Времена года

Как построить плоскость перпендикулярную данной. Прямые, параллельные и перпендикулярные плоскостям. Взаимно перпендикулярные плоскости

Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна к плоскости, и рассмотрим свойства проекций такой прямой.

На рис. 185 задана плоскость, определяемая двумя пересекающимися прямыми AN и AM, причем AN является горизонталью, а AM - фронтальна этой плоскости. Прямая АВ, изображенная на том же чертеже, перпендикулярна к АN и к AM и, следовательно, перпендикулярна к определяемой ими плоскости.

Перпендикуляр к плоскости перпендикулярен к любой прямой, проведенной в этой плоскости. Но чтобы при этом проекция перпендикуляра к плоскости общего положения оказалась перпендикулярной к одноименной проекции какой-либо прямой этой плоскости, прямая должна быть горизонталью, или фронталью, или профильной прямой плоскости. Поэтому, желая построить перпендикуляр к плоскости, берут в общем случае две такие прямые (например, горизонталь и фронталь, как это показано на рис. 185).

Итак, у перпендикуляра к плоскости его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, фронтальная проекция перпендикулярна к фронтальной проекции фронтали, профильная проекция перпендикулярна к профильной проекции профильной прямой этой плоскости.

Очевидно, в случае, когда плоскость выражена следами (рис. 186), мы получаем следующий вывод: если прямая перпендикулярна к плоскости, то горизонтальная проекция этой прямой перпендикулярна к горизонтальному следу плоскости, а фронтальная проекция перпендикулярна к фронтальному следу плоскости.

Итак, если в системе π 1 , π 2 горизонтальная проекция прямой перпендикулярна к горизонтальному следу и фронтальная проекция прямой перпендикулярна к фронтальному следу плоскости, то в случае плоскостей общего положения (рис. 186), а также горизонталъно- и фронталъно-проецирующих прямая перпендикулярна к плоскости . Но для профильно-проеци- рующей плоскости может оказаться, что прямая к этой плоскости не перпендикулярна, хотя

проекции прямой соответственно перпендикулярны к горизонтальному и фронтальному следам плоскости. Поэтому в случае профильно-проецйрующей плоскости надо рассмотреть также взаимное положение профильной проекции прямой и профильного следа данной плоскости и лишь после этого установить, будут ли перпендикулярны между собой данные прямая и плоскость,

Очевидно (рис. 187), горизонтальная проекция перпендикуляра к плоскости сливается с горизонтальной проекцией линии ската, проведенной в плоскости через основание перпендикуляра.

На рис. 186 из точки А проведен перпендикуляр к пл. α (А"С"⊥ f" 0α , А"С"⊥h" 0α) и показано построение точки Е, в которой перпендикуляр АС пересекает пл. α. Построение выполнено с помощью горизонтально-проецирующей пл. β, проведенной через перпендикуляр АЕ.

На рис. 188 показано построение перпендикуляра к плоскости, определяемой треугольником АВС. Перпендикуляр проведен через точку А.

Так как фронтальная проекция перпендикуляра к плоскости должна быть перпендикулярна к фронтальной проекции фронтали плоскости, а его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, то в плоскости через точку А проведены фронталь с проекциями A"D" и A"D" и горизонталь А"Е", А"Е", Конечно, эти прямые не обязательно проводить именно через точку А.

Далее проведены проекции перпендикуляра: M"N"⊥A"D", M"N"⊥А"Е". Почему проекции на рис. 188 на участках A"N" и А"М" показаны штриховыми линиями? Потому, что здесь рассматривается плоскость, заданная треугольником АВС, а не только этот треугольник: перпендикуляр находится частично перед плоскостью, частично за ней.


На рис. 189 и 190 показано построение плоскости, проходящей через точку А перпендикулярно к прямой ВС. На рис. 189 плоскость выражена следами. Построение начато с проведения через точку А горизонтали искомой плоскости: так как горизонтальный след плоскости должен быть перпендикулярен к В"С", то и горизонтальная проекция горизонтали должна быть перпендикулярна к В"С". Поэтому A"N"⊥В"С". Проекция A"N"||оси х, как это должно быть у горизонтали. Затем проведен через точку N"(N" - фронтальная проекция фронтального следа горизонтали AN) след f" 0α ⊥В"С", получена точка Х α и проведен след h" 0α ||A"N" (h" 0α ⊥В"С").

