Сочинения

Что такое рентгеновские лучи. Действие на человека рентгеновского излучения. Характеристическое рентгеновское излучение

В 1895 немецкий физик Рентген , проводя опыты по прохождению тока между двумя электродами в вакууме, обнаружил, что экран, покрытый люминесцентным веществом (солью бария) светится, хотя разрядная трубка закрыта черным картонным экраном – так было открыто излучение, проникающее через непрозрачные преграды, названное Рентгеном Х-лучами. Было обнаружено, что рентгеновское излучение, невидимое для человека, поглощается в непрозрачных объектах тем сильнее, чем больше атомный номер (плотность) преграды, поэтому рентгеновские лучи легко проходят через мягкие ткани человеческого тела, но задерживаются костями скелета. Были сконструированы источники мощных рентгеновских лучей, позволяющие просвечивать металлические детали и находить в них внутренние дефекты.

Немецкий физик Лауэ предположил, что рентгеновские лучи являются таким же электромагнитным излучением, как лучи видимого света, но с меньшей длиной волны и к ним применимы все законы оптики, в том числе возможна дифракция. В оптике видимого света дифракция на элементарном уровне может быть представлена как отражение света от системы штрихов – дифракционной решетки, происходящее только под определенными углами, при этом угол отражения лучей связан с углом падения, расстоянием между штрихами дифракционной решетки и длиной волны падающего излучения. Для дифракции нужно, чтобы расстояние между штрихами было примерно равно длине волны падающего света.

Лауэ предположил, что рентгеновские лучи имеют длину волны, близкую к расстоянию между отдельными атомами в кристаллах, т.е. атомы в кристалле создают дифракционную решетку для рентгеновских лучей. Рентгеновские лучи, направленные на поверхность кристалла, отразились на фотопластинку, как предсказывалось теорией.

Любые изменения в положении атомов влияют на дифракционную картину, и, изучая дифракцию рентгеновских лучей,можно узнать расположение атомов в кристалле и изменение этого расположения при любых физических, химических и механических воздействиях на кристалл.

Сейчас рентгеноанализ используется во многих областях науки и техники, с его помощью узнали расположение атомов в существующих материалах и создали новые материалы с заданными структурой и свойствами. Последние достижения в этой области (наноматериалы, аморфные металлы, композитные материалы) создают поле деятельности для следующих научных поколений.

Возникновение и свойства рентгеновского излучения

Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 кВ).

Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1,5 раза превышает минимальную длину волны.

При увеличении напряжения рентгеновский спектр резко меняется за счет взаимодействия атомов с высокоэнергетичными электронами и квантами первичных рентгеновских лучей. Атом содержит внутренние электронные оболочки (энергетические уровни), количество которых зависит от атомного номера (обозначаются буквами K, L, М и т.д.) Электроны и первичные рентгеновские лучи выбивают электроны из одних энергетических уровней на другие. Возникает метастабильное состояние и для перехода к стабильному состоянию необходим перескок электронов в обратном направлении. Этот скачок сопровождается выделением кванта энергии и возникновением рентгеновского излучения. В отличие от рентгеновских лучей с непрерывным спектром, у этого излучения очень узкий интервал длин волн и высокая интенсивность (характеристическое излучением) (см . рис.). Количество атомов, определяющих интенсивность характеристического излучения, очень велико, например, для рентгеновской трубки с медным анодом при напряжении 1 кВ токе 15 мА за 1 с характеристическое излучение дают 10 14 –10 15 атомов. Эта величина вычисляется как отношение общей мощности рентгеновского излучения к энергии кванта рентгеновского излучения из К-оболочки (К-серия рентгеновского характеристического излучения). Общая мощность рентгеновского излучения при этом составляет всего 0,1% от потребляемой мощности, остальная часть теряется, в основном, за счет перехода в тепло.

Вследствие высокой интенсивности и узкого интервала длин волн характеристическое рентгеновское излучение является основным типом излучения, используемым в научных исследованиях и при технологическом контроле. Одновременно с лучами К-серии генерируются лучи L и М-серий, имеющих значительно большие длины волн, но применение их ограничено. K-серия имеет две составляющие с близкими длинами волн a и b , при этом интенсивность b -составляющей в 5 раз меньше, чем a . В свою очередь a -составляющая характеризуется двумя очень близкими длинами волн, интенсивность одной из которых в 2 раза больше, чем другой. Чтобы получить излучение с одной длиной волны (монохроматическое излучение), разработаны специальные методы, использующие зависимость поглощения и дифракции рентгеновских лучей от длины волны. Увеличение атомного номера элемента связано с изменением характеристик электронных оболочек, при этом чем больше атомный номер материала анода рентгеновской трубки, тем меньше длина волны К-серии. Наиболее широко применяются трубки с анодами из элементов с атомными номерами от 24 до 42 (Cr, Fe, Co, Cu, Mo) и длинами волн от 2,29 до 0,712 А (0,229 – 0,712 нм).

