На свободную тему

Физические и химические свойства известняка. Различают обычные удобрения и листовые. Известняк в качестве удобрения в сельском хозяйстве

Материал для учащихся 9

«Палеонтология и карбонат кальция»

Карбонат кальция

Карбонат кальция (углекислый кальций) - неорганическое химическое соединение, соль угольной кислоты и кальция.

Химическая формула - CaCO 3 .

Карбонат кальция в природе

Карбонат кальция основа большинства природных минералов кальция (мел, мрамор, известняк, ракушечник, кальцит, исландский шпат). В чистом виде вещество белого цвета или бесцветные кристаллы. Соединения кальция - известняк, мрамор, гипс (а также известь - продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым веществом. В 1789 году А. Лавуазье предположил, что известь , магнезия, барит, глинозём и кремнезём - вещества сложные.

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Соединения кальция находятся практически во всех животных и растительных тканях. Значительное количество кальция входит в состав живых организмов. Из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция - около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Химические свойства карбоната кальция


  1. Карбонат кальция при нагревании разлагается на соответствующий оксид и углекислый газ.
CaCO 3 → CaO + CO 2

  1. С водой, содержащей растворенный диоксид углерода, карбонат кальция реагирует, образуя растворы гидрокарбонатов:
CaCO 3 + CO 2 + H 2 O = Ca 2 + + 2HCO 3 -

При нагревании и даже при попытке выделить гидрокарбонат из раствора , удаляя воду при комнатной температуре, он разлагается по обратной реакции:

Ca 2 + + 2HCO 3 - = CaCO 3 + CO 2 + H 2 O.


  1. Карбонат кальция взаимодействует с кислотами с выделением углекислого газа
CaCO 3 ( мрамор ) + 2HCl CaCl 2 + H 2 O + CO 2

  1. Карбонат кальция не растворим в воде и этаноле.
Кальцит

Кальцит, известковый шпат - минерал, одна из природных форм карбоната кальция. Исключительно широко распространён на поверхности Земли, породообразующий минерал. Кальцитом сложены известняки, меловые породы, мергели, карбонатиты. Кальцит - самый распространённый биоминерал: он входит в состав раковин и эндоскелета большинства беспозвоночных, а также покровных структур некоторых одноклеточных организмов.

Название предложено Гайдингером в 1845 году и происходит , как и название химического элемента, от лат. calx (род.п. calcis) - известь.

В чистом виде кальцит белый или бесцветный, прозрачный (исландский шпат) или просвечивающий, - в зависимости от степени совершенства кристаллической структуры. Примеси окрашивают его в разные цвета.



Кальцит относится к тригональной сингонии. Кристаллы очень разнообразны, но чаще ромбоэдрические (острый, основной и тупой ромбоэдры). Кальцит слагает горную породу мрамор, является главной составной частью известняков. Нередко образует псевдоморфозы по органическим остаткам, замещает раковины древних моллюсков и кораллы («окаменелости»).

Известняк

Известняк - осадочная горная порода органического происхождения, состоящая преимущественно из кристаллов кальцита различного размера и образующаяся при участии живых организмов в морских бассейнах.

Известняк, состоящий преимущественно из раковин морских животных и их обломков, называется ракушечником. При метаморфизме известняк перекристаллизуется и образует мрамор.

Название разновидности известняка отражает присутствие в нём остатков породообразующих организмов, район распространения , структуру (например, оолитовые известняки), примесей (железистые), характер залегания (плитняковые), геологический возраст (триасовые).

Из известняков сложены целые горные цепи в Альпах, широко распространён известняк и в других местах. У известняка нет блеска, он обычно светло-серого цвета, но может быть белым или тёмным, почти чёрным, голубоватым, желтоватым или розовым, в зависимости от состава примесей.

Мрамор

Мрамор (др.-греч. μάρμαρος - «белый или блестящий камень») - метаморфическая горная порода, состоящая только из кальцита , а также органических соединений. Мраморы появляются путем метаморфизма при средних температурах и давлениях из преимущественно карбонатных осадочных пород. При этих условиях очень мелкие зерна карбоната кальция и магния осадочных пород испытывают «бластез» - укрупнение кристаллов.

В мире разведано огромное количество месторождений мрамора. Самые известные - Каррарское в Италии, Паросское и Пенделиконское в Греции. В России это Кибик-Кордонское в Красноярском крае, Буровщина в Забайкалье, Уфалейское на Урале, Рускеальское и Белогорское в Карелии. Окраска мрамора также зависит от примесей.


