Бунин

Электронное семейство мышьяка. Электронная конфигурация атома. Строение атома и способность образовывать связи

Некоторые, умершие в Средние века от холеры, скончались не от нее. Симптомы болезни схожи с проявлениями отравления мышьяком .

Прознав это, средневековые дельцы стали предлагать триоксид элемента в качестве яда. Вещество . Смертельная доза – всего 60 граммов.

Их разбивали на порции, давая в течение нескольких недель. В итоге, никто не подозревал, что человек скончался не от холеры.

Вкус мышьяка не чувствуется в малых дозах, будучи, к примеру, в еде, или напитках. В современных реалиях, конечно, холеры нет.

Людям опасаться мышьяка не приходиться. Бояться, скорее, нужно мышам. Токсичное вещество – один из видов отравы для грызунов.

В их честь, кстати, элемент и назван. Слово «мышьяк» бытует лишь в русскоязычных странах. Официальное название вещества – арсеникум.

Обозначение в – As. Порядковый номер – 33. Исходя из него, можно предположить полный список свойств мышьяка. Но, не будем предполагать. Изучим вопрос наверняка.

Свойства мышьяка

Латинское название элемента переводится, как «сильный». Видимо, имеется в виду влияние вещества на организм.

При интоксикации начинается рвота, расстраивается пищеварение, крутит живот и частично блокируется работа нервной системы. не из слабых.

Отравление наступает от любой из аллотропных форм вещества. Аллтропия – это существование различных по строению и свойствам проявлений одного и того же элемента . Мышьяк наиболее устойчив в металлической форме.

Ромбоэдрические серо-стального цвета хрупки. Агрегаты имеют характерный металлический , но от контакта с влажным воздухом, тускнеют.

Мышьяк – металл , чья плотность равна почти 6-ти граммам на кубический сантиметр. У остальных форм элемента показатель меньше.

На втором месте аморфный мышьяк. Характеристика элемента : — почти черный цвет.

Плотность такой формы равна 4,7 граммам на кубический сантиметр. Внешне материал напоминает .

Привычное для обывателей состояние мышьяка – желтое. Кубическая кристаллизация неустойчива, переходит в аморфную при нагреве до 280-ти градусов Цельсия, или под действием простого света.

Поэтому, желтые мягкие, как , в темноте. Несмотря на окрас, агрегаты прозрачны.

Из ряда модификаций элемента видно, что металлом он является лишь наполовину. Очевидного ответа на вопрос: — «Мышьяк металл, или неметалл », нет.

Подтверждением служат химические реакции. 33-ий элемент является кислотообразующим. Однако, оказываясь в кислоте сам, не дает .

Металлы поступают иначе. В случае же мышьяка, не получаются даже при контакте с , одной из самых сильных .

Солеобразные соединения «рождаются» в ходе реакций мышьяка с активными металлами.

Имеются в виду окислители. 33-е вещество взаимодействует только с ними. Если у партнера нет выраженных окислительных свойств, взаимодействие не состоится.

Это касается даже и щелочей. То есть, мышьяк – химический элемент довольно инертный. Как же тогда его добыть, если список реакций весьма ограничен?

Добыча мышьяка

Добывают мышьяк попутно другим металлам. Отделяют их, остается 33-е вещество.

В природе существуют соединения мышьяка с другими элементами . Из них-то и извлекают 33-ий металл.

Процесс выгодный, поскольку вкупе с мышьяком часто идут , , и .

Он встречается в зернистых массах, либо кубических кристаллах оловянного цвета. Иногда, присутствует желтый отлив.

Соединение мышьяка и металла феррум имеет «собрата», в котором вместо 33-го вещества стоит . Это обычный пирит золотистого цвета.

Агрегаты похожи на арсеноверсию, но служить рудой мышьяка не могут, хотя, в виде примеси тоже содержат.

Мышьяк в обычном , кстати, тоже бывает, но, опять же, в качестве примеси.

Количество элемента на тонну столь мало, но не имеет смысла даже побочная добыча.

Если равномерно распределить мировые запасы мышьяка в земной коре, получится всего 5 граммов на тонну.

Так что, элемент не из распространенных, по количеству сравним с , , .

Если же смотреть на металлы, с которыми мышьяк образует минералы, то это не только , но и с кобальтом и никелем.

Общее число минералов 33-го элемента достигает 200-от. Встречается и самородная форма вещества.

Ее наличие объясняется химической инертностью мышьяка. Формируясь рядом с элементами, с коими не предусмотрены реакции, герой остается в гордом одиночестве.

При этом, зачастую, получаются игольчатые, или кубические агрегаты. Обычно, они срастаются между собой.

Применение мышьяка

Элемент мышьяк относится к двойственным не только проявляя свойства, как металла, так и не металла.

Двойственно и восприятие элемента человечеством. В Европе 33-е вещество всегда считали ядом.

В в 1733-ем году даже издали указ, запрещающий продажу и приобретение мышьяка.

В Азии же «отрава» уже 2000 лет используется медиками в лечении псориаза и сифилиса.

Врачи современного доказали, что 33-ий элемент атакует белки, провоцирующие онкологию.

В 20-ом веке на сторону азиатов встали и некоторые европейские врачи. В 1906-ом году, к примеру, западные фармацевты изобрели препарат сальварсан.

Он стал первым в официальной медицине, применялся против ряда инфекционных болезней.

Правда, к препарату, как и любому постоянному приему мышьяка в малых дозах, вырабатывается иммунитет.

Эффективны 1-2 курса препарата. Если иммунитет сформировался, люди могут принять смертельную дозу элемента и остаться живыми.

Кроме медиков 33-им элементом заинтересовались металлурги, став добавлять в для производства дроби.

Она делается на основе , который входит в тяжелые металлы. Мышьяк увеличивает свинца и позволяет его брызгам при отливке принимать сферическую форму. Она правильная, что повышает качество дроби.

Мышьяк можно найти и в термометрах, точнее их . Оно зовется венским, замешивается с оксидом 33-го вещества.

Соединение служит осветлителем. Мышьяк применяли и стеклодувы древности, но, в качестве матирующей добавки.

Непрозрачным стекло становится при внушительной примеси токсичного элемента.

Соблюдая пропорции, многие стеклодувы заболевали и умирали раньше времени.

И специалисты кожевенного производства пользуются сульфидами мышьяка .

Элемент главной подгруппы 5-ой группы таблицы Менделеева входит в состав некоторых красок. В кожевенной же промышленности арсеникум помогает удалять волосы с .

Цена мышьяка

Чистый мышьяк, чаще всего, предлагают в металлической форме. Цены устанавливают за килограмм, или тонну.

1000 граммов стоит около 70-ти рублей. Для металлургов предлагают готовые , к примеру, мышьяк с медью.

В этом случае за кило берут уже 1500-1900 рублей. Килограммами продают и мышьяковистый ангидрит.

Его используют в качестве кожного лекарства. Средство некротическое, то есть омертвляет пораженный участок, убивая не только возбудителя болезни, но и сами клетки. Метод радикальный, зато, эффективный.