Кроме рентгеновской трубки, источниками рентгеновского излучения могут быть радиоактивные изотопы, одни могут непосредственно испускать рентгеновское излучение, другие испускают электроны и a -частицы, генерирующие рентгеновское излучение при бомбардировке металлических мишеней. Интенсивность рентгеновского излучения радиоактивных источников обычно значительно меньше, чем рентгеновской трубки (за исключением радиоактивного кобальта, используемого в дефектоскопии и дающего излучение очень малой длины волны – g -излучение), они малогабаритны и не требуют электроэнергии. Синхротронное рентгеновское излучение получают в ускорителях электронов, длина волны этого излучения значительно превышает получаемую в рентгеновских трубках (мягкое рентгеновское излучение), интенсивность его на несколько порядков выше интенсивности излучения рентгеновских трубок. Есть и природные источники рентгеновского излучения. Радиоактивные примеси обнаружены во многих минералах, зарегистрировано рентгеновское излучение космических объектов, в том числе и звезд.

Взаимодействие рентгеновских лучей с кристаллами

При рентгенографическом исследовании материалов с кристаллической структурой анализируют интерференционные картины, возникающие в результате рассеяния рентгеновских лучей электронами, принадлежащими атомам кристаллической решетки. Атомы считаются неподвижными, их тепловые колебания не учитываются и все электроны одного и того же атом считаются сосредоточенными в одной точке – узле кристаллической решетки.

Для вывода основных уравнений дифракции рентгеновских лучей в кристалле рассматривается интерференция лучей, рассеянных атомами, расположенными вдоль прямой в кристаллической решетке. На эти атомы под углом, косинус которого равен a 0 , падает плоская волна монохроматического рентгеновского излучения. Законы интерференции лучей, рассеянных атомами, аналогичны существующим для дифракционной решетки, рассеивающей световое излучение в видимом диапазоне длин волн. Чтобы на большом расстоянии от атомного ряда амплитуды всех колебаний складывались, необходимо и достаточно, чтобы разность хода лучей, идущих от каждой пары соседних атомов, содержала целое число длин волн. При расстоянии между атомами а это условие имеет вид:

а (a a 0) = h l ,

где a – косинус угла между атомным рядом и отклоненным лучом, h – целое число. Во всех направлениях, не удовлетворяющих этому уравнению, лучи не распространяются. Таким образом, рассеянные лучи образуют систему коаксиальных конусов, общей осью которых является атомный ряд. Следы конусов на плоскости, параллельной атомному ряду, – гиперболы, а на плоскости, перпендикулярной ряду, – круги.

При падении лучей под постоянным углом полихроматическое (белое) излучение разлагается в спектр лучей, отклоненных под фиксированными углами. Таким образом, атомный ряд является спектрографом для рентгеновского излучения.

Обобщение на двумерную (плоскую) атомную решетку, а затем на трехмерную объемную (пространственную) кристаллическую решетку дает еще два аналогичных уравнения, в которые входят углы падения и отражения рентгеновского излучения и расстояния между атомами по трем направлениям. Эти уравнения называются уравнениями Лауэ и лежат в основе рентгеноструктурного анализа.

Амплитуды лучей, отраженных от параллельных атомных плоскостей складываются и т.к. количество атомов очень велико, отраженное излучение можно зафиксировать экспериментально. Условие отражения описывается уравнением Вульфа – Брэгга2d sinq = nl , где d – расстояние между соседними атомными плоскостями, q – угол скольжения между направлением падающего луча и этими плоскостями в кристалле, l – длина волны рентгеновского излучения, n – целое число, названное порядком отражения. Угол q является углом падения по отношению именно к атомным плоскостям, которые не обязательно совпадают по направлению с поверхностью исследуемого образца.

Разработано несколько методов рентгеноструктурного анализа, использующих как излучение со сплошным спектром, так и монохроматическое излучение. Исследуемый объект при этом может быть неподвижным или вращающимся, может состоять из одного кристалла (монокристалл) или многих (поликристалл), дифрагированное излучение может регистрироваться с помощью плоской или цилиндрической рентгеновской пленки или перемещающегося по окружности детектора рентгеновского излучения, однако во всех случаях при проведении эксперимента и интерпретации результатов используется уравнение Вульфа – Брэгга.

Рентгеноанализ в науке и технике

С открытием дифракции рентгеновских лучей в распоряжении исследователей оказался метод, позволяющий без микроскопа изучить расположение отдельных атомов и изменения этого расположения при внешних воздействиях.

Основное применение рентгеновских лучей в фундаментальной наукеструктурный анализ, т.е. установление пространственного расположения отдельных атомов в кристалле. Для этого выращивают монокристаллы и проводят рентгеноанализ, изучая как расположения, так и интенсивности рефлексов. Сейчас определены структуры не только металлов, но и сложных органических веществ, в которых элементарные ячейки содержат тысячи атомов.

В минералогии методом ретгеноанализа определены структуры тысяч минералов и созданы экспресс-методы анализа минерального сырья.

У металлов сравнительно простая кристаллическая структура и рентгеновский метод позволяет исследовать ее изменения при различных технологических обработках и создавать физические основы новых технологий.