Палеонтология

Палеонтология (от др.-греч. παλαιοντολογία) - наука об организмах, существовавших в прошлые геологические периоды и сохранившихся в виде ископаемых останков, а также следов их жизнедеятельности.

Палеонтологи исследуют не только останки собственно животных и растений, но и их окаменевшие следы, отброшенные оболочки и другие свидетельства их существования. В палеонтологии также используются методы палеоэкологии и палеоклиматологии с целью воспроизведения среды жизнедеятельности организмов , сопоставления современной среды обитания организмов, предположения местообитаний вымерших и т. д.

Ископаемые останки или окаменелости человек использовал, начиная с палеолита. Об этом свидетельствуют находки ожерелий из фрагментов вымерших кораллов и морских ежей, использовавшихся в ритуалах погребения, и другие археологические находки. Различные ископаемые упоминаются в преданиях, мифах и сказках. Так, белемниты называют «чёртовы пальцы» и в восточных сказках их рассматривают как ногти джинов, раковины фораминифер – нуммулитид в сказаниях о битвах Александра Македонского описывают как окаменевшие монетки.

Первые научные письменные документы об ископаемых организмах принадлежат древнегреческим естествоиспытателям и философам. Успехи естествознания древних греков были обобщены в трудах Аристотеля , жившего в 384–322 гг. до новой эры, – великого мыслителя своего времени, который создал основы классификации животных, зачатки сравнительной анатомии и эмбриологии. Окаменелости он считал остатками морских животных. Спустя много столетий в XV–XVI вв. такой взгляд на окаменелости поддерживал Леонардо да Винчи (1452–1519), хотя в то время существовали иные точки зрения, в частности, что окаменелости – это объекты, созданные богом после потопа.

В XVII–XVIII вв. начинаются интенсивные исследования в различных отраслях естествознания. Это привело не только к накоплению огромного фактического материала , но и к появлению различных идей, гипотез. Большое значение в развитии палеонтологии имели труды шведского учёного Карла Линнея (1707–1778 гг.) – основоположника классификации и систематики. Он разделил всю природу на три царства: минералов, растений и животных. Одновременно с Линнеем работали блестящие учёные: во Франции Жорж Бюффон (1707–1788) и в России – Михаил Ломоносов (1711–1765).

Бюффон, рассматривая происхождение и развитие жизни, историю животного и растительного мира, подчёркивал единый план строения животных, говорил о наличии промежуточных форм между разными группами животных и считал, что история развития Земли насчитывает до 75 000 лет.

М. Ломоносов в своей книге «О слоях земных» объяснял происхождение осадочных горных пород образованием их в морских бассейнах. Ископаемые моллюски , встреченные в этих породах, обязаны своим происхождением морям, существовавшим в прошедшие геологические эпохи. Ломоносов представлял себе смену различных периодов жизни на Земле как последовательное чередование наступления и отступления морей, объясняя эти явления медленными колебаниями суши. Область распространения живых существ на Земле образует особую оболочку, называемую биосферой. Биосфера возникла с появлением на Земле живых существ: она занимает всю поверхность суши, все водоёмы Земли (океаны, моря, озёра, реки), проникает в атмосферу – большинство организмов поднимается в воздух более чем на 50 – 70 м, а споры бактерий и грибов заносятся на высоту до 22 км. Жизнь проникается в литосферу, где она концентрируется в основном в поверхности слоёв на глубине до 6-8 м, но некоторые бактерии найдены в слоях на глубине до 2-3 км.

В 90-х годах XVIII века и начале XIX века геодезист и горный инженер Уильям Смит активно использовал окаменелости , чтобы установить связь между горными пластами в разных местах. Он установил принцип последовательности фаун, согласно которому каждый пласт осадочной породы содержит определенный тип окаменелостей, которые следуют друг за другом в предсказуемом порядке даже в пластах, разделенных огромным расстоянием.

Новый этап в развитии палеонтологии начинается с появлением в 1859 году наиболее завершённой на тот момент теории эволюции Чарльза Дарвина, оказавшей определяющее влияние на всё дальнейшее развитие естествознания. Современная эволюционная палеонтология была основана Владимиром Ковалевским. Именно благодаря исследованиям Ковалевского и его находкам дарвинизм приобрёл палеонтологически обоснованную базу.