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Содержание статьи

МЫШЬЯК – химический элемент V группы периодической таблицы, относится к семейству азота. Относительная атомная масса 74,9216. В природе мышьяк представлен только одним стабильным нуклидом 75 As. Искусственно получены также более десяти его радиоактивных изотопов с периодом полураспада от нескольких минут до нескольких месяцев. Типичные степени окисления в соединениях –3, +3, +5. Название мышьяка в русском языке связывают с употреблением его соединений для истребления мышей и крыс; латинское название Arsenicum происходит от греческого «арсен» – сильный, мощный.

Исторические сведения.

Мышьяк относится к пяти «алхимическим» элементам, открытым в средние века (удивительно, но четыре из них – As, Sb, Bi и P находятся в одной группе периодической таблицы – пятой). В то же время соединения мышьяка были известны с древних времен, их применяли для производства красок и лекарств. Особенно интересно использование мышьяка в металлургии.

Несколько тысячелетий назад каменный век сменился бронзовым. Бронза – это сплав меди с оловом. Как полагают историки, первую бронзу отлили в долине Тигра и Евфрата, где-то между 30 и 25 вв. до н.э. В некоторых регионах выплавлялась бронза с особо ценными свойствами – она лучше отливалась и легче ковалась. Как выяснили современные ученые, это был сплав меди, содержащий от 1 до 7% мышьяка и не более 3% олова. Вероятно, поначалу при его выплавке спутали богатую медную руду малахит с продуктами выветривания некоторых тоже зеленых сульфидных медно-мышьяковых минералов. Оценив замечательные свойства сплава, древние умельцы затем уже специально искали мышьяковые минералы. Для поисков использовали свойство таких минералов давать при нагревании специфический чесночный запах. Однако со временем выплавка мышьяковой бронзы прекратилась. Скорее всего это произошло из-за частых отравлений при обжиге мышьяксодержащих минералов.

Конечно, мышьяк был известен в далеком прошлом лишь в виде его минералов. Так, в Древнем Китаем твердый минерал реальгар (сульфид состава As 4 S 4 , реальгар по-арабски означает «рудниковая пыль») использовали для резьбы по камню, однако при нагревании или на свету он «портился», так как превращался в As 2 S 3 . В 4 в. до н.э. Аристотель описал этот минерал под названием «сандарак». В I в. н.э. римский писатель и ученый Плиний Старший, и римский врач и ботаник Диоскорид описали минерал аурипигмент (сульфид мышьяка As 2 S 3). В переводе с латыни название минерала означает «золотая краска»: он использовался как желтый краситель. В 11 в. алхимики различали три «разновидности» мышьяка: так называемый белый мышьяк (оксид As 2 O 3), желтый мышьяк (сульфид As 2 S 3) и красный мышьяк (сульфид As 4 S 4). Белый мышьяк получался при возгонке примесей мышьяка при обжиге медных руд, содержащих этот элемент. Конденсируясь из газовой фазы, оксид мышьяка оседал в виде белого налета. Белый мышьяк использовали с древних времен для уничтожения вредителей, а также...

В 13 в. Альберт фон Больштедт (Альберт Великий) получил металлоподобное вещество, нагревая желтый мышьяк с мылом; возможно, это был первый образец мышьяка в виде простого вещества, полученный искусственно. Но это вещество нарушало мистическую «связь» семи известных металлов с семью планетами; вероятно, поэтому алхимики считали мышьяк «незаконнорожденным металлом». В то же время они обнаружили его свойство придавать меди белый цвет, что дало повод называть его «средством, отбеливающим Венеру (то есть медь)».

Мышьяк был однозначно идентифицирован как индивидуальное вещество в середине 17 в., когда немецкий аптекарь Иоганн Шрёдер получил его в сравнительно чистом виде восстановлением оксида древесным углем. Позднее французский химик и врач Никола Лемери получил мышьяк, нагревая смесь его оксида с мылом и поташом. В 18 в. мышьяк уже был хорошо известен как необычный «полуметалл». В 1775 шведский химик К.В.Шееле получил мышьяковую кислоту и газообразный мышьяковистый водород, а в 1789 А.Л.Лавуазье, наконец, признал мышьяк самостоятельным химическим элементом. В 19 в. были открыты органические соединения, содержащие мышьяк.

Мышьяк в природе.

В земной коре мышьяка немного – около 5·10 –4 % (то есть 5 г на тонну), примерно столько же, сколько германия, олова, молибдена, вольфрама или брома. Часто мышьяк в минералах встречается совместно с железом, медью, кобальтом, никелем.

Состав минералов, образуемых мышьяком (а их известно около 200), отражает «полуметаллические» свойства этого элемента, который может находиться как в положительной, так и в отрицательной степени окисления и соединяться со многими элементами; в первом случае мышьяк может играть роль металла (например, в сульфидах), во втором – неметалла (например, в арсенидах). Сложный состав ряда минералов мышьяка отражает его способность, с одной стороны, частично заменять в кристаллической решетке атомы серы и сурьмы (ионные радиусы S –2 , Sb –3 и As –3 близки и составляют соответственно 0,182, 0,208 и 0,191 нм), с другой – атомы металлов. В первом случае атомы мышьяка имеют скорее отрицательную степень окисления, во втором – положительную.

Электроотрицательность мышьяка (2,0) мала, но выше, чем у сурьмы (1,9) и у большинства металлов, поэтому степень окисления –3 наблюдается для мышьяка лишь в арсенидах металлов, а также в стибарсене SbAs и сростках этого минерала с кристаллами чистых сурьмы или мышьяка (минерал аллемонтит). Многие соединения мышьяка с металлами, судя по их составу, относятся скорее к интерметаллическим соединениям, а не к арсенидам; некоторые из них отличаются переменным содержанием мышьяка. В арсенидах может присутствовать одновременно несколько металлов, атомы которых при близком радиусе ионов замещают друг друга в кристаллической решетке в произвольных соотношениях; в таких случаях в формуле минерала символы элементов перечисляются через запятую. Все арсениды имеют металлический блеск, это непрозрачные, тяжелые минералы, твердость их невелика.

Примером природных арсенидов (их известно около 25) могут служить минералы лёллингит FeAs 2 (аналог пирита FeS 2), скуттерудит CoAs 2–3 и никельскуттерудит NiAs 2–3 , никелин (красный никелевый колчедан) NiAs, раммельсбергит (белый никелевый колчедан) NiAs 2 , саффлорит (шпейсовый кобальт) CoAs 2 и клиносаффлорит (Co,Fe,Ni)As 2 , лангисит (Co,Ni)As, сперрилит PtAs 2 , маухерит Ni 11 As 8 , орегонит Ni 2 FeAs 2 , альгодонит Cu 6 As. Из-за высокой плотности (более 7 г/см 3) многие из них геологи относят к группе «сверхтяжелых» минералов.

