Чехов

Квадратичная формула для решения квадратных уравнений история. История развития квадратных уравнений. Квадратные уравнения в Индии

Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.


Как составлял и решал Диофант квадратные уравнения «Найти два числа, зная, что их сумма равна 20, а произведение 96» Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, т.к. если бы они равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10+X, другое же меньше, т.е. 10-X. Разность между ними 2Х Отсюда Х=2. Одно из искомых чисел равно 12, другое 8. Решение Х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа. УРАВНЕНИЕ: или же:


Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются и в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c, a>0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата, 0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата,">


Квадратные уравнения в Древней Азии Вот как решал это уравнение среднеазиатский ученый ал-Хорезми: Он писал: "Правило таково: раздвои число корней, х=2х·5 получите в этой задаче пять, 5 умножь на это равное ему, будет двадцать пять, 5·5=25 прибавь это к тридцати девяти, будет шестьдесят четыре, 64 извлеки из этого корень, будет восемь, 8 и вычти из этого половину числа корней, т.е.пять, 8-5 останется 3 это будет корень квадрата, который ты искал." А второй корень? Второй корень не находили, так как отрицательные числа не были известны. х х = 39


Квадратные уравнения в Европе XIII-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0, было сформулировано в Европе лишь в 1544 г. Штифелем.. Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид


О теореме Виета Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если B+D, умноженное на А-А, равно BD, то А равно В и равно D». Чтобы понять Виета, следует помнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же B,D- кэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x 1 + x 2 = -p, x 1 x 2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).


Метод разложения на множители привести квадратное уравнение общего вида к виду: А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Цель: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Способы: Пример:




Корни квадратного уравнения: Если D>0, Если D 0, Если D"> 0, Если D"> 0, Если D" title="Корни квадратного уравнения: Если D>0, Если D"> title="Корни квадратного уравнения: Если D>0, Если D">


X 1 и х 2 – корни уравнения Решение уравнений с помощью теоремы Виета Х 2 + 3Х – 10 = 0 Х 1 ·Х 2 = – 10, значит корни имеют разные знаки Х 1 + Х 2 = – 3, значит больший по модулю корень - отрицательный Подбором находим корни: Х 1 = – 5, Х 2 = 2 Например:


0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" class="link_thumb"> 14 Решите уравнение: 2х х +15 = 0. Перебросим коэффициент 2 к свободному члену у у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски» 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски»"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени">


Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен второй по теореме Виета равен Если в квадратном уравнении a+c=b, то один из корней равен (-1), а второй по теореме Виета равен Пример: Свойства коэффициентов квадратного уравнения 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1; 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1;




Графический способ решения квадратного уравнения Не используя формул квадратное уравнение можно решить графическим способом. Решим уравнение Для этого построим два графика: X Y X 01 Y012 Ответ: Абсциссы точек пересечения графиков и будет корнями уравнения. Если графики пересекаются в двух точках, то уравнение имеет два корня. Если графики пересекаются в одной точке, то уравнение имеет один корень. Если графики не пересекаются, то уравнение корней не имеет. 1)y=x2 2)y=x+1




Решение квадратных уравнений с помощью номограммы Это старый и незаслуженно забытый способ решения квадратных уравнений, помещенный на с.83 «Четырехзначные математические таблицы» Брадис В.М. Таблица XXII. Номограмма для решения уравнения Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения. Для уравнения номограмма дает корни


Геометрический способ решения квадратных уравнений В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. А вот, например, как древние греки решали уравнение: или Выражения и геометрически предоставляют собой один и тот же квадрат, а исходное уравнение одно и тоже уравнение. Откуда и получаем что, или


Заключение данные приёмы решения заслуживают внимания, поскольку они не все отражены в школьных учебниках математики; овладение данными приёмами поможет учащимся экономить время и эффективно решать уравнения; потребность в быстром решении обусловлена применением тестовой системы вступительных экзаменов;

Ковальчук Кирилл

Проект "Квадратные уравнения через века и страны" знакомит учащихся с учеными математики, открытия которых являются основой научно-технического прогресса, развивает интерес к математике как к предмету на основе знакомства с историческим материалом, расширяет кругозор учащихся, стимулирует их познавательную активность и творчество.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Проектная работа ученика 8 класса МОУ СОШ №17 с.Борисовка Ковальчука Кирилла Руководитель Мулюкова Г.В.