Условия существования на земле очень разнообразны и определяются факторами как неорганического, так и органического порядка. К неорганическим факторам относятся: температура, влажность , солёность воды, глубина бассейна, давление. К органическим факторам относятся те взаимоотношения, в которые вступают организмы между собой. Эти взаимоотношения в первую очередь выражаются пищевыми связями. Каждый вид обладает своим ареалом, занимая различные части земной поверхности. Все организмы на земле живут сообществами, называемыми биоценозами. Организмы, входящие в состав биоценоза, по-разному реагируют на колебания того или иного фактора среды – солёности, температуры , давления. Одни могут существовать при широких колебаниях одного из факторов среды и тогда прибавляется приставка «эври»; другие не переносят даже незначительного изменения этого фактора и тогда прибавляется приставка «стено». Если это глубина – эврибатный, стенобатный; солёность – эвригалинный, стеногалинный; температура – эвритермный, стенотермный.

Аммониты – вымерший подкласс головоногих моллюсков, существовавших с девона по мел. Свое название аммониты получили в честь древнеегипетского божества Амона со спиральными рогами. Большинство аммонитов относится к экологической группе нектона , то есть свободно плавающих в толще воды организмов. Некоторые гетероморфные формы были представителями бентосного (донного) сообщества. Лучшими пловцами среди аммонитов были формы с чётко выраженным килем. Многие палеонтологи считают, что сложная лопастная линия - это приспособление к широкому распространению по вертикали в толще воды (эврибатности), так как сложная лопастная линия имеет большую площадь, лучше упрочняет раковину. Аммониты - крайне важная для стратиграфии группа морских ископаемых. Эта группа важна для определения относительного геологического возраста осадочных горных пород и для расчленения отложений юрской и меловой системы.

Наутилусы - род головоногих моллюсков. Это единственный современный род подкласса наутилоидей и единственные среди современных головоногих, имеющие наружную камерную раковину. Этот подкласс появился в кембрии, и в течение палеозоя был очень разнообразным. Спиральная раковина диаметром 15-23 см разделена на 35-39 камер, последовательно соединённых длинным сифоном. Моллюск живёт в передней, самой большой камере. Раковина используется как поплавок и балласт. Нагнетая в камеры раковины биогаз или откачивая его из них, наутилус способен всплывать к поверхности воды или погружаться в её толщу.

Белемниты - представители отряда вымерших беспозвоночных животных класса головоногих моллюсков , относятся к внутрираковинным головоногим моллюскам, так как все части их раковины располагались внутри тела. Белемниты обитали с каменноугольного по меловой период, наиболее широко распространились с триаса, вымерли в конце мезозоя. Лучше всего в ископаемом состоянии сохраняется ростр белемнита - прочное коническое образование, находившееся на заднем конце тела.

Брахиоподы - тип морских беспозвоночных животных. Известны с раннего кембрия; наибольшего расцвета достигли в девоне. На рубеже раннего и позднего палеозоя часть отрядов вымерла; в каменноугольном и пермском периодах господствовали отряды продуктид и спириферид. После пермско-триасового вымирания сохранились 4 отряда, дожившие до наших дней. Брахиоподы, благодаря богатству остатков и хорошей их сохранности , - ценные индексные ископаемые для установления геологического возраста содержащих их пластов и физико-географической обстановки, существовавших когда-то в данной местности.

Морские ежи - класс иглокожих. В ископаемом состоянии известны с ордовика. Тело морских ежей обычно почти сферическое, размером от 2-3 до 30 см; покрыто рядами известковых пластинок. Пластинки, как правило, соединены неподвижно и образуют плотный панцирь (скорлупу), не позволяющий ежу изменять форму.

Морские лилии - один из классов иглокожих. Ископаемые морские лилии известны с нижнего ордовика. Наибольшего расцвета достигали в среднем палеозое, когда их насчитывалось до 11 подклассов и свыше 5000 видов, но к концу пермского периода большая их часть вымерла. Окаменелые остатки морских лилий относятся к одним из наиболее распространённых ископаемых. Некоторые известняковые пласты, датируемые палеозоем и мезозоем, почти полностью сложены из них. Ископаемые членики стеблей криноидов , напоминающие зубчатые колёса, называются трохитами.