По расположению линий на рентгенограммах определяют фазовый состав сплавов, по их ширине – число, величину и форму кристаллов, по распределению интенсивности в дифракционном конусе – ориентировку кристаллов (текстуру).

С помощью этих методик изучают процессы при пластической деформации, включающие в себя дробление кристаллов, возникновение внутренних напряжений и несовершенств кристаллической структуры (дислокаций). При нагреве деформированных материалов изучают снятие напряжений и рост кристаллов (рекристаллизация).

При рентгеноанализе сплавов определяют состав и концентрацию твердых растворов. При возникновении твердого раствора меняются межатомные расстояния и, следовательно, расстояния между атомными плоскостями. Эти изменения невелики, поэтому разработаны специальные прецизионные методы измерения периодов кристаллической решетки с точностью на два порядка превышающей точность измерения при обычных рентгеновских методах исследования. Сочетание прецизионных измерений периодов кристаллической решетки и фазового анализа позволяют построить границы фазовых областей на диаграмме состояния. Рентгеновским методом можно также обнаружить промежуточные состояния между твердыми растворами и химическими соединениями – упорядоченные твердые растворы, в которых атомы примеси расположены не хаотически, как в твердых растворах, и в то же время не с трехмерной упорядоченностью, как в химических соединениях. На рентгенограммах упорядоченных твердых растворов есть дополнительные линии, расшифровка рентгенограмм показывает, что атомы примеси занимают определенные места в кристаллической решетке, например, в вершинах куба.

При закалке сплава, не испытывающего фазовых превращений, может возникать пересыщенный твердый раствор и при дальнейшем нагреве или даже выдержке при комнатной температуре твердый раствор распадается с выделением частиц химического соединения. Это эффект старениея и проявляется он на рентгенограммах как изменение положения и ширины линий. Исследование старения особенно важно для сплавов цветных металлов, например, старение превращает мягкий закаленный алюминиевый сплав в прочный конструкционный материал дуралюмин.

Наибольшее технологическое значение имеют рентгеновские исследования термической обработки стали. При закалке (быстром охлаждении) стали происходит бездиффузионный фазовый переход аустенит – мартенсит, что приводит к изменению структуры от кубической к тетрагональной, т.е. элементарная ячейка приобретает форму прямоугольной призмы. На рентгенограммах это проявляется как расширение линий и разделение некоторых линий на две. Причины этого эффекта – не только изменение кристаллической структуры, но и возникновение больших внутренних напряжений из-за термодинамической неравновесности мартенситной структуры и резкого охлаждения. При отпуске (нагреве закаленной стали) линии на рентгенограммах сужаются, это связано с возвращением к равновесной структуре.

В последние годы большое значение приобрели рентгеновские исследования обработки материалов концентрированными потоками энергии (лучами лазера, ударными волнами, нейтронами, электронными импульсами), они потребовали новых методик и дали новые рентгеновские эффекты. Например, при действии лучей лазера на металлы нагрев и охлаждение происходят настолько быстро, что в металле при охлаждении кристаллы успевают вырасти только до размеров в несколько элементарных ячеек (нанокристаллы) или вообще не успевают возникнуть. Такой металл после охлаждения выглядит как обычный, но не дает четких линий на рентгенограмме, а отраженные рентгеновские лучи распределены по всему интервалу углов скольжения.

После нейтронного облучения на рентгенограммах возникают дополнительные пятна (диффузные максимумы). Радиоактивный распад также вызывает специфические рентгеновские эффекты, связанные с изменением структуры, а также с тем, что исследуемый образец сам становится источником рентгеновского излучения.

Современная медицина использует множество медиков диагностики и терапии. Некоторые из них применяют сравнительно недавно, другие же практикуют на протяжении не одного десятка и даже сотни лет. Также еще сто десять лет назад Вильям Конрад Рентген обнаружил удивительные Х-лучи, которые вызвали значительный резонанс в научном и медицинском мире. И сейчас медики всего планеты используют их в своей практике. Темой нашего сегодняшнего разговора станут рентгеновские лучи в медицине, обсудим их применение чуть более подробно.

Рентгеновские лучи являются одной из разновидностей электромагнитного излучения. Они характеризуются значительными проникающими качествами, которые зависят длины волны излучения, а также от плотности и толщины облучаемых материалов. Кроме того рентгеновские лучи способны вызывать свечение ряда веществ, влиять на живые организмы, ионизировать атомы, а также катализировать некоторые фотохимические реакции.

Применение лучей Рентгена в медицине

На сегодняшний день свойства рентгеновских лучей позволяют широко применять их в рентгенодиагностике и рентгенотерапии.

Рентгенодиагностика

К рентгенодиагностике прибегают при проведении:

Рентгеноскопии (просвечивания);
- рентгенографии (снимка);
- флюорографии;
- рентгеновской и компьютерной томографии.

Рентгеноскопия

Для проведения такого исследования пациенту необходимо расположиться между трубкой рентгена и особенным флуоресцирующим экраном. Специалист-рентгенолог подбирает необходимую жесткость Х-лучей, получая на экране картинку внутренних органов, а также ребер.