Наиболее распространенный минерал мышьяка – арсенопирит (мышьяковый колчедан) FeAsS можно рассматривать как продукт замещения серы в пирите FeS 2 атомами мышьяка (в обычном пирите тоже всегда есть немного мышьяка). Такие соединения называют сульфосолями. Аналогично образовались минералы кобальтин (кобальтовый блеск) CoAsS, глаукодот (Co,Fe)AsS, герсдорфит (никелевый блеск) NiAsS, энаргит и люцонит одинакового состава, но разного строения Cu 3 AsS 4 , прустит Ag 3 AsS 3 – важная серебряная руда, которую иногда называют «рубиновым серебром» из-за ярко-красного цвета, она часто встречается в верхних слоях серебряных жил, где найдены великолепные большие кристаллы этого минерала. Сульфосоли могут содержать и благородные металлы платиновой группы; это минералы осарсит (Os,Ru)AsS, руарсит RuAsS, ирарсит (Ir,Ru,Rh,Pt)AsS, платарсит (Pt,Rh,Ru)AsS, холлингуортит (Rd,Pt,Pd)AsS. Иногда роль атомов серы в таких двойных арсенидах играют атомы сурьмы, например, в сейняйоките (Fe,Ni)(Sb,As) 2 , арсенопалладините Pd 8 (As,Sb) 3 , арсенполибазите (Ag,Cu) 16 (Ar,Sb) 2 S 11 .

Интересно строение минералов, в которых мышьяк присутствует одновременно с серой, но играет скорее роль металла, группируясь вместе с другими металлами. Таковы минералы арсеносульванит Cu 3 (As,V)S 4 , арсеногаухекорнит Ni 9 BiAsS 8 , фрейбергит (Ag,Cu,Fe) 12 (Sb,As) 4 S 13 , теннантит (Cu,Fe) 12 As 4 S 13 , аргентотеннантит (Ag,Cu) 10 (Zn,Fe) 2 (As,Sb) 4 S 13 , голдфилдит Cu 12 (Te,Sb,As) 4 S 13 , жиродит (Cu,Zn,Ag) 12 (As,Sb) 4 (Se,S) 13 . Можно представить себе, какое сложное строение имеет кристаллическая решетка всех этих минералов.

Однозначно положительную степень окисления мышьяк имеет в природных сульфидах – желтом аурипигменте As 2 S 3 , оранжево-желтом диморфите As 4 S 3 , оранжево-красном реальгаре As 4 S 4 , карминово-красном гетчеллите AsSbS 3 , а также в бесцветном оксиде As 2 O 3 , который встречается в виде минералов арсенолита и клаудетита с разной кристаллической структурой (они образуются в результате выветривания других мышьяковых минералов). Обычно эти минералы встречаются в виде небольших вкраплений. Но в 30-е годы 20 в. в южной части Верхоянского хребта были найдены огромные кристаллы аурипигмента размером до 60 см и массой до 30 кг.

В природных солях мышьяковой кислоты H 3 AsO 4 – арсенатах (их известно около 90) степень окисления мышьяка – +5; примером могут служить ярко-розовый эритрин (кобальтовый цвет) Co 3 (AsO 4) 2 ·8H 2 O, зеленые аннабергит Ni 3 (AsO 4) 2 ·8H 2 O, скородит Fe III AsO 4 ·2H 2 O и симплезит Fe II 3 (AsO 4) 2 ·8H 2 O, буро-красный гаспарит (Ce,La,Nd)ArO 4 , бесцветные гёрнесит Mg 3 (AsO 4) 2 ·8H 2 O, рузвельтит BiAsO 4 и кёттигит Zn 3 (AsO 4) 2 ·8H 2 O, а также множество основных солей, например, оливенит Cu 2 AsO 4 (OH), арсенобисмит Bi 2 (AsO 4)(OH) 3 . А вот природные арсениты – производные мышьяковистой кислоты H 3 AsO 3 очень редки.

В центральной Швеции есть знаменитые лангбановские железо-марганцевые карьеры, в которых нашли и описали более 50 образцов минералов, представляющих собой арсенаты. Некоторые из них нигде больше не встречаются. Они образовались когда-то в результате реакции мышьяковой кислоты H 3 AsO 4 с пирокроитом Mn(OH) 2 при не очень высоких температурах. Обычно же арсенаты – продукты окисления сульфидных руд. Они, как правило, не имеют промышленного применения, но некоторые из них очень красивые и украшают минералогические коллекции.

В названиях многочисленных минералов мышьяка можно встретить топонимы (Лёллинг в Австрии, Фрайберг в Саксонии, Сейняйоки в Финляндии, Скуттеруд в Норвегии, Аллемон во Франции, канадский рудник Лангис и рудник Гетчелл в Неваде, штат Орегон в США и др.), имена геологов, химиков, политических деятелей и т.п. (немецкий химик Карл Раммельсберг, мюнхенский торговец минералами Вильям Маухер, владелец шахты Иоганн фон Герсдорф, французский химик Ф.Клоде, английские химики Джон Пруст и Смитсон Теннант, канадский химик Ф.Л.Сперри, президент США Рузвельт и др.), названия растений (так, название минерала саффлорита произошело от шафрана), начальные буквы названий элементов – мышьяка, осмия, рутения, иридия, палладия, платины, греческие корни («эритрос» – красный, «энаргон» – видимый, «литос» – камень) и т.д. и т.п.

Интересно старинное название минерала никелина (NiAs) – купферникель. Средневековые немецкие горняки называли Никелем злого горного духа, а «купферникелем» (Kupfernickel, от нем. Kupfer – медь) – «чертову медь», «фальшивую медь». Медно-красные кристаллы этой руды внешне очень походили на медную руду; ее применяли в стекловарении для окрашивания стекол в зеленый цвет. А вот медь из нее никому получить не удавалось. Эту руду в 1751 исследовал шведский минералог Аксель Кронштедт и выделил из нее новый металл, назвав его никелем.

Поскольку мышьяк химически достаточно инертен, он встречается и в самородном состоянии – в виде сросшихся иголочек или кубиков. Такой мышьяк обычно содержит от 2 до 16% примесей – чаще всего это Sb, Bi, Ag, Fe, Ni, Co. Его легко растереть в порошок. В России самородный мышьяк геологи находили в Забайкалье, в Амурской области, встречается он и в других странах.

Уникален мышьяк тем, что он встречается повсюду – в минералах, горных породах, почве, воде, растениях и животных, недаром его называют «вездесущным». Распределение мышьяка по разным регионам земного шара во многом определялось в процессах формирования литосферы летучестью его соединений при высокой температуре, а также процессами сорбции и десорбции в почвах и осадочных породах. Мышьяк легко мигрирует, чему способствует достаточно высокая растворимость некоторых его соединений в воде. Во влажном климате мышьяк вымывается из почвы и уносится грунтовыми водами, а затем – реками. Среднее содержание мышьяка в реках – 3 мкг/л, в поверхностных водах – около 10 мкг/л, в воде морей и океанов – всего около 1 мкг/л. Это объясняется сравнительно быстрым осаждением его соединений из воды с накоплением в донных отложениях, например, в железомарганцевых конкрециях.

В почвах содержание мышьяка составляет обычно от 0,1 до 40 мг/кг. Но в области залегания мышьяковых руд, а также в вулканических районах в почве может содержаться очень много мышьяка – до 8 г/кг, как в некоторых районах Швейцарии и Новой Зеландии. В таких местах гибнет растительность, а животные болеют. Это характерно для степей и пустынь, где мышьяк не вымывается из почвы. Обогащены по сравнению со средним содержанием и глинистые породы – в них содержится вчетверо больше мышьяка, чем в среднем. В нашей стране предельно допустимой концентрацией мышьяка в почве считается 2 мг/кг.