Двустворчатые или пластинчатожаберные моллюски – класс морских и пресноводных малоподвижных моллюсков, тело которых уплощено с боков и заключено в раковину из двух створок. Находки древнейших ископаемых двустворчатых моллюсков датируются началом кембрийского периода, их возраст составляет более 500 млн. лет. Общее число ныне живущих видов составляет приблизительно 9 200 (по другим данным, более 20 тысяч). Двустворчатые моллюски - класс беспозвоночных, исключительно водных и встречающихся в пресных и солёных водах по всему миру. Большинство являются бентосными организмами и живут, зарываясь в донные отложения или прикрепляясь к подводным предметам. Створки раковины у двустворчатых моллюсков чаще симметричны. Створки раковины соединены лигаментом - связкой, состоящей из утолщённого рогового слоя раковины. Стенка раковины состоит из трёх слоёв: наружного конхиолинового (периостракум), внутреннего известкового (остракум) и нижнего перламутрового (гипостракум). Минеральный компонент раковины может быть представлен исключительно кальцитом, как у устриц , или кальцитом и арагонитом. Иногда арагонит формирует также перламутровый слой. У остальных моллюсков слои арагонита и кальцита чередуются.

Известняки (в широком понимании) имеют чрезвычайно многообразные области применения. Они используются в виде кускового известняка, щебня, дробленого песка, минерального порошка, минеральной ваты, известняковой муки. Основные потребители – цементная промышленность (известняк, мел и мергель), строительство (получение строительной извести, бетонов, штукатурки, строительных растворов; кладка стен и фундаментов, металлургия (известняк и доломит – флюсы и огнеупоры, переработка нефелиновых руд на глинозем, цемент и соду), сельское хозяйство (известняковая мука в агротехнике и животноводстве), пищевая (особенно сахарная). В Янтиковском районе известняк добывается карьерами в с. Янтиково, с. Можарки.

Район известен обилием известковых камней, обжиг извести здесь проводился с незапамятных времен. В 1982 году на левой стороне реки Соломинка, был открыт известковый карьер. Эту используют для удобрения почвы колхозов и совхозов нашего и других соседних районов республики. На карьере ежегодно добывают 45 тыс. тон извести.

По подсчетам геологов в Можарском карьере залежи известняка составляют около 15 млн. тонн, а в Янтиковском карьере – 5 млн. тонн.

В программе социально-экономического развития Янтиковского района на 2007-2010 года указаны основные задачи по повышению эффективности использования природных ресурсов района. Также приведены ожидаемые результаты реализации программы: бюджетная обеспеченность на душу населения возрастет, увеличится уровень среднемесячной заработной платы работающих в отраслях экономики, появятся дополнительные рабочие места обеспечивающие эффективную занятость населения, увеличится объем выпуска производства промышленной продукции.

Янтиковский район входит в зону, где средне-прожиточный уровень населения считается ниже нормы, 66,7% населения района не трудоустроено. Основной проблемой в трудоустройстве безработных и незанятых граждан в районе является недостаток рабочих мест на предприятиях и в организациях района. В связи с этим мы предлагаем уделять внимание к развитию промышленного производства, в частности производства щебня, цемента, сахара. А для производства цемента и сахара, природное сырье должно иметь высокое качество. Поэтому целью нашей работы является: 1 Изучить качественный и количественный состав известняка 2-х карьеров на территории Янтиковского района.

Известняк, осадочная порода, сложенная преимущественно карбонатом кальция – кальцитом. Благодаря широкому распространению, легкости обработки и химическим свойствам известняк добывается и используется в большей степени, чем другие породы, уступая только песчано-гравийным отложениям. Известняки бывают разных цветов, включая черный, но чаще всего встречаются породы белого, серого цвета или имеющие коричневатый оттенок. Объемная плотность 2,2–2,7. Это мягкая порода, легко царапающаяся лезвием ножа. Известняки бурно вскипают при взаимодействии с разбавленной кислотой. В соответствии со своим осадочным происхождением имеют слоистое строение. Чистый известняк состоит только из кальцита (редко с небольшим содержанием другой формы карбоната кальция – арагонита). Присутствуют и примеси. Двойной карбонат кальция и магния – доломит – обычно содержится в переменных количествах, и возможны все переходы между известняком, доломитовым известняком и горной породой доломитом.