На рис. 190 плоскость определена ее фронталью AM и горизонталью AN. Эти прямые перпендикулярны к ВС (А"М"⊥В"С", A"N"⊥В"С"); определяемая ими плоскость перпендикулярна к ВС.

Так как перпендикуляр к плоскости перпендикулярен к каждой прямой, проведенной в этой плоскости, то, научившись проводить плоскость перпендикулярно к прямой, можно воспользоваться этим для проведения перпендикуляра из некоторой точки А к прямой общего положения ВС. Очевидно, можно наметить следую-щий план построения проекций искомой прямой:

1) через точку А провести плоскость (назовем ее γ), перпендикулярную к ВС;

2) определить точку К пересечения прямой ВС с пл. γ;

3) соединить точки А и К отрезком прямой линии.

Прямые АК и ВС взаимно перпендикулярны.

Пример построения дан на рис. 191. Через точку А проведена плоскость (γ), перпендикулярная к ВС. Это сделано при помощи фронтали, фронтальная проекция A"F" которой проведена перпендикулярно к фронтальной проекции В"С", и горизонтали, горизонтальная проекция которой перпендикулярна к В"С".

Затем найдена точка К, в которой прямая ВС пересекает пл. γ. Для этого через прямую ВС проведена горизонтально-проецируюгцая плоскость β (на чертеже она задана только горизонтальным следом (β"). Пл. β пересекает пл. γ по прямой с проекциями 1"2" и 1"2". В пересечении этой прямой с прямой ВС получается точка К. Прямая АК является искомым перпендикуляром к ВС. Действительно, прямая АК пересекает прямую ВС и находится в пл. γ, перпендикулярной к прямой ВС; следовательно, АК⊥ВС.

В § 15 было показано (рис. 92), как можно провести перпендикуляр из точки на прямую. Но там это было выполнено при помощи введения в систему π 1 , π 2 дополнительной плоскости и образования, таким образом, системы π 3 , π 1 , в которой пл. π 3 проводится параллельно заданной прямой. Рекомендуем сравнить построения, данные на рис. 92 и 191.

На рис. 192 изображены плоскость общего положения - α, проходящая через точку А, и перпендикуляр AM к этой плоркости, продолженный до пересечения с пл. π 1 в точке В".

Угол φ 1 между пл. α, и пл.π 1 и угол φ между прямой AM и пл. π 1 являются острыми углами прямоугольного треугольника В"AM", и, следовательно, φ 1 +φ=90°. Аналогично, если пл.α составляет с пл. π 2 угол σ 2 , а прямая AM, перпендикулярная к α, составляет с пл. π 2 угол σ, то σ 2 +σ=90°. Из этого, прежде всего, следует, что плоскость общего положения, которая должна составлять с пл.π 1 угол φ 1 , а с пл. π 2 угол σ 2 , может быть построена, лишь если 180° > φ 1 +σ 2 >90°.

Действительно, складывая почленно φ 1 + φ=90° и σ 2 +σ=90°, получим φ 1 +σ 2 +φ+σ=180°, т. е. φ 1 +σ 2 90°. Если взять φ 1 +σ 2 =90°, то получится профильно-проецирующая плоскость, а если взять φ 1 +σ 2 =180°, то получится профильная плоскость, т.е. в обоих этих случаях плоскость не общего положения, а частного.