Мышьяк может выноситься из почвы не только водой, но и ветром. Но для этого он должен сначала превратиться в летучие мышьякорганические соединения. Такое превращение происходит в результате так называемого биометилирования – присоединения метильной группы с образованием связи C–As; этот ферментативный процесс (он хорошо известен для соединений ртути) происходит при участии кофермента метилкобаламина – метилированного производного витамина В 12 (он есть и в организме человека). Биометилирование мышьяка происходит как в пресной, так и в морской воде и приводит к образованию мышьякорганических соединений – метиларсоновой кислоты CH 3 AsO(OH) 2 , диметиларсиновой (диметилмышьяковой, или какодиловой) кислоты (CH 3) 2 As(O)OH, триметиларсина (CH 3) 3 As и его оксида (CH 3) 3 As = O, которые также встречаются в природе. С помощью 14 С-меченого метилкобаламина и 74 As-меченого гидроарсената натрия Na 2 HAsO 4 было показано, что один из штаммов метанобактерий восстанавливает и метилирует эту соль до летучего диметиларсина. В результате в воздухе сельских районов содержится в среднем 0,001 – 0,01 мкг/м 3 мышьяка, в городах, где нет специфических загрязнений – до 0,03 мкг/м 3 , а вблизи источников загрязнения (заводы по выплавке цветных металлов, электростанции, работающие на угле с высоким содержание мышьяка, и др.) концентрация мышьяка в воздухе может превысить 1 мкг/м 3 . Интенсивность выпадения мышьяка в районах расположения промышленных центров составляет 40 кг/км 2 в год.

Образование летучих соединений мышьяка (триметиларсин, например, кипит всего при 51° С) вызывало в 19 в. многочисленные отравления, поскольку мышьяк содержался в штукатурке и даже в зеленой краске для обоев. В виде краски раньше использовали зелень Шееле Cu 3 (AsO 3) 2 · n H 2 O и парижскую, или швейфуртскую зелень Cu 4 (AsO 2) 6 (CH 3 COO) 2 . В условиях высокой влажности и появления плесени из такой краски образуются летучие мышьякорганические производные. Предполагают, что этот процесс мог быть причиной медленного отравления Наполеона в последние годы его жизни (как известно, мышьяк был найден в волосах Наполеона спустя полтора столетия после его смерти).

Мышьяк в заметных количествах содержится в некоторых минеральных водах. Российские нормативы устанавливают, что в лечебно-столовых минеральных водах мышьяка должно быть не более 700 мкг/л. В Джермуке его может быть в несколько раз больше. Выпитые один-два стакана «мышьяковой» минеральной воды человеку вреда не принесут: чтобы смертельно отравиться, надо выпить сразу литров триста... Но понятно, что такую воду нельзя пить постоянно вместо обычной воды.

Химики выяснили, что мышьяк в природных водах может находиться в разных формах, что существенно с точки зрения его анализа, способов миграции, а также разной токсичности этих соединений; так, соединения трехвалентного мышьяка в 25–60 раз токсичнее, чем пятивалентного. Соединения As(III) в воде присутствуют обычно в форме слабой мышьяковистой кислоты H 3 AsO 3 (рК а = 9,22), а соединения As(V) – в виде значительно более сильной мышьяковой кислоты H 3 AsO 4 (рК а = 2,20) и ее депротонированых анионов H 2 AsO 4 – и HAsO 4 2– .

В живом веществе мышьяка в среднем содержится 6·10 –6 %, то есть 6 мкг/кг. Некоторые морские водоросли способны концентрировать мышьяк в такой степени, что становятся опасными для людей. Более того, эти водоросли могут расти и размножаться в чистых растворах мышьяковистой кислоты. Такие водоросли используются в некоторых азиатских странах в качестве средства против крыс. Даже в чистых водах норвежских фьордов водоросли могут содержать мышьяк в количестве до 0,1 г/кг. У человека мышьяк содержится в мозговой ткани и в мышцах, накапливается он в волосах и ногтях.

Свойства мышьяка.

Хотя с виду мышьяк напоминает металл, он все же скорее является неметаллом: не образует солей, например, с серной кислотой, но сам является кислотообразующим элементом. Поэтому этот элемент часто называют полуметаллом. Мышьяк существует в нескольких аллотропных формах и в этом отношении весьма напоминает фосфор. Самая устойчивая из них – серый мышьяк, весьма хрупкое вещество, которое на свежем изломе имеет металлический блеск (отсюда название «металлический мышьяк»); его плотность 5,78 г/см 3 . При сильном нагревании (до 615° С) он возгоняется без плавления (такое же поведение характерно для иода). Под давлением 3,7 МПа (37 атм) мышьяк плавится при 817° С, что значительно выше температуры возгонки. Электропроводность серого мышьяка в 17 раз меньше, чем у меди, но в 3,6 раза выше, чем у ртути. С повышением температуры его электропроводность, как и у типичных металлов, снижается – примерно в такой же степени, как у меди.

Если пары мышьяка очень быстро охладить до температуры жидкого азота (–196° С), получается прозрачное мягкое вещество желтого цвета, напоминающее желтый фосфор, его плотность (2,03 г/см 3) значительно ниже, чем у серого мышьяка. Пары мышьяка и желтый мышьяк состоят из молекул As 4 , имеющих форму тетраэдра – и здесь аналогия с фосфором. При 800° С начинается заметная диссоциация паров с образованием димеров As 2 , а при 1700° С остаются только молекулы As 2 . При нагревании и под действием ультрафиолета желтый мышьяк быстро переходит в серый с выделением тепла. При конденсации паров мышьяка в инертной атмосфере образуется еще одна аморфная форма этого элемента черного цвета. Если пары мышьяка осаждать на стекле, образуется зеркальная пленка.

Строение внешней электронной оболочки у мышьяка такое же, как у азота и фосфора, но в отличие от них, у него 18 электронов на предпоследней оболочке. Как и фосфор, он может образовать три ковалентные связи (конфигурация 4s 2 4p 3), и на атоме As остается неподеленная пара. Знак заряда на атоме As в соединениях с ковалентными связями зависит от электроотрицательности соседних атомов. Участие неподеленной пары в комплексообразовании для мышьяка значительно затруднено по сравнению с азотом и фосфором.

Если в атоме As задействованы d-орбитали, возможно распаривание 4s-электронов с образованием пяти ковалентных связей. Такая возможность практически осуществляется только в соединении с фтором – в пентафториде AsF 5 (известен и пентахлорил AsCl 5 , но он исключительно нестоек и быстро разлагается даже при –50° С).

В сухом воздухе мышьяк устойчив, но во влажном тускнеет и покрывается черным оксидом. При возгонке пары мышьяка легко сгорают на воздухе голубым пламенем с образованием тяжелых белых паров мышьяковистого ангидрида As 2 O 3 . Этот оксид – один из наиболее распространенных мышьяксодержащих реагентов. Он обладает амфотерными свойствами:

As 2 O 3 + 6HCl ® 2AsCl 3 + 3H 2 O,

2 O 3 + 6NH 4 OH ® 2(NH 4) 3 AsO 3 + 3H 2 O.

При окислении As 2 O 3 образуется кислотный оксид – мышьяковый ангидрид:

As 2 O 3 + 2HNO 3 ® As 2 O 5 + H 2 O + NO 2 + NO.