Рентгенография

Для проведения данного исследования пациента укладывают на кассету, в которой находится специальная фотопленка. Рентгеновский аппарат при этом располагают непосредственно над объектом. В результате на пленке появляется негативное изображение внутренних органов, которое содержит ряд мелких деталей, более подробных, чем при проведении рентгеноскопического обследования.

Флюорография

Данное исследование осуществляют при проведении массовых медосмотров населения, в том числе и для выявления туберкулеза. При этом на особенную пленку проецируют картинку с крупного экрана.

Томография

При проведении томографии компьютерные лучи помогают получить снимки органов сразу в нескольких местах: в специально подобранных поперечных срезах ткани. Такая серия рентгеновских снимков носит название томограммы.

Компьютерная томограмма

Такое исследование позволяет регистрировать срезы тела человека путем применения рентгеновского сканера. После данные заносят в компьютер, получая одну картинку в поперечном сечении.

Каждый из перечисленных методов диагностики основан на свойствах рентгеновского луча засвечивать фотопленку, а также на том, что ткани и костный скелет человека отличаются различной проницаемостью к их воздействию.

Рентгенотерапия

Способность рентгеновских лучей влиять особенным образом на ткани применяется для терапии опухолевых формирований. При этом ионизирующие качества данного излучения особенно активно заметны при воздействии на клеточки, которые способны к быстрому делению. Как раз этими качествами отличаются клетки злокачественных онкологических формирований.

Тем не менее, стоит отметить, что рентгенотерапия способна вызывать массу серьезных побочных эффектов. Такое воздействие агрессивно сказывается на состоянии кроветворной, эндокринной и иммунной системы, клетки которых также очень быстро делятся. Агрессивное влияние на них способно вызывать признаки лучевой болезни.

Влияние рентгеновского излучения на человека

Во время исследования рентгеновских лучей, медики выяснили, что они могут приводить к изменениям в кожном покрове, которые напоминают солнечный ожог, однако сопровождаются более глубокими повреждениями кожи. Подобные изъязвления заживают крайне долго. Ученые выяснили, что таких поражений можно избежать путем снижения времени и дозы облучения, а также при помощи специальной экранировки и методов дистанционного управления.

Агрессивное влияние рентгеновских лучей может проявляться и в долгосрочной перспективе: временными либо постоянными изменениями в составе крови, подверженностью лейкемии и раннему старению.

Влияние рентгена на человека зависит от многих факторов: от того, какой орган облучают, и как долго. Облучение органов кроветворения может привести к недугам крови, а воздействие на половые органы – к бесплодию.

Проведение систематического облучения чревато развитием генетических изменений в организме.

Реальный вред рентгеновских лучей при рентгенодиагностике

При проведении обследования врачи применяют минимально возможное количество рентгеновских лучей. Все дозы облучения соответствуют определенным допустимым стандартам и не могут навредить человеку. Значительную опасность рентгенодиагностика представляет лишь для врачей, которые ее проводят. И то современные методы защиты помогают уменьшить агрессию лучей до минимума.

К самым безопасным методам рентгенодиагностики относят рентгенографию конечностей, а также стоматологический рентген. На следующем месте этого рейтинга находится маммография, за ней – компьютерная томография, а после – рентгенография.

Чтобы применение рентгеновских лучей в медицине приносило лишь пользу человеку, нужно проводить исследования с их помощью только по показаниям.

Ученого из Германии Вильгельма Конрада Рентгена по праву можно считать основоположником рентгенографии и первооткрывателем ключевых особенностей рентгеновских лучей.

Тогда в далеком 1895 году он даже не подозревал о широте применения и популярности, открытых им Х-излучений, хотя уже тогда они подняли широкий резонанс в мире науки.

Вряд ли изобретатель мог догадываться, какую пользу или вред принесет плод его деятельности. Но мы с вами сегодня попробуем выяснить, какое воздействие проявляет эта разновидность излучения на человеческое тело.

  • Х-излучение наделено огромной проникающей способностью, но она зависит от длины волны и плотности материала, который облучается;
  • под воздействием излучения некоторые предметы начинают светиться;
  • рентгеновский луч влияет на живых существ;
  • благодаря Х-лучам начинают протекать некоторых биохимические реакции;
  • рентгена луч может забирать у некоторых атомов электроны и тем самым ионизировать их.

Даже самого изобретателя в первую очередь волновал вопрос о том, что конкретно из себя представляют открытые им лучи.

После проведения целой серии экспериментальных исследований, ученый выяснил, что Х-лучи – это промежуточные волны между ультрафиолетом и гамма-излучением, длина которых составляет 10 -8 см.

Свойства рентгеновского луча, которые перечислены выше, обладают разрушительными свойствами, однако это не мешает применять их с полезными целями.

Так где же в современном мире можно использовать Х-лучи?

  1. С их помощью можно изучать свойства многих молекул и кристаллических образований.
  2. Для дефектоскопии, то есть проверять промышленные детали и приборы на предмет дефектов.
  3. В медицинской отрасли и терапевтических исследованиях.