Вербальная форма Графическая форма
1. Известно, что для построения прямой, перпендикулярной плоскости, необходимо построить горизонталь и фронталь в плоскости. а) Заметим, что построение перпендикуляра упрощается, так как стороны плоскости Q(D АВС) являются прямыми уровня: АВ (А 1 В 1 ; А 2 В 2) – фронталь АС (А 1 С 1 ; А 2 С 2) – горизонталь. б) Возьмем на прямой l произвольную точку К
2. Через точку К, которая принадлежит прямой l, проводим прямую n ^ Q, т.е. n 1 ^ A 1 C 1 и n 2 ^ A 2 В 2 . Искомая плоскость будет определяться двумя пересекающимися прямыми, одна из которых задана – l , а другая – n является перпендикулярной к заданной плоскости: P(l n)^ Q (D ABC)

Конец работы -

Эта тема принадлежит разделу:

Начертательная геометрия - Т.В. Хрусталева

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ
Рекомендовано Дальневосточным региональным учебно-методическим центром в качестве учебного пособия для студентов специальности 210700 “Автоматика, телемеханика и связь на жел

Геометрические образы
1. Плоскость проекций: p – произвольная; p1 – горизонтальная; p2 – фронтальная; p3 – профильная; S – центр проец

Обозначения теоретико-множественные
Сущность метода проецирования заключается в том, что проекция Аp некоторого геометрического обр

Проецирование центральное
Центральным называется проецирование, при котором все проецирующие лучи выходят из одной точки S, называемой центром проецирования. На рис. 1.3 дан пример центрального проецирования, где p – плоско

Проецирование параллельное
Параллельным называется проецирование, при котором все проецирующие лучи между собой параллельны. Параллельные проекции могут быть косоугольными (рис.1.7) и прямоугольными (рис. 1.8).

Свойства ортогональных проекций
1. Проекция точки есть точка (рис. 1.9). Рис. 1.9 2. Проекция прямой в общем

Обратимость чертежа. Метод Монжа
Рассмотренный в § 2 и § 3 способ проецирования на одну плоскость проекций дает возможность решить прямую задачу (имея предмет, можно найти его проекцию), но не позволяет решить обратную задачу (име

Система двух взаимно перпендикулярных плоскостей
Обратимость чертежа, как об этом говорилось ранее, т. е. однозначное определение положения точки в пространстве по ее проекциям, может быть обеспечена проецированием на две взаимно перпендикулярные

Система трех взаимно перпендикулярных плоскостей
На практике исследования и построения изображений система двух взаимно перпендикулярных плоскостей не всегда дает возможность однозначного решения. Так, например, если переместить точку А вдоль оси

Комплексный чертеж и наглядное изображение точки в I–IV октантах
Рассмотрим пример построения точек А, В, С, D в различных октантах (табл. 2.4). Таблица 2.4 Октант Наглядное изображение

Общие положения
Линия – это одномерный геометрический образ, имеющий длину; множество всех последовательных положений движущейся точки. По определению Эвклида: "Линия же – длина без ширины". Пол

Прямые уровня
Определение Наглядное изображение Комплексный чертеж Горизонталью называют всякую линию, параллельную горизонтальной

Проецирующие прямые
Определение Наглядное изображение Комплексный чертеж Горизонтально проецирующей прямой называют прямую, перпендикулярную

Построение третьей проекции отрезка по двум заданным
В нашем примере мы будем рассматривать построение прямой общего положения в первой четверти (табл. 3.3). Таблица 3.3 Вербальная форма

Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой линии и углов наклона прямой к плоскостям проекций
Построение проекций отрезка прямой общего и частного положения позволяет решать не только позиционные задачи (расположение относительно плоскостей проекций), но и метрические – определение длины от

Определение натуральной величины отрезка прямой общего положения
Для определения натуральной величины отрезка прямой линии общего положения по ее проекциям применяют метод прямоугольного треугольника. Рассмотрим последовательность этого положения (табл.

Общие положения
Две прямые в пространстве могут иметь различное расположение: пересекаться (лежать в одной плоскости). Частный случай пересечения – под прямым углом; могут быть параллельны

Определение видимости прямых относительно плоскостей проекций
Для определения видимости прямых относительно плоскостей проекции используются конкурирующие точки. Рассмотрим комплексный чертеж скрещивающихся прямых а и b (рис. 4.1 и рис. 4.2). Определим, какая

Алгоритм построения прямых пересекающихся
Вербальная форма Графическая форма 1. Через точку К провести прямую h|| p1 и пересекающую прямую а

Плоскости проецирующие
Определение Наглядное изображение Комплексный чертеж Горизонтально-проецирующей плоскостью называют плоскость, перпендику