Квадратные уравнения через века и страны

Цель проекта: Познакомить учащихся с учеными математики, открытия которых являются основой научно-технического прогресса. Показать значимость работ ученых для развития геометрии и физики.??????????? Наглядно продемонстрировать применение научных открытий в жизни. Развивать интерес к математике как к предмету на основе знакомства с историческим материалом. Расширять кругозор учащихся, стимулировать их познавательную активность и творчество

Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Правила решения этих уравнений, изложенные в вавилонских текстах, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

. (ок. 365 - 300 г. до н.э.) - древне­греческий математик, автор первых дошедших до нас теоретических трактатов по математике. Евклид, или Эвклид

Евклид Начала Там, где с морем Сливается Нил, В древнем жарком краю Пирамид Математик греческий жил - Многознающий, Мудрый Эвклид. Геометрию он изучал, Геометрии он обучал. Написал он великий труд. Эту книгу «Начала» зовут.

Евклид 3 век до н.э. Евклид решал квадратные уравнения, применяя геометрический способ. Вот одна из задач из древнегреческого трактата: «Имеется город с границей в виде квадрата со стороной неизвестного размера, в центре каждой стороны находятся ворота. На расстоянии 20бу(1бу=1,6м) от северных ворот стоит столб. Если пройти от южных ворот 14бу прямо, затем повернуть на запад и пройти еще 1775бу, то можно увидеть столб. Спрашивается: какова сторона границы города? »

Чтобы определить неизвестную сторону квадрата, получаем квадратное уравнение x ² +(k+l)x-2kd =0 . В данном случае уравнение имеет вид x ² +34x-71000=0 , откуда х=250бу l x d k

Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются и в астрономическом трактате « Ариабхаттиам », составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c , a>0 В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».

Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?.

Решение. () 2 +12 = х, х 2 - 64х +768 = 0, а =1, в = -64, с = 768, тогда Д = (-64) 2 -4·1·768 = 1024 > 0. Х 1 , 2 = , х 1 = 48, х 2 = 16. Ответ.Обезьян было 16 или 48. Давайте решим её.

Формула корней квадратного уравнения « переоткрывалась » неоднократно. Один из первых дошедших до наших дней выводов этой формулы принадлежит индийскому математику Брахмагупте. Среднеазиатский ученый ал-Хорезми в трактате « Китаб аль-джерб валь-мукабала » получил эту формулу методом выделения полного квадрата.

Как же решал ал-Хорезми это уравнение. Он писал: "Правило таково: раздвои число корней, х=2х · 5 получите в этой задаче пять, 5 умножь на это равное ему, будет двадцать пять, 5 · 5=25 прибавь это к тридцати девяти, 25+39 будет шестьдесят четыре, 64 извлеки из этого корень, будет восемь, 8 и вычти из этого половину числа корней, т.е.пять, 8- 5 останется три- это и 3 Будет корень квадрата, который ты искал." А второй корень? Второй корень не находили, так как отрицательные числа не были известны. х 2 +10 х = 39

Квадратные уравнения в Европе 13-17вв. Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники 16-17вв. и частично 18.

Франсуа Виет – крупнейший математик 16 века

До Ф. Виета решение квадратного уравнения выполнялось по своим правилам в виде очень длинных словесных рассуждений и описаний, довольно громоздких действий. Даже само уравнение не могли записать, для этого требовалось довольно длинное и сложное словесное описание. Он ввел термин «коэффициент». Предложил искомые величины обозначать гласными, а данные – согласными. Благодаря символике Виета можно записать квадратное уравнение в виде: ax 2 + bx + c =0 . Теорема: Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Несмотря на то, что эта теорема называется «Теорема Виета», она была известна и до него, а он только преобразовал ее в современный вид. Виета называют «отцом алгебры»

Человечество прошло длительный путь от незнания к знанию, непрерывно заменяя на этом пути неполное и несовершенное знание все более полным и совершенным. Заключительное слово

Нас, живущих в начале XXI века, влечет старина. В своих предках мы замечаем прежде всего то, чего им не хватает с современной точки зрения, и обычно не замечаем того, что нам самим не хватает по сравнению с ними.

Не будем и мы забывать о них…

СПАСИБО ЗА внимание!

Главная > Доклад

МОУ СОШ имени Героев Советского Союза
Сотникова А.Т. и Шепелёва Н. Г. с.Урицкое

Доклад на тему:

«История возникновения

квадратных уравнений»

Подготовили: Изотова Юлия,
Амплеева Елена,
Шепелёв Николай,

Дяченко Юрий.