В силу малых длин всего диапазона данных волн и их уникальных свойств, стало возможным важнейшее применение излучения, открытого Вильгельмом Рентгеном.

Поскольку тема нашей статьи ограничена воздействием Х-лучей на организм человека, который сталкивается с ними лишь при походе в больницу, то далее мы будем рассматривать исключительно эту отрасль применения.

Ученый, изобретший рентгеновские лучи, сделал их бесценным даром для всего населения Земли, поскольку не стал патентовать свое детище для дальнейшего использования.

Начиная со времен Первой моровой войны портативные установки для рентгена спасли сотни жизней раненных. Сегодня рентгеновские лучи имеют два основных спектра применения:

  1. Диагностика с его помощью.

Рентгенологическая диагностика применяется при различных вариантах:

  • рентгеноскопия или просвечивание;
  • рентгенография или снимок;
  • флюорографическое исследование;
  • томографирование при помощи рентгена.

Теперь нужно разобраться, чем эти методы отличаются друг от друга:

  1. Первый метод предполагает, что обследуемый располагается между специальным экраном с флуоресцентным свойством и рентгеновской трубкой. Доктор на основе индивидуальных особенностей подбирает требуемую силу лучей и получает изображение костей и внутренних органов на экране.
  2. При втором методе пациента кладут на специальную рентгеновскую пленку в кассете. При этом аппаратура размещается над человеком. Данная методика позволяет получить изображение в негативе, но с более мелкими деталями, чем при рентгеноскопии.
  3. Массовые обследования населения на предмет заболевания легких позволяет провести флюорография. В момент процедуры с большого монитора изображение переноситься на специальную пленку.
  4. Томография позволяет получить изображения внутренних органов в нескольких вариантах сечения. Производиться целая серия снимков, которые в дальнейшем называются томограммой.
  5. Если к предыдущему методу подключить помощь компьютера, то специализированные программы создадут целостное изображение, сделанное при помощи рентгеновского сканера.

Все эти методики диагностики проблем со здоровьем основываются на уникальном свойстве Х-лучей засвечивать фотопленку. При этом проникающая способность у косных и других тканей нашего тела разная, что отображается на снимке.

После того, как было обнаружено еще одно свойство лучей рентгена влиять на ткани с биологической точки зрения, данная особенность стала активно применяться при терапии опухолей.


Клетки, особенно злокачественные, делятся очень быстро, а ионизирующее свойство излучения положительно сказывается при лечебной терапии и замедляет рост опухоли.

Но другой стороной медали является негативное влияние рентгена на клетки кроветворной, эндокринной и иммунной системы, которые также быстро делятся. В результате отрицательного влияния Х-луча проявляется лучевая болезнь.

Влияние рентгена на человеческий организм

Буквально сразу после такого громогласного открытия в научном мире, стало известно, что лучи Рентгена могут оказывать воздействие на тело человека:

  1. В ходе исследований свойств Х-лучей выяснилось, что они способны вызывать ожоги на кожном покрове. Очень схожие на термические. Однако глубина поражения была куда больше, чем бытовые травмы, а заживали они хуже. Многие учены, занимающиеся этими коварными излучениями теряли пальцы на руках.
  2. Методом проб и ошибок было установлено, что если уменьшить время и лозу облечения, то ожогов можно избежать. Позже стали применяться свинцовые экраны и дистанционный метод облучения пациентов.
  3. Долгосрочная перспектива вредности лучей показывает, что изменения состава крови после облучения приводит к лейкемии и раннему старению.
  4. Степень тяжести воздействия рентгеновских лучей на организм человека прямо зависит от облучаемого органа. Так, при рентгенографии малого таза может наступить бесплодие, а при диагностике кроветворных органов – болезни крови.
  5. Даже самые незначительные облучения, но на протяжении долгого времени, могут привести к изменениям на генетическом уровне.

Конечно, все исследования проводились на животных, однако учеными доказано, что патологические изменения будут распространяться и на человека.

ВАЖНО! На основе полученных данных были разработаны стандарты рентгеновского облучения, которые едины на весь мир.

Дозы рентгеновских лучей при диагностике

Наверное, каждый, кто выходит из кабинета доктора после проведенного рентгена, задается вопросом о том, как эта процедура повлияет на дальнейшее здоровье?

Радиационной облучение в природе также существует и с ним мы сталкиваемся ежедневно. Чтобы было проще понять, как рентген влияет на наш организм, мы сравним эту процедуру с получаемым природным облучением:

  • при рентгенографии грудной клетки человек получает дозу радиации, приравниваемой к 10 дням фонового облучения, а желудка или кишечника – 3 годам;
  • томограмма на компьютере брюшной полости или всего тела – эквивалент 3 годам облучения;
  • обследование на рентгене груди – 3 месяца;
  • конечности облучается, практически не принося вредя здоровью;
  • стоматологический рентген в силу точной направленности лучевого пучка и минимального времени воздействия – также не является опасным.

ВАЖНО! Несмотря на то, что приведенные данные, как бы пугающе они не звучали, отвечают международным требованиям. Однако пациент имеет полное право попросить дополнительные средства защиты в случае сильного опасения за свое самочувствие.