Хотя известняки могут образовываться в любых пресноводных и морских бассейнах, преобладающее большинство этих пород имеет морское происхождение. Иногда они осаждаются, подобно соли и гипсу, из воды испаряющихся озер и морских лагун, но, по-видимому, большая часть известняков отложилась в морях, не испытавших интенсивного высыхания. По всей вероятности, формирование большинства известняков начиналось с извлечения живыми организмами карбоната кальция из морской воды (для построения раковин и скелетов). Эти остатки отмерших организмов в изобилии накапливаются на морском дне. Самым ярким примером аккумуляции карбоната кальция служат коралловые рифы. В некоторых случаях в известняке различимы и узнаваемы отдельные раковины. В результате волно-прибойной деятельности и под влиянием морских течений рифы разрушаются. К известковым обломкам на морском дне добавляется карбонат кальция, осаждающийся из насыщенной им воды. В образовании более молодых известняков участвует также кальцит, поступающий из разрушенных более древних известняков.

Известняки встречаются почти на всех материках, за исключением Австралии. В России известняки обычны в центральных районах европейской части, а также распространены на Кавказе, Урале и в Сибири.

1. 2 Цемент

Цемент – это вяжущий порошкообразный материал, который образует пластическую массу, способную постепенно затвердевать в камень. Он состоит в основном из трикальциевого силиката 3 CaO SiO2.

В состав цемента могут входить разные добавки, массовое отношение оксидов определяет техническую пригодность цемента. Кремнезем входящий в его состав, связывает оксиды кальция, алюминия; при этом образуются следующие соединения силикаты – 3CaO SiO2 nH2O, 2CaO SiO2 nH2O; гидроалюминаты - 3CaO X AI2 O3 6H2O; алюмоферриты - 4CaO AI2 O3 Fe2O3.

Наиболее распространенной разновидностью цемента является портландцемент. Он обладает большой механической прочностью, устойчивостью в воздухе и под водой, морозостойкостью. Основным сырьем для производства портландцемента являются известняк и глина, содержащие оксид кремния (IV).

Известняк и глину тщательно перемешивают и их смесь обжигают в наклонных цилиндрических печах, длина которых достигает более 200 м, а в поперечнике – около 5 м. В процессе обжига печь медленно вращается и исходные материалы постепенно движутся к нижней ее части на встречу раскаленных газов – продуктов сгорания поступающего газообразного или твердого пылевидного топлива.

При повышенной температуре между глиной и известняком происходят сложные химические реакции. Простейшие из них являются обезвоживание каолинита, разложение известняка и образование силикатов и алюминатов кальция:

Al2O3 2SiO2 2H2O → Al2O3 2SiO2 + 2H2O

CaCO3 → CaO + CO2

CaO + SiO2 → CaSiO3

Образовавшиеся в результате реакций вещества спекаются в виде отдельных кусков. После охлаждения их размалывают до тонкого порошка.

Процесс затвердевания цементного теста объясняется тем, что различные силикаты и алюминаты, входящие в состав цемента, реагируют с водой с образованием каменистой массы. В зависимости от состава изготавливают различные сорта цемента.

1. 3 Гашенная известь. Гидроксид кальция используется для производства сахара

Сахарная свекла подается на завод гидравлическим транспортером и с помощью насосов подается в свекломойку. Промытая свекла поднимается элеватором 15-17 м и подает с в свеклорезку, где она измельчается, превращается в тонкую стружку. Свекловичная стружка поступает в диффузионные аппараты. Первейшая задача производства заключается в том, чтобы а полнее выделить сахар из свеклы. С этой целью через диффузоры пропускают горячую воду на встречу движущейся стружке (свекловидный жом) массовая доля сахарозы не превышает 0,5%. Диффузионный сок представляет собой непрозрачную темную жидкость. Темный цвет придают пигменты, которые относятся несасарам.

И задачей другой стадии производства заключается в том, чтобы освободить раствор сахарозы от примесей. Чтобы освободить раствор сахарозы от примесей сверху в него заливают известковое молоко из расчета 20-30 кг гидроксида кальция Cu(OH)2 на 1 кг свеклы. Под действием гидроксида кальция происходит нейтрализация диффузионного сока.

Глава 2. Экспериментальная часть работы

2. 1 Определение CaCO3 в известняке.

Наиболее простой способ определения CaCO3 в известняке заключается в том, что определенную навеску образца средней пробы известняка обрабатывают избытком титрованного раствора соляной кислоты и не вошедшей в реакцию c CaCO3 избыток HCl подвергают обратному титрованию раствором едкой щелочи. По количеству HCl, пошедшей на разложение известняка вычисляют содержание CaCO3 в известняке.