О математика. В веках овеяна ты славой,

Светило всех земных светил.

Тебя царицей величавой

Недаром Гаусс окрестил.

Строга, логична, величава,

Стройна в полете, как стрела,

Твоя немеркнущая слава

В веках бессмертье обрела.

Мы славим разум человека,

Дела его волшебных рук,

Надежду нынешнего века,

Царицу всех земных наук.

Поведать мы сегодня вам хотим

Историю возникновения

Того, что каждый школьник должен знать –

Историю квадратных уравнений.

Евклид, в III век до н. э. отвел геометрической алгебре в своих «Началах» всю вторую книгу, где собран весь необходимый материал для решения квадратных уравнений.

Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике

Ведения о Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н. э. Евклид – первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвел итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики. Герон – греческий математик и инженер впервые в Греции в I век н.э. дает чисто алгебраический способ решения квадратного уравнения.

Герон Александрийский; Heron, I в. н. э., греческий механик и математик. Время его жизни неопределенно, известно только, что он цитировал Архимеда (который умер в 212 г. до н. э.), его же самого цитировал Папп (ок. 300 г. н. э.). В настоящее время преобладает мнение, что он жил в I в. н. э. Занимался геометрией, механикой, гидростатикой, оптикой; изобрел прототип паровой машины и точные нивелировочные инструменты. Наибольшей популярностью пользовались такие автоматы Г., как автоматизированный театр, фонтаны и др. Г. описал теодолит, опираясь на законы статики и кинетики, привел описание рычага, блока, винта, военных машин. В оптике сформулировал законы отражения света, в математике - способы измерения важнейших геометрических фигур. Основные произведения Г. - это Иетрика, Пневматика, Автоматопоэтика, Механика (фр.; произведение сохранилось целиком по-арабски), Катоптика (наука о зеркалах; сохранилась только в латинском переводе) и др. Г. использовал достижения своих предшественников: Евклида, Архимеда, Стратона из Лампсака. Его стиль простой и ясный, хотя порой бывает чересчур лаконичен или нестроен. Интерес к сочинениям Г. возник в III в. н. э. Греческие, а затем византийские и арабские ученики комментировали и переводили его произведения.

Диофант – греческий ученый в III век н.э., не прибегая к геометрии, чисто алгебраическим путем решал некоторые квадратные уравнения, причем само уравнение и его решение записывал в символической форме

«Я расскажу вам, как составлял и решал квадратные уравнения греческий математик Диофант. Вот, к примеру, одна из его задач: «Найти два числа, зная, что их сумма равна 20, а их произведение 96».

1. Из условия задачи вытекает, что искомые числа не равны, т.к. если бы они были равны, то их произведение равнялось бы не 96, а 100.

2. Т.о. одно из них будет больше половины их суммы, т.е. 10 + x, другое же меньше, т.е. 10 – х.

3. Разность между ними 2х.

4. Отсюда уравнение (10 + x) * (10 – x) = 96

100 – х 2 = 96 х 2 – 4 = 0

5. Ответ x = 2 . Одно из искомых чисел равно 12,
другое - 8. Решение x = - 2 для Диофанта не существует, т.к. гре-ческая математика знала только положительные числа.» Диофант умел решать очень сложные уравнения, применял для неизвестных буквенные обозначения, ввёл специальный символ для вычисления, использовал сокращения слов. Бхаскаре – Акариа – индийский математик в XII век н.э. открыл общий метод решения квадратных уравнений.

Разберём одну из задач индийских математиков, например, задачу Бхаскары:

«Стая обезьян забавляется: восьмая часть всего числа их в квадрате резвится в лесу, остальные двенадцать кричат на вершине холмика. Скажите мне, сколько всех обезьян?»

Комментируя задачу, хочется сказать, что задаче соответствует уравнение (х/8) 2 + 12 = x . Бхаскара пишет под видом x 2 – 64х = - 768. Прибавляя к обеим частям квадрат 32, уравнение примет вид:

x 2 – 64 x + 32 2 = - 768 + 1024

(x – 32) 2 = 256

После извлечения квадратного корня получаем: x – 32 =16.

«В данном случае, говорит Бхаскара, - отрицательные единицы первой части таковы, что единицы второй части меньше их, а потому последние можно считать и положительными и отрицательными, и получаем двойное значение неизвестного: 48 и 16».

