляем бежать волну вдоль струны. Человеческое ухо неодинаково восприимчиво к звукам разной частоты. Наиболее чувствительно оно к частотам от 1000 до 4000 Гц. При очень большой интенсивности волны перестают восприниматься как звук, вызывая в ушах ощущение давящей боли. Величину интенсивности звуковых волн, при которой это происходит, называют порогом болевого ощущения. Важны в учении о звуке также понятия тона и тембра звука. Всякий реальный звук, будь то голос человека или игра музыкального инструмента, — это не простое гармоническое колебание, а своеобразная смесь многих гармонических колебаний с определенным набором частот. То из них, которое имеет наиболее низкую частоту, называют основным тоном, другие — обертонами. Разное количество обертонов, присущих тому или иному звуку, придает ему особую окраску — тембр. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. По тембру мы легко отличаем звуки скрипки и рояля, гитары и флейты, узнаем голоса знакомых людей.

  • Частотой колебаний называют количество полных колебаний в секунду. За единицу измерения частоты принят 1 герц (Гц). 1 герц соответствует одному полному (в одну и другую сторону) колебанию, происходящему за одну секунду.
  • Периодом называют время (с), в течение которого происходит одно полное колебание. Чем больше частота колебаний, тем меньше их период, т.е. f=1/T. Таким образом, частота колебаний тем больше, чем меньше их период, и наоборот. Голос человека создает звуковые колебания частотой от 80 до 12000 Гц, а слух воспринимает звуковые колебания в диапазоне 16-20000 Гц.
  • Амплитудой колебаний называют наибольшее отклонение колеблющегося тела от его первоначального (спокойного) положения. Чем больше амплитуда колебания, тем громче звук. Звуки человеческой речи представляют собой сложные звуковые колебания, состоящие из того или иного количества простых колебаний, различных по частоте и амплитуде. В каждом звуке речи имеется только ему свойственное сочетание колебаний различной частоты и амплитуды. Поэтому форма колебаний одного звука речи заметно отличается от формы другого, на котором изображены графики колебаний при произношении звуков а, о и у.

Любые звуки человек характеризует в соответствии со своим восприятием по уровню громкости и высоте.

Раздел физики, занимающийся звуковыми колебаниями, называется акустикой.

Человеческое ухо устроено так, что оно воспринимает колебания частотой от 20 Гц до 20 кГц как звук. Низкие частоты (звук от большого барабана или органной трубы) воспринимаются ухом как басовые ноты. Свист или писк комара соответствуют высоким частотам. Колебания частотой ниже 20 Гц называются инфразвуком , а частотой свыше 20 кГц - ультразвуком. Такие колебания человек не слышит, но есть животные, которые слышат инфразвуки, исходящие от земной коры перед землетрясением. Услышав их, животные покидают опасную местность.

В музыке акустические частоты соответствуют нотам. Нота «ля» основной октавы (ключ С) соответствует частоте 440 Гц. Нота «ля» следующей октавы соответствует частоте 880 Гц. И так все остальные октавы отличаются по частоте ровно в два раза. Внутри каждой октавы различают 6 тонов или 12 полутонов. Каждый тон имеет частоту в yf2 ~ 1,12 отличающуюся от частоты предыдущего тона, каждый полутон отличается от предыдущего в "$2 . Мы видим, что каждая следующая частота отличается от предыдущей не на сколько-то Гц, а в одинаковое число раз. Такая шкала называется логарифмической, так как равное расстояние между тонами будет именно на логарифмической шкале, где откладывается не сама величина, а ее логарифм.

Если звук соответствует одной частоте v (или со = 2tcv), то его называют гармоническим, или монохроматическим. Чисто гармонические звуки встречаются редко. Почти всегда звук содержит набор частот, т. е. его спектр (см. раздел 8 настоящей главы) сложен. Музыкальные колебания всегда содержат основной тон ссо = 2я/Т, где Т - период, и набор обертонов 2(Оо, Зсо 0 , 4соо и т. д. Набор обертонов с указанием их интенсивностей в музыке называется тембром. У разных музыкальных инструментов, у разных певцов, берущих одну и ту же ноту, тембр разный. Это придает им разную окраску.

Возможна примесь и некратных частот. В классической европейской музыке это считается неблагозвучным. Однако в современной музыке это используется. Даже используется медленное движение каких-либо частот в сторону увеличения или уменьшения (гавайская гитара).

В немузыкальных звуках возможны любые комбинации частот в спектре и их изменение во времени. Спектр таких звуков может быть сплошным (см. раздел 8). Если интенсивности для всех частот приблизительно одинаковы, то такой звук называют «белый шум» (термин взят из оптики, где белый цвет - совокупность всех частот).

Очень сложны звуки человеческой речи. Они имеют сложный спектр, который быстро меняется со временем при произнесении одного звука, слова и всей фразы. Это придает звукам речи различные интонации и акценты. В результате можно по голосу отличить одного человека от другого, даже если они произносят одни и те же слова.