Для анализа образец средней пробы известняк (200 г) растирали в ступке, пропускали через сито в 0,5 мм отсюда отбирали новую среднюю пробу в количестве 40 г. Затем из этой средней пробы брали навеску около 2 г, поместили ее в мерную колбу емкостью на 500 мл, смачивали 5 миллитрами дистиллированной воды и осторожно приливали 50 мл 1,0-нормалного раствора соляной кислоты. После выделения углекислоты в колбу приливали 300 мл дистиллированной воды и содержимое колбы в течение 15 мин. кипятили (до полного прекращения выделения CO2). По окончании кипячения раствору дали остыть, долили в колбу до метки дистиллированной водой, перемешали и дали осадку осесть на дно колбы. После этого отобрали отсюда пипеткой 100 мл прозрачного раствора, перенесли их в коническую колбу емкостью на 250 мл и титровали 0,1-нормальным раствором едкой щелочи в присутствии 2 – 3 капель метилоранжа до появления слабо – желтой окраски раствора.

(a KHCl – bKщ) 0,005*500*100

Где a – количество миллилитров раствора, взятого для титрования; в данном случае а = 100 мл; b – количество миллиметров 0,1- нормального раствора едкой щелочи, пошедшей на титрование избытка HCl;

KHCl и Kщ - поправки на нормальность кислоты (KHCl)и щелочности,(Kщ);

0,005 – количество граммов CaCO3 , отвечающих 1 мл 1,0 – нормального раствора кислоты;

Р – навеска известняка.

CaCO3+2HCl → CaCl2+CO2+H2O

2. 2 Характерные и специфические реакции катионов магния

Общедоступных специфических реакций на катионы магния в настоящее время не имеется. Из общеаналитических реакций наиболее характерными для них являются: взаимодействие с кислым фосфорнокислым натрием.

Образование двойной фосфорнокислой магний - аммонийной соли.

К воде, где содержались соли магния приливают NH4OH до прекращения образования осадка гидрата окиси магния:

MgCl2 + 2NH4OH = ↓Mg(OH)2 + 2NH4Cl2

Затем сюда же приливают раствор хлористого аммония до полного растворения полученного гидрата окиси магния:

Mg(OH)2 + 2NH4Cl = Mg Cl2 + 2NH4OH

К полученному аммонийному раствору магниевой соли осторожно, по каплям приливают разбавленный раствор Na2HPO4. При этом из раствора выпадают мелкие белые кристаллы MgNH4PO4, часть которых в виде едва заметной пленки как бы «ползет» вверх по стенкам пробирки. Если при действии Na2HPO4 осадок образовался аморфный, для его растворения добавляют несколько капель HCl, после чего приливают раствора Na2OH и снова производят осаждение MgNH4PO4. Предельная открываемая концентрация катионов этой реакцией равна 1,2 мг/л.

Так как образование белых кристалликов MgNH4PO4 не наблюдались, значит концентрация катионов магнии

2. 3 Определение pH

Для характеристики водных растворов электролитов условно принято использовать концентрацию ионов H+. При этом для удобства величину этой концентрации выражают через так называемый водородный показатель – pH.

Водородный показатель – это отрицательный логарифм молярной концентрации ионов водорода в растворе: pH = -1g

В чистой воде, очевидно, pH = 7. Если pH 7, то раствор щелочной.

pH водных растворов определяли универсальным индикатором. В таблице приведены значения pH водных растворов известняка.

Результаты исследования двух карьеров

Месторождение карьера Содержание CaCO3 Содержание MgCO3 pH

С. Янтиково 87% >9% 8,0-8,5

С. Можарки 94,81%

1. Исследования показывают, что известняк из Можарского известкового карьера содержит 94,81% CaCO3 и 5,19% примесей.

2. Процентное содержание CaCO3 в известняке из Можарского карьера оказалась выше, чем в известняке из Янтиковского.

3. Так как по качеству и составу известняк из Можарского карьера лучше, он соответствует технологическим стандартам для производства цемента.

4. В Янтиковском районе в перспективе можно построить завод по производству сахара.

Ожидаемые результаты

Бюджетная обеспеченность на душу населения возрастет, увеличится уровень среднемесячной заработной платы работающих в отраслях экономики, появятся дополнительные рабочие места обеспечивающие эффективную занятость населения, увеличится объем выпуска производства промышленной продукции.