Плоскости уровня
Характеристика Наглядное изображение Эпюр Фронтальнаяплоскость – это плоскость, параллельная плоскости p2. Эта

Прямые особого положения в плоскости
Прямыми особого положения в плоскости являются горизонталь h, фронталь f и линии наибольшего наклона к плоскостям проекций. Рассмотрим графическое изображение этих линий (табл. 5.6). Та

Алгоритм построения фронтали
Вербальная форма Графическая форма Дана плоскость a (a|| b), следовательно, a1 || b1; a2

Алгоритм построения второй проекции точки К
Вербальная форма Графическая форма Плоскость a – задана плоской фигурой a (D АВС), K2 – фронтальная проекция точки K

Алгоритм построения плоскости, параллельной данной
Вербальная форма Графическая форма 1. Для решения задачи в данной плоскости Р(D АBC) берутся любые пересекающиеся прямые. Например, АВ

Плоскости пересекающиеся
Две плоскости пересекаются по прямой линии. Для построения линии их пересечения необходимо найти две точки, принадлежащие этой линии. Задача упрощается, если одна из пересекающихся плоскостей заним

Алгоритм построения прямой, параллельной плоскости
Вербальная форма Графическая форма 1. Построим в плоскости Р(D АВС) прямую А1, которая принадлежит плоскости Р

Алгоритм пересечения прямой линии с плоскостью общего положения
Вербальная форма Графическая форма 1. Чтобы построить точку пересечения прямой l с плоскостью

Алгоритм построения перпендикуляра к плоскости
Вербальная форма Графическая форма 1. Для того чтобы построить перпендикуляр к плоскости Р(D АВС) через точку D, необходимо сначала по

К главе 3
1. Построить проекции прямой АВ (рис. 3), если она: а) параллельна p1; б) параллельна p2; в) параллельна ОХ; г) перпендикулярна p1

К главе 5
В плоскости, заданной двумя параллельными прямыми, построить фронталь на расстоянии 15 мм от p1 (рис. 9):

К главе 6
1. Дана плоскость Р(а|| b) и фронтальная проекция m2 прямой m, проходящей через точку D. Построить горизонтальную проекцию прямой m1 так, чтобы прямая m была параллельна плоск

Тесты к главе 3
Выберите соответствие обозначения отрезка АВ его изображению (рис. 6): 1. АВ || p 1 2. АВ || p 2 3. АВ ^ p 1 4.

Тесты к главе 6
1. На каком из чертежей (рис. 12) плоскость S (D АВС) параллельна плоскости Р(m C n).

Рекомендуемый библиографический список
1. ГОСТ 2.001-70. Общие положения // В сб. Единая система конструкторской документации. Основные положения. – М.: Изд-во стандартов, 1984. – С. 3–5. 2. ГОСТ 2.104-68. Основные надписи // В

В рамках этой темы необходимо уметь:

  • 1. Задавать плоскость, перпендикулярную к прямой.
  • 2. Задавать прямую, перпендикулярную к плоскости.

При решении этих взаимосвязанных задач важно понимать, как должны быть направлены проекции перпендикуляра по отношению к проекциям плоскости. Для уяснения этого решим задачи А и Б.

Задача А

Условие. Через точку А, взятую на прямой гп, провести плоскость, перпендикулярную к этой прямой.

Решение. Известно, что плоскость перпендикулярна прямой, сели две прямые, расположенные в этой плоскости, перпендикулярны заданной прямой.

Поэтому в нашем случае через точку А достаточно провести две прямые, каждая из которых была бы перпендикулярна т. Тогда эти прямые в паре определят искомую плоскость.

Пусть одной из прямых, определяющих эту плоскость, станет горизонталь. Ее фронтальная проекция 1ъ пройдет горизонтально (рис. 4.7), а горизонтальная проекция h| - под прямым углом к m 1 (на основании теоремы о проекциях прямого угла).

Второй прямой, определяющей искомую плоскость, будет фронталь. Ес горизонтальная проекция f| пройдет горизонтально.