При его взаимодействии с содой получают гидроарсенат натрия, который находит применение в медицине:

As 2 O 3 + 2Na 2 CO 3 + H 2 O ® 2Na 2 HAsO 4 + 2CO 2 .

Чистый мышьяк достаточно инертен; вода, щелочи и кислоты, не обладающие окислительными свойствами, на него не действуют. Разбавленная азотная кислота окисляет его до ортомышьяковистой кислоты H 3 AsO 3 , а концентрированная – до ортомышьяковой H 3 AsO 4:

3As + 5HNO 3 + 2H 2 O ® 3H 3 AsO 4 + 5NO.

Аналогично реагирует и оксид мышьяка(III):

3As 2 O 3 + 4HNO 3 + 7H 2 O ® 6H 3 AsO 4 + 4NO.

Мышьяковая кислота является кислотой средней силы, чуть слабее фосфорной. В отличие от нее, мышьяковистая кислота очень слабая, по своей силе соответствующая борной кислоте H 3 BO 3 . В ее растворах существует равновесие H 3 AsO 3 HAsO 2 + H 2 O. Мышьяковистая кислота и ее соли (арсениты) – сильные восстановители:

HAsO 2 + I 2 + 2H 2 O ® H 3 AsO 4 + 2HI.

Мышьяк реагирует с галогенами и серой. Хлорид AsCl 3 – бесцветная маслянистая жидкость, дымящая на воздухе; водой гидролизуется: AsCl 3 + 2H 2 O ® HAsO 2 + 3HCl. Известны бромид AsBr 3 и иодид AsI 3 , которые также разлагаются водой. В реакциях мышьяка с серой образуются сульфиды различного состава – вплоть до Ar 2 S 5 . Сульфиды мышьяка растворяются в щелочах, в растворе сульфида аммония и в концентрированной азотной кислоте, например:

As 2 S 3 + 6KOH ® K 3 AsO 3 + K 3 AsS 3 + 3H 2 O,

2 S 3 + 3(NH 4) 2 S ® 2(NH 4) 3 AsS 3 ,

2 S 5 + 3(NH 4) 2 S ® 2(NH 4) 3 AsS 4 ,

As 2 S 5 + 40HNO 3 + 4H 2 O ® 6H 2 AsO 4 + 15H 2 SO 4 + 40NO.

В этих реакциях образуются тиоарсениты и тиоарсенаты – соли соответствующих тиокислот (аналогичных тиосерной кислоте).

В реакции мышьяка с активными металлами образуются солеобразные арсениды, которые гидролизуются водой Особенно быстро реакция идет в кислой среде с образованием арсина: Ca 3 As 2 + 6HCl ® 3CaCl 2 + 2AsH 3 . Арсениды малоактивных металлов – GaAs, InAs и др. имеют алмазоподобную атомную решетку. Арсин – бесцветный очень ядовитый газ без запаха, но примеси придают ему запах чеснока. Арсин медленно разлагается на элементы уже при комнатной температуре и быстро – при нагревании.

Мышьяк образует множество мышьякорганических соединений, например, тетраметилдиарсин (CH 3) 2 As–As(CH 3) 2 . Еще в 1760 директор Сервской фарфоровой фабрики Луи Клод Каде де Гассикур, перегоняя ацетат калия с оксидом мышьяка(III), неожиданно получил содержащую мышьяк дымящуюся жидкость с отвратительным запахом, которую назвали аларсином, или жидкостью Каде. Как выяснили впоследствии, в этой жидкости содержались впервые полученные органические производные мышьяка: так называемая окись какодила, которая образовалась в результате реакции

4CH 3 COOK + As 2 O 3 ® (CH 3) 2 As–O–As(CH 3) 2 + 2K 2 CO 3 + 2CO 2 , и дикакодил (CH 3) 2 As–As(CH 3) 2 . Какодил (от греч. «какос» – дурной) был одним из первых радикалов, открытых в органических соединениях.

В 1854 парижский профессор химии Огюст Каур синтезировал триметиларсин действием метилиодида на арсенид натрия: 3CH 3 I + AsNa 3 ® (CH 3) 3 As + 3NaI.

В последующем для синтезов использовали трихлорид мышьяка, например,

(CH 3) 2 Zn + 2AsCl 3 ® 2(CH 3) 3 As + 3ZnCl 2 .

В 1882 были получены ароматические арсины действием металлического натрия на смесь арилгалогенидов и трихлорида мышьяка: 3C 6 H 5 Cl + AsCl 3 + 6Na ® (C 6 H 5) 3 As + 6NaCl. Наиболее интенсивно химия органических производных мышьяка развивалась в 20-е годы 20 в., когда у некоторых из них были обнаружены противомикробное, а также раздражающее и кожно-нарывное действие. В настоящее время синтезированы десятки тысяч мышьякорганических соединений.

Получение мышьяка.

Мышьяк получают, в основном, как побочный продукт переработки медных, свинцовых, цинковых и кобальтовых руд, а также при добыче золота. Некоторые полиметаллические руды содержат до 12% мышьяка. При нагревании таких руд до 650–700° С в отсутствие воздуха мышьяк возгоняется, а при нагревании на воздухе образуется летучий оксид As 2 O 3 – «белый мышьяк». Его конденсируют и нагревают с углем, при этом происходит восстановление мышьяка. Получение мышьяка – вредное производство. Раньше, когда слово «экология» было известно лишь узким специалистам, «белый мышьяк» выпускали в атмосферу, и он оседал на соседних полях и лесах. В отходящих газах мышьяковых заводов содержится от 20 до 250 мг/м 3 As 2 O 3 , тогда как обычно в воздухе содержится примерно 0,00001мг/м 3 . Среднесуточной допустимой концентрацией мышьяка в воздухе считают всего 0,003 мг/м 3 . Парадоксально, но и сейчас намного сильнее загрязняют окружающую среду мышьяком не заводы по его производству, а предприятия цветной металлургии и электростанции, сжигающие каменный уголь. В донных осадках вблизи медеплавильных заводов содержится огромное количество мышьяка – до 10 г/кг. Мышьяк может попасть в почву и с фосфорными удобрениями.

И еще один парадокс: получают мышьяка больше, чем его требуется; это довольно редкий случай. В Швеции «ненужный» мышьяк вынуждены были даже захоранивать в железобетонных контейнерах в глубоких заброшенных шахтах.

Главный промышленный минерал мышьяка – арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в Грузии, Средней Азии и Казахстане, в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые – в Канаде, мышьяково-оловянные – в Боливии и Англии. Кроме того, известны золото-мышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии, на Урале, в Сибири, Забайкалье и на Чукотке.

Определение мышьяка.

Качественной реакцией на мышьяк является осаждение желтого сульфида As 2 S 3 из солянокислых растворов. Следы определяют реакцией Марша или методом Гутцейта: полоски бумаги, смоченные HgCl 2 , темнеют в присутствии арсина, который восстанавливает сулему до ртути.