ОПРЕДЕЛЕНИЕ

Известняк – горная порода осадочного происхождения, преимущественно состоящая из карбоната кальция в форме кальцита.

Химический состав выражается формулой – CaCO 3 . Молярная масса – 100 г/моль.

Химические свойства основной составляющей известняка – карбоната кальция

Карбонат кальция – соединение нерастворимое в воде. При прокаливании разлагается на образующие его оксиды:

CaCO 3 = CaO + CO 2 .

Растворяется в разбавленных растворах кислот, в результате чего образуется неустойчивая угольная кислота (H 2 CO 3), которая мгновенно разлагается на углекислый газ и воду:

CaCO 3 + 2HCl dilute = CaCl 2 + CO 2 + H 2 O.

Карбонат кальция реагирует со сложными веществамикислотными оксидами, солями, аммиаком и др.:

CaCO 3 + CO 2 + H 2 O ↔ Ca(HCO 3) 2 ;

CaCO 3 + SiO 2 = CaSiO 3 + CO 2 (t);

CaCO 3 + 2NH 3 = CaCN 2 + 3H 2 O (t);

CaCO 3 + 2NH 4 Cl conc = CaCl 2 + 2NH 3 + CO 2 + H 2 O (кипение);

CaCO 3 + H 2 S = CaS + H 2 O + CO 2 (t).

Среди реакций взаимодействия карбоната кальция с простыми веществами наиболее важной является реакция взаимодействия с углеродом:

CaCO 3 + С = CaO + 2CO.

Физические свойства основной составляющей известняка – карбоната кальция

Карбонат кальция представляет собой твердые кристаллы белого цвета, практически нерастворимые в воде. Температура плавления – 1242С. Кальцит – минерал из которого состоит известняк обладает тригональной кристаллической структурой.

Получение известняка

Известняк - широко распространённая осадочная порода, образующаяся при участии живых организмов в морских бассейнах. Название разновидности известняка отражает присутствие в нём остатков породообразующих организмов, район распространения, структуру (например, оолитовые известняки), примесей (железистые), характер залегания (плитняковые), геологический возраст (триасовые).

Применение известняка

Известняк широко применяется в качестве строительного материала, мелкозернистые разновидности используют для создания скульптур.

Примеры решения задач

ПРИМЕР 1

Задание какую массу негашеной извести можно получить из известняка массой 500 г, содержащего 20% примесей.
Решение Негашеная известь – это оксид кальция (CaO), известняк – карбонат кальция (CaCO 3). Молярные массы оксида и карбоната кальция, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 56 и 100 г/моль, соответственно.

Запишем уравнение термического разложения известняка:

CaCO 3 → CaO + CO 2

ω(CaCO 3) cl = 100% — ω admixture = 100% — 20% = 80% = 0,8

Тогда, масса чистого карбоната кальция:

m(CaCO 3) cl = m limestone × ω(CaCO 3) cl / 100%;

m(CaCO 3) cl = 500 × 80 / 100% = 400 г

Количество вещества карбоната кальция равно:

n(CaCO 3) = m(CaCO 3) cl / M(CaCO 3);

n(CaCO 3) = 400 / 100 = 4 моль

Согласно уравнению реакции n(CaCO 3): n(CaO) = 1:1, следовательно n(CaCO 3) = n(CaO) = 4 моль. Тогда, масса негашеной извести будет равна:

m(CaO) = n(CaO)×M(CaO);

m(CaO) = 4×56 = 224 г.

Ответ Масса негашеной извести — 224 г.

ПРИМЕР 2

Задание Рассчитайте объем 20%-го раствора соляной кислоты (ρ = 1,1 г/мл), необходимый для получения 5,6 л (н.у.) углекислого газа из известняка.
Решение Запишем уравнение реакции:

CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O

Рассчитаем количества вещества выделившегося углекислого газа:

n(CO 2) = V(CO 2) / V m ;

n(CO 2) = 5,6 / 22,4 = 0,25 моль

Согласно уравнению реакции n(CO 2): n(HCl) = 1:2, следовательно n(HCl) = 2 × n(CO 2) = 0,5 моль. Молярная масса соляной кислоты, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 36,5 г/моль. Тогда, масса соляной кислоты будет равна:

m(HCl) = n(HCl)×M(HCl);

m(HCl) = 0,5×36,5 = 18,25 г.