а фронтальная проекция f2 - иод прямым углом к mi (на основании той же теоремы).

Рис. 4.7

Таким образом, задача решена. Анализируя ее, мы можем заметить, что по отношению к построенной плоскости (f х h) заданная прямая m является перпендикуляром. Отсюда следует важный практический вывод:

горизонтальная проекция перпендикуляра к плоскости должна проходить под прямым углом к горизонтальной проекции горизонтали, а фронтальная проекция - под прямым углом к фронтальной проекции фронтали.

Задача Б

Условия. Опустить перпендикуляр из точки В на плоскость DEF (с определением его видимости но отношению к плоскости).

Рис. 4.8а - графические условия задачи

Рис. 4.86

Рис. 4.8в - определение основания и натуральной величины перпендикуляра

Решение. Вначале вычертим проекции DEF и В (рис. 4.8а).

Приступив к решению задачи, выделим в ней три

характерных этапа:

  • 1. Построение направлений для проекций перпендикуляра.
  • 2. Построение основания перпендикуляра (точки его пересечения с плоскостью).
  • 3. Определение натуральной величины перпендикуляра.

Выполним эти построения. Сначала наметим направление

проекций перпендикуляра. Для этого предварительно в плоскости DEF нужно провести горизонталь h и фронталь f, которые являются ориентирами для его проекций.

Теперь найдем основание перпендикуляра как точку пересечения полученной прямой с плоскостью DEF. Эта задача нам уже знакома (см. п. 3.3.4). В рассмотренном примере искомая точка К лежит за пределами треугольника, ограничивающего плоскость (рис. 4.8в). Она расположена на прямой 2-3, которая, по построению, принадлежит плоскости DEF. Значит, ей принадлежит и точка К. Если проекции перпендикуляра частично или полностью заслоняются проекциями треугольника DEF, то дополнительно необходимо определить видимость перпендикуляра но отношению к плоскости.

Натуральная величина перпендикуляра ВК может быть найдена любым из методов, рассмотренных ранее в и. 2.2. На рисунке 4.8в для этой цели использован метод прямоугольного треугольника.

Отметим, что данная задача зачастую формулируется как определение расстояния от точки В до плоскости треугольника DEF.

Не будет преувеличением утверждать, что построение взаимно перпендикулярных прямых и плоскостей наряду с определением расстояния между двумя точками являются основными графическими операциями при решении метрических задач.

Теоретической предпосылкой для построения на эпюре Монжа проекций прямых и плоскостей, перпендикулярных по отношению друг к другу в пространстве, служит отмеченное раньше (см. § 6) свойство

проекции прямого угла, одна из сторон которого параллельна какой-либо плоскости проекции:

1. Взаимно перпендикулярные прямые.

Чтобы можно было воспользоваться отмеченным свойством для построения на эпюре Монжа двух пересекающихся под углом 90° прямых, необходимо, чтобы одна из них была параллельна какой-либо плоскости проекции. Поясним сказанное на примерах.

ПРИМЕР 1. Через точку А провести прямую l, пересекающую горизонталь h под прямым углом (рис. 249).

Так как одна из сторон h прямого угла параллельна плоскости π 1 , то на эту плоскость прямой угол спроецируется без искажения. Поэтому через А" проводим горизонтальную проекцию l" ⊥ h". Отмечаем точку М" = l" ∩ h". Находим М" (М" ∈ h"). Точки А" и М" определяют l" (см. рис. 249, а).

Если вместо горизонтали будет задана фронталь f, то геометрические построения по проведению прямой l ⊥ f аналогичны только что рассмотренным с той лишь разницей, что построения неискаженной проекции прямого угла следует начинать с фронтальной проекции (см. рис. 249, б).

ПРИМЕР 2. Через точку А провести прямую l , пересекающую прямую а, заданную отрезком [ВС], под углом 90° (рис. 250).

Так как данный отрезок занимает произвольное положение по отношению к плоскостям проекций, мы не можем, как в предыдущем примере, воспользоваться свойством о частном случае проецирования прямого угла, поэтому вначале необходимо [ВС] перевести в положение, параллельное какой-либо плоскости проекции.