В последние десятилетия разработаны различные чувствительные методы анализа, с помощью которых можно количественно определить ничтожные концентрации мышьяка, например, в природных водах. В их числе пламенная атомно-абсорбционная спектрометрия, атомно-эмиссионная спектрометрия, масс-спектрометрия, атомно-флуоресцентная спектрометрия, нейтронный активационный анализ... Если мышьяка в воде очень мало, может потребоваться предварительное концентрирование образцов. Используя такое концентрирование, группа харьковских ученых из Национальной академии наук Украины разработала в 1999 экстракционно-рентгенофлуоресцентный метод определения мышьяка (а также селена) в питьевой воде с чувствительностью до 2,5–5 мкг/л.

Для раздельного определения соединений As(III) и As(V) их предварительно отделяют друг от друга с помощью хорошо известных экстракционных и хроматографических методов, а также используя селективное гидрирование. Экстракцию обычно осуществляют с помощью дитиокарбамата натрия или пирролидиндитиокарбамата аммония. Эти соединения образуют с As(III) нерастворимые в воде комплексы, которые можно извлечь хлороформом. Затем с помощью окисления азотной кислотой мышьяк можно снова перевести в водную фазу. Во второй пробе с помощью восстановителя переводят арсенат в арсенит, а затем производят аналогичную экстракцию. Так определяют «общий мышьяк», а затем вычитанием первого результата из второго определяют As(III) и As(V) порознь. Если в воде есть органические соединения мышьяка, их обычно переводят в метилдииодарсин CH 3 AsI 2 или в диметилиодарсин (CH 3) 2 AsI, которые определяют тем или иным хроматографическим методом. Так, с помощью высокоэффективной жидкостной хроматографии можно определить нанограммовые количества вещества.

Многие мышьяковые соединения можно анализировать так называемым гидридным методом. Он заключается в селективном восстановлении анализируемого вещества в летучий арсин. Так, неорганические арсениты восстанавливаются до AsH 3 при рН 5 – 7, а при рН

Чувствителен и нейтронно-активационный метод. Он заключается в облучении образца нейтронами, при этом ядра 75 As захватывают нейтроны и превращаются в радионуклид 76 As, который обнаруживается по характерной радиоактивности с периодом полураспада 26 часов. Так можно обнаружить до 10 –10 % мышьяка в образце, т.е. 1 мг на 1000 т вещества

Применение мышьяка.

Около 97% добываемого мышьяка используют в виде его соединений. Чистый мышьяк применяют редко. В год во всем мире получают и используют всего несколько сотен тонн металлического мышьяка. В количестве 3% мышьяк улучшает качество подшипниковых сплавов. Добавки мышьяка к свинцу заметно повышают его твердость, что используется при производстве свинцовых аккумуляторов и кабелей. Малые добавки мышьяка повышают коррозионную устойчивость и улучшают термические свойства меди и латуни. Мышьяк высокой степени очистки применяют в производстве полупроводниковых приборов, в которых его сплавляют с кремнием или с германием. Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа.

Мышьяк как ценную присадку используют и в цветной металлургии. Так, добавка к свинцу 0,2...1% As значительно повышает его твердость. Уже давно заметили, что если в расплавленный свинец добавить немного мышьяка, то при отливке дроби получаются шарики правильной сферической формы. Добавка 0,15...0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки. Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов. И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса – лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды: во-первых, для здоровья людей; во-вторых, для металла – значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Более широкое применение имеют различные соединения мышьяка, которые ежегодно производятся десятками тысяч тонн. Оксид As 2 O 3 применяют в стекловарении в качестве осветлителя стекла. Еще древним стеклоделам было известно, что белый мышьяк делает стекло «глухим», т.е. непрозрачным. Однако небольшие добавки этого вещества, напротив, осветляют стекло. Мышьяк и сейчас входит в рецептуры некоторых стекол, например, «венского» стекла для термометров.

Соединения мышьяка применяют в качестве антисептика для предохранения от порчи и консервирования шкур, мехов и чучел, для пропитки древесины, как компонент необрастающих красок для днищ судов. В этом качестве используют соли мышьяковой и мышьяковистой кислот: Na 2 HAsO 4 , PbHAsO 4 , Ca 3 (AsO 3) 2 и др. Биологическая активность производных мышьяка заинтересовала ветеринаров, агрономов, специалистов санэпидслужбы. В итоге появились мышьяксодержащие стимуляторы роста и продуктивности скота, противоглистные средства, лекарства для профилактики болезней молодняка на животноводческих фермах. Соединения мышьяка (As 2 O 3 , Ca 3 As 2 , Na 3 As, парижская зелень) используются для борьбы с насекомыми, грызунами, а также с сорняками. Раньше такое применение было широко распространено, особенно при обработке фруктовых деревьев, табачных и хлопковых плантаций, для избавления домашнего скота от вшей и блох, для стимулирования прироста в птицеводстве и свиноводстве, а также для высушивания хлопчатника перед уборкой. Еще в Древнем Китае оксидом мышьяка обрабатывали рисовые посевы, чтобы уберечь их от крыс и грибковых заболеваний и таким образом поднять урожай. А в Южном Вьетнаме американские войска применяли в качестве дефолианта какодиловую кислоту («Эйджент блю»). Сейчас из-за ядовитости соединений мышьяка их использование в сельском хозяйстве ограничено.

Важные области применения соединений мышьяка – производство полупроводниковых материалов и микросхем, волоконной оптики, выращивание монокристаллов для лазеров, пленочная электроника. Для введения небольших строго дозированных количеств этого элемента в полупроводники применяют газообразный арсин. Арсениды галлия GaAs и индия InAs применяют при изготовлении диодов, транзисторов, лазеров.

Ограниченное применение находит мышьяк и в медицине. Изотопы мышьяка 72 As, 74 As и 76 As с удобными для исследований периодами полураспада (26 ч, 17,8 сут. и 26,3 ч соответственно) применяются для диагностики различных заболеваний.

Илья Леенсон



Контрольная работа

    Напишите электронные формулы атомов мышьяка и ванадия. Укажите, на каких подуровнях расположены валентные электроны в атомах этих элементов.

Электронные формулы отображают распределение электронов в атоме по энергетическим уровням, подуровням (атомным орбиталям). Электронная конфигурация обозначается группами символов nl x , где n – главное квантовое число, l – орбитальное квантовое число (вместо него указывают соответствующее буквенное обозначение – s , p , d , f ), x – число электронов в данном подуровне (орбитали). При этом следует учитывать, что электрон занимает тот энергетический подуровень, на котором он обладает наименьшей энергией – меньшая сумма n +1 (правило Клечковского). Последовательность заполнения энергетических уровней и подуровней следующая:

1s→2s→2р→3s→3р→4s→3d→4р→5s→4d→5р→6s→(5d 1) →4f→5d→6р→7s→(6d 1-2)→5f→6d→7р

Так как число электронов в атоме того или иного элемента равно его порядковому номеру в таблице Д.И. Менделеева, то для элементов мышьяка (Аs порядковый № 33) и ванадия(V –порядковый № 23) электронные формулы имеют вид:

V 23 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 3

Аs 33 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 10 4р 3

Валентные электроны ванадия - 4s 2 3d 3 - находятся на 4s и 3d подуровнях;

Валентные электроны мышьяка 4s 2 4р 3 находятся на 4s и 4р подуровнях. Таким обра-зом, эти элементы не являются электронными аналогами и не должны размещаться в одной и той же подгруппе. Но на валентных орбиталях атомов этих элементов находится одинаковое число электронов – 5. Поэтому оба элемента помещают в одну и ту же группу периодической системы Д.И.Менделеева.