Все мы сталкиваемся с рентгеновским обследованием, причем неоднократно. Однако одна категория людей вне положенных процедур – это беременные женщины.

Дело в том, что Х-лучи чрезвычайно сказываются здоровье будущего ребенка. Эти волны способны вызвать пороки внутриутробного развития в результате влияния на хромосомы.

ВАЖНО! Наиболее опасным периодом для проведения рентгена является беременность до 16 недели. В этот период самыми уязвимыми являются тазовая, брюшная и позвоночная область малыша.

Зная о таком отрицательном свойстве рентгена, доктора всего мира стараются избегать назначения его проведения у беременных.

Но существуют и другие источники излучения, с которыми может столкнуться беременная женщина:

  • микроскопы, работающие на электричестве;
  • мониторы цветных телевизоров.

Те, кто готовиться стать мамой обязательно должны знаю про подстерегающую их опасность. В период лактации рентгеновские лучи не несут угрозы для организма кормящей и малыша.

Как быть после рентгена?

Даже самые незначительные последствия рентгеновского облучения можно свести к минимуму, если выполнить несколько простых рекомендаций:

  • сразу после процедуры выпить молока. Как известно, оно способно выводить радиацию;
  • такими же свойствами обладает белое сухое вино или сок винограда;
  • желательно в первое время кушать больше продуктов, содержащих йод.

ВАЖНО! Не стоит прибегать ни к каким медицинским процедурам или использовать лечебные методы после посещения рентген-кабинета.

Какими бы негативными свойствами не обладали, некогда открытые Х-лучи, все равно польза от их применения значительно превышает наносимый вред. В медицинских учреждениях процедура просвечивания проводиться быстро и с минимальными дозами.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучениями и представляет собой электромагнитное излучение с длиной волны от 10 -14 до 10 -7 м. В медицине используется рентгеновское излучение с длиной волны от 5 х 10 -12 до 2,5 х 10 -10 м, то есть 0,05 – 2,5 ангсмтрема, а собственно для рентгенодиагностики – 0,1 ангстрема. Излучение представляет собой поток квантов (фотонов), распространяющихся прямолинейно со скоростью света (300 000 км/с). Эти кванты не имеют электрического заряда. Масса кванта со­ставляет ничтожную часть атомной единицы массы.

Энергию квантов измеряют в Джоулях (Дж), но на практике часто пользуются внесистемной единицей "электрон-вольт" (эВ) . Один электрон-вольт - это энергия, которую приобретает один электрон, пройдя в электриче­ском поле разность потенциалов в 1 вольт. 1 эВ = 1,6 10~ 19 Дж. Производными являются килоэлектрон-вольт (кэВ), равный тысяче эВ, и мегаэлектрон-вольт (МэВ), равный миллиону эВ.

Рентгеновские лучи получают с помощью рентгеновских трубок, линейных ускорителей и бетатронов. В рентгеновской трубке разность потенциалов между катодом и анодом-мишенью (десятки киловольт) ускоряет электроны, бомбардирующие анод. Рентгеновское излучение возникает при торможении быстрых электронов в электрическом поле атомов вещества анода (тормозное излучение) или при перестрой­ке внутренних оболочек атомов (характеристическое излучение ) . Характеристическое рентгеновское излучение имеет дискретный характер и возникает при переходе электронов атомов вещества анода с одного энергетического уровня на другой под воздействием внеш­них электронов или квантов излучения. Тормозное рентгеновское излучение имеет непрерывный спектр, зависящий от анодного напря­жения на рентгеновской трубке. При торможении в веществе анода электроны большую часть своей энергии расходуют на нагрев анода (99%) и лишь малая доля (1%) превра­щается в энергию рентгеновского излучения. В рентгенодиагностике чаще всего используется тормозное излучение.

Основные свойства рентгеновских лучей характерны для всех электромагнитных излучений, однако существуют некоторые особенности. Рентгеновские лучи обладают следующими свойствами:

- невидимость - чувствительные клетки сетчатки глаза человека не реа­гируют на рентгеновские лучи, так как длина их волны в тысячи раз меньше, чем у видимого света;

- прямолинейное распространение – лучи преломляются, поляризуются (распространяются в определенной плоскости) и дифрагируют, как и видимый свет. Коэффициент преломления очень мало отличается от единицы;



- проникающая способность - проникают без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Чем короче длина волны, тем большей проникающей способностью обладает рентгеновское излучение;

- способность к поглощению - обладают способностью поглощаться тканями организма, на этом основана вся рентгенодиагностика. Способность к поглощению зависит от удельного веса тканей (чем больше, тем больше поглощение); от толщины объекта; от жесткости излучения;

- фотографическое действие - разлагают галоидные соеди­нения серебра, в том числе находящиеся в фотоэмульсиях, что позволяет полу­чать рентгеновские снимки;