На рис. 250 [ВС] переведен в положение, параллельное плоскости π 3 . Это сделано с помощью способа замены плоскостей проекции путем замены плоскости π 1 → π 3 || [ВС].

В результате такой замены в новой системе x 1 π 2 /π 3 [ВС] определяет горизонтальную прямую, поэтому все дальнейшие простроения выполнены так же, как это было сделано в предыдущем примере: после того, как была найдена точка М" 1 , ее перевели на исходные плоскости проекции в положение М" и М", эти точки совместно с А" и А" определяют проекции прямой l.

ПРИМЕР 3. Провести горизонтальную проекцию стороны [ВС] прямого угла АВС, если известны его фронтальная проекция ∠A"B"C" и горйзонтапьная проекция стороны [А"В"] (рис. 251).

1. Переводим сторону угла [ВА] в положение || π 3 путем перехода от системы плоскостей проекции хπ 2 /π 1 к новой x 1 π 3 /π 2



2. Определяем новую фронтальную проекцию .

Из В" 1 восставляем перпендикуляр к [В" 1 A" 1 ]. На этом перпендикуляре определяем точку С" 1 (С" 1 удалена от оси x 1 на расстояние |С x 1 С" 1 | = |С x С"|).

4. Горизонтальная проекция С" определяется как точка пересечения прямых (С" 1 С x 1) ∩ (С"С x) = С".

2. Взаимно перпендикулярные прямая и плоскость.

Из курса стереометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна хотя бы к двум пересекающимся прямым, принадлежащим этой плоскости.

Если в плоскости взять не произвольные пересекающиеся прямые, а ее горизонталь и фронталь, то открывается возможность воспользоваться свойством проекции прямого угла, как это было сделано в примере 1, рис. 249.

Рассмотрим следующий пример; пусть из точки A ∈ α требуется восставить перпендикуляр к плоскости α (рис. 252).

Через точку А проводим горизонталь h и фронталь f плоскости α. Тогда, по определению (АВ), перпендикулярная к плоскости α, должна быть перпендикулярна к прямым h и f, т. е. . Но сторона AM ∠ ВАМ || π 1 , поэтому ∠ВАМ проецируется на плоскость π 1 , без искажения, т. е.. Сторона АК ∠ ВАК || π 2 и, следовательно, на плоскость π 2 этот угол проецируется также без искажения, т. е. и . Приведенные рассуждения можно сформулировать в виде следующей теоремы: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой была перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция к фронтальной проекции фронтали этой плоскости.

Если плоскость задана следами, то теорема может быть сформулирована иначе: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы проекции этой прямой были перпендикулярны к одноименным следам плоскости.


Установленные теоремой зависимости между прямой в пространстве, перпендикулярной к плоскости, и проекциями этой прямой к проекциям линий уровня (следам) плоскости лежат в основе графического алгоритма решения задачи по проведению прямой, перпендикулярной к плоскости, а также построения плоскости, перпендикулярной к заданной прямой.

ПРИМЕР 1. Восставить в вершине А перпендикуляр AD к плоскости ΔАВС (рис. 253).

Для того чтобы определить направление проекций перпендикуляра, проводим проекции горизонтали h и фронтали f плоскости ΔАВС. После этого из точки А" восставляем перпендикуляр к h", а из А" - к f".

ПРИМЕР 2. Из точки А, принадлежащей плоскости α (m || n), восставить перпендикуляр к этой плоскости (рис. 254).

РЕШЕНИЕ. Для определения направления проекций перпендикуляра l" и l", как и в предыдущем примере, проводим через точку А (А",А") горизонталь h(h", h"), принадлежащую плоскости α. Зная направление h", строим горизонтальную проекцию перпендикуляра l" (l" ⊥ h"). Для определения направления фронтальной проекции перпендикуляра через точку А (А", А") проводим фронталь f (f", f") плоскости α. В силу параллельности f фронтальной плоскости проекции прямой угол между l и f проецируется на π 2 без искажения, поэтому проводим l" ⊥ f".