    У кого элемента – фосфора или сурьмы- ярче выражены окислительные свойства? Дайте ответ на основе сравнения электронных структур атомов этих элементов.

Фосфор 15-ый элемент в Периодической системе Д.И. Менделеева. Его электронная формула 1s 2 2s 2 2р 6 3s 2 3р 3

Сурьма 51-ый элемент в Периодической системе Д.И. Менделеева. Ее электронная формула 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 10 4р 6 5s 2 4d 10 5р 3

На внешних электронных подуровнях этих элементов по 5 электронов, следовательно они относятся к 5-ой группе периодической системы.

Окислительные свойства связаны с положением элементов в Периодической системе Д.И. Менделеева. В каждой группе Периодической системы элемент с более высоким порядковым номером обладает более ярко выраженными восстановительными свойствами в своей группе, а элемент с меньшим порядковым номером - более сильными окислительными свойствами.

У фосфора окислительные свойства выражены сильнее, чем у сурьмы. так как радиус атома меньше и валентные электроны сильнее притягиваются к ядру.

    Почему у азота, кислорода, фтора, железа, кобальта и никеля максимальная валентность ниже номера группы, в которой расположены указанные элементы, а у их электронных аналогов максимальная валентность соответствует номеру группы?

Свойства элементов, формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов.

Высшую степень окисления элемента определяет номер группы периодической системы Д.И. Менделеева, в которой он находится. Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того количества электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки (ns 2 nр 6).

Так как у элементов второго периода отсутствует d-подуровень, то азот, кислород и фтор не могут достигать валентности равной номеру группы. У них нет возможности распаривать электроны. У фтора максимальная валентность может быть равной единице, у кислорода два, а у азота – три. Возбуждение 2s-электрона может происходить только на уровень с n = 3, что энергетически крайне невыгодно Для образования незаполненных АО необходимо, чтобы этот процесс был энергетически выгодным., но энергия, необходимая для перевода 2s -электрона на 3d - слишком велика. Взаимодействие атомов с образованием связи между ними происходит только при наличии орбиталей с близкими энергиями, т.е. орбиталей с одинаковым главным квантовым числом В отличие от азота, кислорода, фтора атомы фосфора серы, хлора могут образовывать соответственно пять, шесть, семь ковалентных связей.. В этом случае возможно участие 3s-электронов в образовании связей, поскольку d-АО (3d) имеют такое же главное квантовое число.

Для большинства d-элементов высшая валентность может отличаться от номера группы. Валентные возможности d-элемента в конкретном, случае определяются структурой электронной оболочки атома. d-элементы могут иметь минимальную валентность выше номера группы (медь, серебро) и ниже номера группы (железо, кобальт, никель).

    Термохимическое уравнение реакции:

СО(г)+2 H 2 (г)= CH 3 OH (ж)+128 кДж

Вычислите, при какой температуре наступает равновесие в этой системе?

При экзотермических реакциях энтальпия системы уменьшается и ΔH< 0 (Н 2 < H 1). Тепловые эффекты выражаются через ΔH.

В основе термохимических расчетов лежит закон Гесса (1840 г.): тепловой эффект реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода.

В термохимических расчетах применяют чаще следствие из закона Гесса: тепловой эффект реакции (ΔHх.р) равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрических коэффициентов.

Энтропия S, так же энтальпия Н является свойством вещества, пропорциональным его количеству Энтропия является функцией состояния, т.е. ее изменение (ΔS) зависит только от начального (S 1) и конечного (S 2) состояния и не зависит от пути процесса:

ΔSх.р = ΣS 0 прод – ΣS 0 исх.

Так как энтропия растет с повышением температуры, то можно считать,

что мера беспорядка ≈ ТΔS. При Р =const и Т = const общую движущую силу процесса, которую обозначают ΔG, можно найти из соотношения:

ΔG = (Н 2 – H 1) – (TS 2 – TS 1); ΔG = ΔH – TΔS.

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V 1) равна скорости обратной реакции (V 2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются

В состояния равновесия

ΔG = 0 и ΔH = TΔS.

Находим ΔS. для данной системы:

S 0 (СО)=197,55∙10 -3 кДж/моль·К;

S 0 (Н 2)=130,52·10 -3 кДж/моль·К;

S 0 (СН 3 ОН)=126,78·10 -3 кДж/моль·К;

ΔSх.р=126,78·10 -3 -(197,55∙10 -3 +2·130,52·10 -3)=-331,81·10 -3

Из условия равновесия

ΔH = TΔS находим Т = ΔH/ΔS

    Вычислите температурный коэффициент реакции (γ), если константа скорости этой реакции при 120 градусах С равна 5,88∙10 -4 , а при 170 градусах С 6,7∙10 -2

Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле:

,

где v t 1 , v t 2 - скорости реакции соответственно при начальной (t 1) и конечной (t 2) температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры реагирующих веществ на 10º.

Отсюда следует, что

,

Исходя из условия задачи, следует, что:

, откуда γ 5 =113,94;

    В каком направлении произойдёт смещение равновесия в системах при повышении давления:

2NO+O 2 – 2NO 2

4HCI(г )+O 2 – 2H 2 O(г )+2CI 2

H 2 + S (к) – H 2 S

Принцип Ле Шателье (принцип смещения равновесия), устанавливает, что внешнее воздействие, выводящее систему из состояния термодинамического равновесия, вызывает в системе процессы, стремящиеся ослабить эффект воздействия.

При увеличении давления смещение равновесия связано с уменьшением общего объёма системы, а уменьшению давления сопутствуют физ. или хим.процессы, приводящие к увеличению объема.

2NO+O 2 → 2NO 2

2моля + 1моль → 2 моля

Увеличение давления приводит к смещению равновесия в сторону реакции, ведущей к образованию меньшего числа молекул. Следовательно равновесие смещается в сторону образования NО 2 V пр > V обр.

4HCI(г)+O 2 → 2H 2 O(г)+2CI 2

4 моля + 1 моль →4 моля

Увеличение давления приводит к смещению равновесия в сторону реакции, ведущей к образованию меньшего числа молекул. Следовательно V пр > V обр

H 2 +S(к) → H 2 S

в ходе реакции не происходит изменение объема. Следовательно изменение давления никак не влияет на смещение равновесия реакции.

Мышьяк - минерал из класса самородных элементов, полуметалл, химическая формула As. Обычны примеси Sb, S, Fe, Ag, Ni; реже Bi и V. Содержание As в самородном мышьяке достигает 98%. Химический элемент 15-й группы (по устаревшей классификации - главной подгруппы пятой группы) четвёртого периода периодической системы; имеет атомный номер 33. Мышьяк (неочищенный мышьяк) представляет собой твердое вещество, извлекаемое из природных арсенопиритов. Он существует в двух основных формах: обыкновенный, так называемый «металлический» мышьяк, в виде блестящих кристаллов стального цвета, хрупких, не растворимых в воде и желтый мышьяк, кристаллический, довольно неустойчивый. Мышьяк используется в производстве дисульфида мышьяка, крупной дроби, твердой бронзы и различных других сплавов (олова, меди и т.п.)