Масса раствора соляной кислоты будет равна:

m(HCl) solution = m(HCl) / ω(HCl) / 100%;

m(HCl) solution = 18,25 / 20 / 100% = 91,25 г.

Зная плотность раствора соляной кислоты (см. условие задачи), рассчитаем её требуемый объем:

V(HCl) = m(HCl) solution / ρ;

V(HCl) = 91,25/1,1 = 82,91 мл.

Ответ Объем соляной кислоты — 82,91 мл.

Цель работы: определить активность извести, скорость и температуру гашения.

Основные понятия

Строительной воздушной известью называется продукт, получаемый путём обжига кальциево-магниевых горных пород до возможно более полного выделения углекислоты. Известь применяют в смеси с различными добавками для получения различных вяжущих: известково-кварцевых, известково-шлаковых, известково-глинистых и др. Из неё изготавливают силикатный кирпич, силикатные блоки, армированные крупноразмерные силикатные детали и различные другие строительные изделия.

Основным процессом при производстве воздушной извести является обжиг, при котором известняк декарбонизируется и превращается и превращается в известь по следующей реакции:

CaCO 3 + 178,58 кДж → CaO + CO 2

В лабораторных условиях диссоциация углекислого кальция протекает примерно при 900 °С, в производстве температура обжига составляет 1000-1200 °С.

Негашёная известь бывает комовой и молотой. Её получают в виде кусков светло-жёлтого или серого цвета. Она интенсивно присоединяет влагу и поэтому хранить её рекомендуется в герметично упакованном состоянии. Если в сырье содержится более 6% глинистых примесей, то продукт обжига проявляет гидравлические свойства и называется гидравлической известью.

Качество получаемой извести оценивают по активности, которая показывает общее содержание свободных оксидов кальция и магния, находящихся в активном состоянии. Кроме них в извести могут находиться оксиды MgO и CaO в неактивном состоянии; это неразложившийся карбонат и крупнокристаллические включения (пережог).

В зависимости от содержания активных CaO и MgO известь выпускается трёх сортов (табл. 9.1).

Таблица 9.1

Классификация извести по сортности

Воздушная известь может применяться в гашёном виде.

Гашёная известь бывает в виде пушонки, теста или молока. Содержание влаги в пушонке не превышает 5%, в тесте менее 45%. Процесс гашения протекает по следующей схеме:

CaO + H 2 O Ca (OH ) 2 +65,1 кДж

и сопровождается выделением тепла, что вызывает подъём температуры, способный воспламенить дерево. Гидратация оксида кальция – реакция обратимая, её направление зависит от температуры и давления водяных паров в окружающей среде. Упругость диссоциации Ca(OH) 2 на CaO и H 2 O достигает атмосферного давления при 547 °С, при более высокой температуре гидроксид кальция может частично разлагаться. Чтобы процесс шёл в нужном направлении, необходимо стремиться к повышению упругости водяных паров над Ca(OH) 2 и не допускать слишком высокой температуры. Вместе с тем следует избегать и переохлаждения гасящейся извести, так как это сильно замедляет гашение. Более половины её зёрен имеют размер, не превышающий 0,01 мм. Парообразование защищает материал от чрезмерного повышение температуры.

Объём пушонки при гашении извести в 2-3 раза превышает объём исходной негашёной извести за счёт увеличения объёма пустот (пор) между отдельными зёрнами образующегося материала. Плотность негашёной извести в среднем равна 3200, а гашёной – 2200 кг/м 3 .

Для гашения извести в пушонку теоретически необходимо добавлять 32,13 % воды по массе. Практически в зависимости от состава извести, степени её обжига и способа гашения, берут примерно в два, а иногда в три раза больше воды, так как под действием тепла, выделяющегося при гашении, происходит парообразование, и часть воды удаляется.

В зависимости от температуры, развиваемой при гашении, различают высокоэкзотермичную (t гаш. >50 °C) и низкоэкзотермичную (t гаш. <50 °C) известь, а по скорости гашения: быстрогасящуюся (не более 8 мин.), среднегасящуюся (8-25 мин.) и медленногасящуюся (более 25 мин.) известь.

Для ускорения процесса гашения извести используются добавки CaCl 2 , NaCl, NaOH, которые взаимодействуют с оксидом кальция с образованием более растворимых соединений в сравнении с Ca(OH) 2 а для замедления – добавки ПАВ, солей серной, фосфорной, щавелевой, угольной кислот.