Необходимо сделать вывод: решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Предлагается решить старинную индийскую задачу Бхаскары:

«Квадрат пятой части обезьян, уменьшенный на три, спрятался в гроте, одна обезьяна влезла на дерево, была видна. Сколько было обезьян?» Следует заметить, что данная задача решается элементарно, сводясь к квадратному уравнению.
Аль – Хорезми
- арабский учёный, который в 825 г. написал книгу «Книга о восстановлении и противопоставлении». Это был первый в мире учебник алгебры. Он также дал шесть видов квадратных уравнений и для каждого из шести уравнений в словесной форме сформулировал особое правило его решения. В трактате Хорезми насчитывает 6 видов уравнений, выражая их следующим образом:

1.«Квадраты равны корням», т.е. ах 2 = вх.

2.«Квадраты равны числу», т.е. ах 2 = с.

3.«Корни равны числу», т.е. ах = с.

4.«Квадраты и числа равны корням», т.е. ах 2 + с = вх.

5.«Квадраты и корни равны числу», т.е. ах 2 + вх = с.

6.«Корни и числа равны квадратам», т.е. вх +с = ах 2 .

Разберём задачу аль – Хорезми, которая сводится к решению квадратного уравнения. «Квадрат и число равны корням.» Например, один квадрат и число 21 равны 10 корням того же квадрата, т.е. спрашивается, из чего образуется квадрат, который после прибавления к нему 21 делается равным 10 корням того же квадрата?»

Используя 4-ю формулу аль – Хорезми, ученики должны записать: х 2 + 21 = 10х

Франсуа Виет - французский мате-матик, сформулировал и доказал теорему о сумме и произведении корней приведённого квадратного уравнения.

Искусство, которое я излагаю, ново или по крайней мере было настолько испорчено временем искажено влиянием варваров, что я счел нужным придать ему совершенно новый вид.

Франсуа Виет

Иет Франсуа (1540-13.12. 1603) родился в городе Фонтене ле-Конт провинции Пуату, недалеко от знаменитой крепости Ла-Ро-шель. Получив юридическое образование, он с девятнадцати лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. Знал астрономию и математику и все свободное время отдавал этим наукам.

Главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Виета они не только восхищали, в них он видел большой изъян, заключающийся в трудности понимания из-за словесной символики: Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся. Нельзя было записывать и, следовательно, начать в общем виде алгебраические сравнения или какие-нибудь другие алгебраические выражения. Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Поэтому необходимо было доказать, что существуют такие общие действия над всеми числами, которые от этих самих чисел не зависят. Виет и его последователи установи, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка. Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Значит, их можно обозначать какими-либо отвлеченными знаками. Виет это и сделал. Он не только ввел свое буквенное исчисление, но сделал принципиально новое открытий, поставив перед собой цель изучать не числа, а действия над ними. Такой способ записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют "отцом" алгебры, основоположником буквенной символики.

Информационные ресурсы:

http:// som . fio . ru / Resources / Karpuhina /2003/12/ Complited %20 work / Concert / index 1. htm

http:// pages . marsu . ru / iac / school / s 4/ page 74. html

ВВЕДЕНИЕ

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Так же для формирования умения решать уравнения большое значение имеет самостоятельная работа учащегося при обучении решения уравнений. При изучении любой темы уравнения могут быть использованы как эффективное средство закрепления, углубления, повторения и расширения теоретических знаний, для развития творческой математической деятельности учащихся .

В современном мире уравнения широко используются в различных разделах математики, в решении важных прикладных задач. Для этой темы характерна большая глубина изложения и богатство устанавливаемых с ее помощью связей в обучении, логическая обоснованность изложения. Поэтому она занимает исключительное положение в линии уравнений. К изучению темы «Квадратные трехчлены» учащиеся приступают, уже накопив определенный опыт, владея достаточно большим запасом алгебраических и общематематических представлений, понятий, умений. В значительной мере именно на материале данной темы необходимо осуществлять синтез материала, относящегося к уравнениям, реализовывать принципы историзма, доступности.

Актуальность темы состоит в необходимости реализовывать принципы историзма и недостаточности материала для реализации этого по теме «Решение квадратных уравнений».

Проблема исследования : выявление исторического материала для обучения решению квадратных уравнений.

Цель работы : формирование представлений о работе над квадратными уравнениями на уроках математики, подбор комплекса уроков с элементами историзма по теме «Квадратные уравнения».

Объект исследования : решение квадратных уравнений в 8 классе с использованием элементов историзма.