- люминесцирующее действие - вызывают люминесценцию ряда химических соединений (люминофоров), на этом осно­вана методика рентгеновского просвечивания. Интенсивность свечения зависит от строения флюоресцирующего вещества, его количества и расстояния от источника рентгеновского излучения. Люминофоры используют не только для получения изображения исследуемых объектов на рентгеноскопическом экране, но и при рентгенографии, где они позволяют увеличить лучевое воздействие на рентгенографическую пленку в кассете благодаря примене­нию усиливающих экранов, поверхностный слой которых выполнен из флюо­ресцирующих веществ;

- ионизационное действие - обладают способностью вызывать распад нейтральных атомов на положительно и отрицательно заряженные частицы, на этом основана дозиметрия. Эффект ионизации любой среды заключается в образовании в ней положительных и отрицательных ионов, а также свободных электронов из нейтральных атомов и молекул вещества. Ионизация воздуха в рентгеновском кабинете при работе рентгеновской трубки приводит к увеличению электрической проводимости воздуха, усилению статических электрических зарядов на предметах кабинета. С целью устранения такого нежелательного влияния их в рентгеновских кабинетах предусмотрена принудительная приточно-вытяжная вентиляция;

- биологическое действие - оказывают воздействие на биологические объекты, в большинстве случаев это воздействие является вредным;

- закон обратных квадратов - для точечного источника рентгеновского излучения интенсивность убывает пропорционально квадра­ту расстояния до источника.

В изучении и практическом использовании атомных явлений одну из важнейших ролей играют рентгеновские лучи. Благодаря их исследованию было сделано множество открытий и разработаны методы анализа вещества, применяемые в самых разных областях. Здесь мы рассмотрим один из видов рентгеновских лучей - характеристическое рентгеновское излучение.

Природа и свойства рентгеновских лучей

Рентгеновское излучение - это высокочастотное изменение состояния электромагнитного поля, распространяющееся в пространстве со скоростью около 300 000 км/с, то есть электромагнитные волны. На шкале диапазона электромагнитного излучения рентген располагается в области длин волн от приблизительно 10 -8 до 5∙10 -12 метров, что на несколько порядков короче оптических волн. Это соответствует частотам от 3∙10 16 до 6∙10 19 Гц и энергиям от 10 эВ до 250 кэВ, или 1,6∙10 -18 до 4∙10 -14 Дж. Следует отметить, что границы частотных диапазонов электромагнитного излучения достаточно условны вследствие их перекрытия.

Является взаимодействие ускоренных заряженных частиц (электронов высоких энергий) с электрическими и магнитными полями и с атомами вещества.

Фотонам рентгеновских лучей свойственны высокие энергии и большая проникающая и ионизирующая способность, особенно для жесткого рентгена с длинами волн менее 1 нанометра (10 -9 м).

Рентгеновские лучи взаимодействуют с веществом, ионизируя его атомы, в процессах фотоэффекта (фотопоглощения) и некогерентного (комптоновского) рассеяния. При фотопоглощении рентгеновский фотон, поглощаясь электроном атома, передает ему энергию. Если ее величина превышает энергию связи электрона в атоме, то он покидает атом. Комптоновское рассеяние характерно для более жестких (энергичных) рентгеновских фотонов. Часть энергии поглощаемого фотона затрачивается на ионизацию; при этом под некоторым углом к направлению первичного фотона излучается вторичный, с меньшей частотой.

Виды рентгеновского излучения. Тормозное излучение

Для получения лучей используют представляющие собой стеклянные вакуумные баллоны с расположенными внутри электродами. Разность потенциалов на электродах нужна очень высокая - до сотен киловольт. На вольфрамовом катоде, подогреваемом током, происходит термоэлектронная эмиссия, то есть с него испускаются электроны, которые, ускоряясь разностью потенциалов, бомбардируют анод. В результате их взаимодействия с атомами анода (иногда его именуют антикатодом) рождаются фотоны рентгеновского диапазона.

В зависимости от того, какой процесс приводит к рождению фотона, различают такие виды рентгеновского излучения, как тормозное и характеристическое.

Электроны могут, встречаясь с анодом, тормозиться, то есть терять энергию в электрических полях его атомов. Эта энергия излучается в форме рентгеновских фотонов. Такое излучение называется тормозным.

Понятно, что условия торможения будут различаться для отдельных электронов. Это значит, что в рентгеновское излучение преобразуются разные количества их кинетической энергии. В результате тормозное излучение включает фотоны разных частот и, соответственно, длин волн. Поэтому спектр его является сплошным (непрерывным). Иногда по этой причине его еще называют «белым» рентгеновским излучением.

Энергия тормозного фотона не может превышать кинетическую энергию порождающего его электрона, так что максимальная частота (и наименьшая длина волны) тормозного излучения соответствует наибольшему значению кинетической энергии налетающих на анод электронов. Последняя же зависит от приложенной к электродам разности потенциалов.

Существует еще один тип рентгеновского излучения, источником которого является иной процесс. Это излучение именуют характеристическим, и мы остановимся на нем подробнее.

Как возникает характеристическое рентгеновское излучение

Достигнув антикатода, быстрый электрон может проникнуть внутрь атома и выбить какой-либо электрон с одной из нижних орбиталей, то есть передать ему энергию, достаточную для преодоления потенциального барьера. Однако при наличии в атоме более высоких энергетических уровней, занятых электронами, освободившееся место пустым не останется.