На рис. 255 эта же задача решена для случая, когда плоскость α задана следами. Для определения направлений проекций перпендикуляра отпадает необходимость в проведении горизонтали и фрон-


тали, так как их функции выполняют следы плоскости h 0α и f 0α . Как видно из чертежа, решение сводится к проведению через точки А" и А" проекций l" ⊥ h 0α и l" ⊥ f 0α .

ПРИМЕР 3. Построить плоскость γ, перпендикулярную к данной прямой l и проходящую через заданную точку А (рис. 256).

РЕШЕНИЕ. Через точку А проводим горизонталь h и фронталь f. Эти две пересекающиеся прямые определяют плоскость; чтобы она была перпендикулярна к прямой l, необходимо, чтобы прямые h и f составляли с прямой l угол 90°. Для этого проводим h" ⊥ l" и f" ⊥ l". Фронтальная проекция h" и горизонтальная проекция f" проводятся параллельно оси x.

Рассмотренный случай позволяет по иному решать задачу, приведенную в примере 3 (с. 175 рис. 251). Сторона [ВС] ∠АВС должна принадлежать плоскости γ ⊥ [АВ] и проходить через точку В (рис. 257).

Это условие и определяет ход решения задачи, который состоит в следующем: заключаем точку В в плоскость γ ⊥ [АВ], для этого через точку В проводим горизонталь и фронталь плоскости γ так, чтобы h" ⊥ A"B" и f" ⊥ A"B".

Точка С ∈ (ВС), принадлежащей плоскости γ, поэтому для нахождения ее горизонтальной проекции проводим через С" произвольную прямую 1"2", принадлежащую плоскости γ; определяем горизонтальную проекцию этой прямой 1"2" и на ней отмечаем точку С" (С" определяется пересечением линии связи - перпендикуляра, опущенного из С", с горизонтальной проекцией прямой 1"2"). С" совместно с В" определяют горизонтальную проекцию (ВС) ⊥ (АВ).

3. Взаимно перпендикулярные плоскости..

Две плоскости перпендикулярны, если одна из них содержит прямую, перпендикулярную к другой плоскости .

Исходя из определения перпендикулярности плоскостей, задачу на построение плоскости β, перпендикулярной к плоскости α, решаем следующим путем: проводим прямую l, перпендикулярную к плоскости α; заключаем прямую l в плоскость β. Плоскость β ⊥ α, так как β ⊃ l ⊥ α.

Через прямую l можно провести множество плоскостей, поэтому задача имеет множество решений. Чтобы конкретизировать ответ, необходимо указать дополнительные условия.

ПРИМЕР 1. Через данную прямую а провести плоскость β, перпендикулярную к плоскости α (рис. 258).

РЕШЕНИЕ. Определяем направление проекций перпендикуляра к плоскости α, для этого находим горизонтальную проекцию горизонтали (h") и фронтальную проекцию фронтали (f") ; из проекций произвольной точки А ∈ α проводим проекции перпендикуляра l" ⊥ h" и l" ⊥ f". Плоскость β ⊥ α, так как β ⊃ l ⊥ α.


ПРИМЕР 2. Через данную точку А провести горизонтально проецирующую плоскость γ, перпендикулярную к плоскости α, заданной следами (рис. 259, а).

Искомая плоскость γ должна содержать прямую, перпендикулярную плоскости α, или быть перпендикулярной к прямой, принадлежащей плоскости α. Так как плоскость γ должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней, должна быть параллельна плоскости π 1 , т. е. являться горизонталью плоскости α или (что то же самое) горизонтальным следом этой плоскости - h 0α Поэтому через горизок тальную проекцию точки А" проводим горизонтальный след h 0γ ⊥ h 0α фронтальный след f 0γ ⊥ оси х.

На рис. 259, б показана фронтально проецирующая плоскость γ, проходящая через точку В и перпендикулярная к плоскости π 2 .

Из чертежа видно, что отличительной особенностью эпюра, на котором заданы две взаимно перпендикулярные плоскости, из которых одна - фронтально проецирующая, является перпендикулярность их фронтальных следов f 0γ ⊥ f 0α , горизонтальный след фронтально проецирующей плоскости перпендикулярен оси х.