Предмет исследования : квадратные уравнения и разработки уроков по обучению решения квадратных уравнений с использованием исторических материалов.

Задачи :

      выполнить анализ научно-методической литературы по проблеме исследования;

      проанализировать школьные учебники и выделить в них место обучения решению квадратных уравнений;

      подобрать комплекс уроков по решению квадратных уравнений с использованием исторических материалов.

Методы исследования :

      анализ литературы по теме «Решение квадратных уравнений»;

      наблюдение за учащимися во время урока на тему «Решение квадратных уравнений»;

      подбор материала: уроков по теме «Решение квадратных уравнений» с использованием исторической справки.

§ 1. Из истории возникновения квадратных уравнений

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.

Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение – 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е.
. Другое же меньше, т. е.
. Разность между ними
. Отсюда уравнение:

Отсюда
. Одно из искомых чисел равно 12, другое 8. Решение
для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то можно прийти к решению уравнения:

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

(1)

В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

Соответствующее задаче 3 уравнение:

Бхаскара пишет под видом:

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:

Квадратные уравнения у Аль-Хорезми

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:


Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

Задача 4. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения
).

Решение: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения .

Квадратные уравнения в Европе XII - XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду
при всевозможных комбинациях знаков и коэффициентовb, c, было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид .

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX-VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI-Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака. А затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры, использование букв, введение символов арифметических операций, скобок и т. д. На рубеже XVI-XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Итак, ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики связано с тремя главными областями своего возникновения и функционирования.

Как составлял и решал Диофант квадратные уравнения. Отсюда уравнение: (10+х)(10 -х) =96 или же: 100 - х2 =96 х2 - 4=0 (1) Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Src="https://present5.com/presentation/137369579_55459696/image-4.jpg" alt="Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1) "> Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1)

Квадратные уравнения у ал – Хорезми. 1) «Квадраты равны корнями» , т. е. ах2 + с = bх. 2) «Квадраты равны числу» , т. е. ах2 = с. 3) «Корни равны числу» , т. е. ах = с. 4) «Квадраты и числа равны корням» , т. е. ах2 + с = bх. 5) «Квадраты и корни равны числу» , т. е. ах2 + bx = с. 6) «Корни и числа равны квадратам» , т. е. bx + с = ах2.

Квадратные уравнения в Европе ХIII ХVII вв. х2 +bх = с, при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

О теореме Виета. «Если В + D, умноженное на А - А 2, равно ВD, то А равно В и равно D» . На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b)х - х2 = ab, т. е. х2 - (а + b)х + аb = 0, то х1 = а, х2 = b.

Способы решения квадратных уравнений. 1. СПОСОБ: Разложение левой части уравнения на множители. Решим уравнение х2 + 10 х - 24 = 0. Разложим левую часть на множители: х2 + 10 х - 24 = х2 + 12 х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2). Следовательно, уравнение можно переписать так: (х + 12)(х - 2) = 0 Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10 х - 24 = 0.

2. СПОСОБ: Метод выделения полного квадрата. Решим уравнение х2 + 6 х - 7 = 0. Выделим в левой части полный квадрат. Для этого запишем выражение х2 + 6 х в следующем виде: х2 + 6 х = х2 + 2 х 3. полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как х2 + 2 х 3 + 32 = (х + 3)2. Преобразуем теперь левую часть уравнения х2 + 6 х - 7 = 0, прибавляя к ней и вычитая 32. Имеем: х2 + 6 х - 7 = х2 + 2 х 3 + 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16. Таким образом, данное уравнение можно записать так: (х + 3)2 - 16 =0, (х + 3)2 = 16. Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.

3. СПОСОБ: Решение квадратных уравнений по формуле. Умножим обе части уравнения ах2 + bх + с = 0, а ≠ 0 на 4 а и последовательно имеем: 4 а 2 х2 + 4 аbх + 4 ас = 0, ((2 ах)2 + 2 ах b + b 2) - b 2 + 4 ac = 0, (2 ax + b)2 = b 2 - 4 ac, 2 ax + b = ± √ b 2 - 4 ac, 2 ax = - b ± √ b 2 - 4 ac,

4. СПОСОБ: Решение уравнений с использованием теоремы Виета. Как известно, приведенное квадратное уравнение имеет вид х2 + px + c = 0. (1) Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид x 1 x 2 = q, x 1 + x 2 = - p а) x 2 – 3 x + 2 = 0; x 1 = 2 и x 2 = 1, так как q = 2 > 0 и p = - 3 0 и p= 8 > 0. б) x 2 + 4 x – 5 = 0; x 1 = - 5 и x 2 = 1, так как q= - 5 0; x 2 – 8 x – 9 = 0; x 1 = 9 и x 2 = - 1, так как q = - 9

5. СПОСОБ: Решение уравнений способом «переброски» . Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. Умножая обе его части на а, получаем уравнение а 2 х2 + аbх + ас = 0. Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0, равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета. Окончательно получаем х1 = у1/а и х1 = у2/а.