Смотрите так же:

СТРУКТУРА

Кристаллическая структура мышьяка дитригонально-скаленоэдрическая симметрия. Сингония тригональная, в. с. L633L23PC. Кристаллы крайне редки, имеют ромбоэдрический или псевдокубический габитус.

Установлено несколько аллотропных модификаций мышьяка. В обычных условиях устойчив металлический, или серый мышьяк (альфа-мышьяк). Кристаллическая решетка серого мышьяка ромбоэдрическая, слоистая, с периодом а=4,123 А, угол а = 54° 10′. Плотность (при температуре 20° С) 5,72 г/см 3 ; температурный коэфф. линейного расширения 3,36 10 град; удельное электрическое сопротивление (температура 0° С) 35 10 -6 ом см; НВ = ж 147; коэфф. сжимаемости (при температуре 30° С) 4,5 х 10 -6 cm 2 /кг. Температура плавления альфа-мышьяка 816° С при давлении 36 атмосфер.

Под атм. давлением мышьяк возгоняется при температуре 615° С не плавясь. Теплота сублимации 102 кал/г. Пары мышьяка бесцветны, до т-ры 800° С состоят из молекул As 4 , от 800 до 1700° С - из смеси As 4 и As 2 , выше температуры 1700° С - только из As 2 . При быстрой конденсации паров мышьяк на поверхности, охлаждаемой жидким воздухом, образуется желтый мышьяк- прозрачные мягкие кристаллы кубической системы с плотностью 1,97 г/см 3 . Известны также другие метастабильные модификации мышьяка: бета-мышьяк - аморфная стеклообразная, гамма-мышьяк - желто-коричневая и дельта-мышьяк - коричневая аморфная с плотностями соответственно 4,73; 4,97 и 5,10 г/см 3 . Выше температуры 270° С эти модификации переходят в серый мышьяк.

СВОЙСТВА

Цвет на свежем изломе цинково-белый, оловянно-белый до светло-серого, быстро тускнеет за счет образования тёмно-серой побежалости; чёрный на выветрелой поверхности. Твёрдость по шкале Мооса 3 — 3,5. Плотность 5,63 — 5,8 г/см 3 . Хрупкий. Диагностируется по характерному запаху чеснока при ударе. Спайность совершенная по {0001} и менее совершенная по {0112}. Излом зернистый. Уд. вес 5,63-5,78. Черта серая, оловянно-белая. Блеск металлический, сильный (в свежем изломе), быстро тускнеет и становится матовым на окислившейся, почерневшей с течением времени поверхности. Является диамагнетиком.

МОРФОЛОГИЯ


Мышьяк обычно наблюдается в виде корок с натечной почковидной поверхностью, сталактитов, скорлуповатых образований, в изломе обнаруживающих кристаллически-зернистое строение. Самородный мышьяк довольно легко узнается по форме выделений, почерневшей поверхности, значительному удельному весу, сильному металлическому блеску в свежем изломе и совершенной спайности. Под паяльной трубкой улетучивается, не плавясь (при температуре около 360°), издавая характерный чесночный запах и образуя белый налет As 2 О 3 на угле. В жидкое состояние переходит лишь при повышенном внешнем давлении. В закрытой трубке образует зеркало мышьяка. При резком ударе молотком издает чесночный запах.

ПРОИСХОЖДЕНИЕ

Мышьяк встречается в гидротермальных месторождениях в виде метаколлоидных образований в пустотах, образуясь, очевидно, в последние моменты гидротермальной деятельности. В ассоциации с ним могут встречаться различные по составу мышьяковистые, сурьмянистые, реже сернистые соединения никеля, кобальта, серебра, свинца и др., а также нерудные минералы.

В литературе имеются указания на вторичное происхождение мышьяка в зонах выветривания месторождений мышьяковистых руд, что, вообще говоря, мало вероятно, если учесть, что в этих условиях он очень неустойчив и, быстро окисляясь, разлагается полностью. Черные корочки состоят из тонкой смеси мышьяка и арсенолита (As 2 О 3). В конце концов образуется чистый арсенолит.

В земной коре концентрация мышьяка невелика и составляет 1,5 промилле. Он встречается в почве и минералах и может попасть в воздух, воду и грунт благодаря ветровой и водной эрозии. Кроме того, элемент поступает в атмосферу из других источников. В результате извержения вулканов в воздух выделяется около 3 тыс. т мышьяка в год, микроорганизмы образуют 20 тыс. т летучего метиларсина в год, а в результате сжигания ископаемого топлива за тот же период выделяется 80 тыс. т.

На территории СССР самородный мышьяк был встречен в нескольких месторождениях. Из них отметим Садонское гидротермальное свинцово-цинковое месторождение, где он неоднократно наблюдался в виде почковидных масс на кристаллическом кальците с галенитом и сфалеритом. Крупные почкообразные скопления самородного мышьяка с концентрически-скорлуповатым строением были встречены на левом берегу р. Чикоя (Забайкалье). В парагенезисе с ним наблюдался лишь кальцит в виде оторочек на стенках тонких жил, секущих древние кристаллические сланцы. В виде обломков (рис. 76) мышьяк был найден также в районе ст. Джалинда, Амурской ж. д. и в других местах.

В ряде месторождений Саксонии (Фрейберг, Шнееберг, Аннаберг и др.) самородный мышьяк наблюдался в ассоциации с мышьяковистыми соединениями кобальта, никеля, серебра, самородным висмутом и др. Все эти и другие находки этого минерала практического значения не имеют.

ПРИМЕНЕНИЕ


Мышьяк используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца существенно возрастают. Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда полезных и важных полупроводниковых материалов - арсенидов (например, арсенида галлия) и других полупроводниковых материалов с кристаллической решёткой типа цинковой обманки.

Сульфидные соединения мышьяка - аурипигмент и реальгар - используются в живописи в качестве красок и в кожевенной отрасли промышленности в качестве средств для удаления волос с кожи. В пиротехнике реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (при горении образует ярко-белое пламя).
Некоторые элементоорганические соединения мышьяка являются боевыми отравляющими веществами, например, люизит.

В начале XX века некоторые производные какодила, например, сальварсан, применяли для лечения сифилиса, со временем эти препараты были вытеснены из медицинского применения для лечения сифилиса другими, менее токсичными и более эффективными, фармацевтическими препаратами, не содержащими мышьяк.

Многие из мышьяковых соединений в очень малых дозах применяются в качестве препаратов для борьбы с малокровием и рядом других тяжелых заболеваний, так как оказывают клинически заметное стимулирующее влияние на ряд специфических функций организма, в частности, на кроветворение. Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство. Этот препарат в обиходе и жаргонно называли «мышьяк» и применяли в стоматологии для локального омертвления зубного нерва. В настоящее время препараты мышьяка редко применяются в зубоврачебной практике из-за их токсичности. Сейчас разработаны и применяются другие методы безболезненного омертвления нерва зуба под местной анестезией.

Мышьяк (англ. Arsenic) — As

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.01-10
Nickel-Strunz (10-ое издание) 1.CA.05
Dana (7-ое издание) 1.3.1.1
Dana (8-ое издание) 1.3.1.1
Hey’s CIM Ref. 1.33