Пример. Решим уравнение 2 х2 – 11 х + 15 = 0. Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у2 – 11 у + 30 = 0. Согласно теореме Виета у1 = 5 у2 = 6 х1 = 5/2 x 2 = 6/2 Ответ: 2, 5; 3. x 1 = 2, 5 x 2 = 3.

6. СПОСОБ: Свойства коэффициентов квадратного уравнения. А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. 1) Если, а+ b + с = 0 (т. е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а. Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение x 2 + b/a x + c/a = 0. Согласно теореме Виета x 1 + x 2 = - b/a, x 1 x 2 = 1 c/a. По условию а – b + с = 0, откуда b = а + с. Таким образом, x 1 + x 2 = - а + b/a= -1 – c/a, x 1 x 2 = - 1 (- c/a), т. е. х1 = -1 и х2 = c/a, что и требовалось доказать.

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней В. Приведенное уравнение х2 + рх + q= 0 совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

7. СПОСОБ: Графическое решение квадратного уравнения. Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = - px - q. Построим графики зависимости у = х2 и у = - px - q.

Пример 1) Решим графически уравнение х2 - 3 х - 4 = 0 (рис. 2). Решение. Запишем уравнение в виде х2 = 3 х + 4. Построим параболу у = х2 и прямую у = 3 х + 4. Прямую у = 3 х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Ответ: х1 = - 1; х2 = 4

8. СПОСОБ: Решение квадратных уравнений с помощью циркуля и линейки. нахождения корней квадратного циркуля и линейки (рис. 5). уравнения Тогда по теореме о секущих имеем OB OD = OA OC, откуда OC = OB OD/ OA= х1 х2/ 1 = c/a. ах2 + bх + с = 0 с помощью

Src="https://present5.com/presentation/137369579_55459696/image-19.jpg" alt="1) Радиус окружности больше ординаты центра (AS > SK, или R > a +"> 1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2 a), окружность пересекает ось Ох в двух точках (6, а рис.) В(х1; 0) и D(х2; 0), где х1 и х2 - корни квадратного уравнения ах2 + bх + с = 0. 2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2 a), окружность касается оси Ох (рис. 6, б) в точке В(х1; 0), где х1 - корень квадратного уравнения. 3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс (рис. 6, в), в этом случае уравнение не имеет решения.

9. СПОСОБ: Решение квадратных уравнений с помощью номограммы. z 2 + pz + q = 0. Криволинейная шкала номограммы построена по формулам (рис. 11): Полагая ОС = р, ED = q, ОЕ = а (все в см.), Из подобия треугольников САН и CDF получим пропорцию

Примеры. 1) Для уравнения z 2 - 9 z + 8 = 0 номограмма дает корни z 1 = 8, 0 и z 2 = 1, 0 (рис. 12). 2) Решим с помощью номограммы уравнение 2 z 2 - 9 z + 2 = 0. Разделим коэффициенты этого уравнения на 2, получим уравнение z 2 - 4, 5 z + 1 = 0. Номограмма дает корни z 1 = 4 и z 2 = 0, 5. 3) Для уравнения z 2 - 25 z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5 t, получим уравнение t 2 - 5 t + 2, 64 = 0, которое решаем посредством номограммы и получим t 1 = 0, 6 и t 2 = 4, 4, откуда z 1 = 5 t 1 = 3, 0 и z 2 = 5 t 2 = 22, 0.

10. СПОСОБ: Геометрический способ решения квадратных уравнений. Примеры. 1) Решим уравнение х2 + 10 х = 39. В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39» (рис. 15). Для искомой стороны х первоначального квадрата получим

у2 + 6 у - 16 = 0. Решение представлено на рис. 16, где у2 + 6 у = 16, или у2 + 6 у + 9 = 16 + 9. Решение. Выражения у2 + 6 у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6 у - 16 + 9 - 9 = 0 - одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = - 8 (рис. 16).