Необходимо помнить, что электронная структура атома, как и всякая энергетическая система, стремится минимизировать энергию. Образовавшаяся в результате выбивания вакансия заполняется электроном с одного из вышележащих уровней. Его энергия выше, и, занимая более низкий уровень, он излучает излишек в форме кванта характеристического рентгеновского излучения.

Электронная структура атома - это дискретный набор возможных энергетических состояний электронов. Поэтому рентгеновские фотоны, излучаемые в процессе замещения электронных вакансий, также могут иметь только строго определенные значения энергии, отражающие разность уровней. Вследствие этого характеристическое рентгеновское излучение обладает спектром не сплошного, а линейчатого вида. Такой спектр позволяет характеризовать вещество анода - отсюда и название этих лучей. Именно благодаря спектральным различиям ясно, что понимают под тормозным и характеристическим рентгеновским излучением.

Иногда излишек энергии не излучается атомом, а затрачивается на выбивание третьего электрона. Этот процесс - так называемый эффект Оже - с большей вероятностью происходит, когда энергия связи электрона не превышает 1 кэВ. Энергия освобождающегося оже-электрона зависит от структуры энергетических уровней атома, поэтому спектры таких электронов также носят дискретный характер.

Общий вид характеристического спектра

Узкие характеристические линии присутствуют в рентгеновской спектральной картине вместе со сплошным тормозным спектром. Если представить спектр в виде графика зависимости интенсивности от длины волны (частоты), в местах расположения линий мы увидим резкие пики. Их позиция зависит от материала анода. Эти максимумы присутствуют при любой разности потенциалов - если есть рентгеновские лучи, пики тоже всегда есть. При повышении напряжения на электродах трубки интенсивность и сплошного, и характеристического рентгеновского излучения нарастает, но расположение пиков и соотношение их интенсивностей не меняется.

Пики в рентгеновских спектрах имеют одинаковый вид независимо от материала облучаемого электронами антикатода, но у различных материалов располагаются на разных частотах, объединяясь в серии по близости значений частоты. Между самими сериями различие по частотам намного значительнее. Вид максимумов никак не зависит от того, представляет ли материал анода чистый химический элемент или же это сложное вещество. В последнем случае характеристические спектры рентгеновского излучения составляющих его элементов просто накладываются друг на друга.

С повышением порядкового номера химического элемента все линии его рентгеновского спектра смещаются в сторону повышения частоты. Спектр при этом сохраняет свой вид.

Закон Мозли

Явление спектрального сдвига характеристических линий было экспериментально обнаружено английским физиком Генри Мозли в 1913 году. Это позволило ему связать частоты максимумов спектра с порядковыми номерами химических элементов. Таким образом, и длину волны характеристического рентгеновского излучения, как выяснилось, можно четко соотнести с определенным элементом. В общем виде закон Мозли можно записать следующим образом: √f = (Z - S n)/n√R, где f - частота, Z - порядковый номер элемента, S n - постоянная экранирования, n - главное квантовое число и R - постоянная Ридберга. Эта зависимость имеет линейный характер и на диаграмме Мозли выглядит как ряд прямых линий для каждого значения n.

Значения n соответствуют отдельным сериям пиков характеристического рентгеновского излучения. Закон Мозли позволяет по измеряемым значениям длин волн (они однозначно связаны с частотами) максимумов рентгеновского спектра устанавливать порядковый номер химического элемента, облучаемого жесткими электронами.

Структура электронных оболочек химических элементов идентична. На это указывает монотонность сдвигового изменения характеристического спектра рентгеновского излучения. Частотный сдвиг отражает не структурные, а энергетические различия между электронными оболочками, уникальные для каждого элемента.

Роль закона Мозли в атомной физике

Существуют небольшие отклонения от строгой линейной зависимости, выражаемой законом Мозли. Они связаны, во-первых, с особенностями порядка заполнения электронных оболочек у некоторых элементов, и, во-вторых, с релятивистскими эффектами движения электронов тяжелых атомов. Кроме того, при изменении количества нейтронов в ядре (так называемом изотопическом сдвиге) положение линий может слегка меняться. Этот эффект дал возможность детально изучить атомную структуру.

Значение закона Мозли чрезвычайно велико. Последовательное применение его к элементам периодической системы Менделеева установило закономерность увеличения порядкового номера соответственно каждому небольшому сдвигу характеристических максимумов. Это способствовало прояснению вопроса о физическом смысле порядкового номера элементов. Величина Z - это не просто номер: это положительный электрический заряд ядра, представляющий собой сумму единичных положительных зарядов частиц, входящих в его состав. Правильность размещения элементов в таблице и наличие в ней пустых позиций (тогда они еще существовали) получили мощное подтверждение. Была доказана справедливость периодического закона.

Закон Мозли, помимо этого, стал основой, на которой возникло целое направление экспериментальных исследований - рентгеновская спектрометрия.

Строение электронных оболочек атома

Вкратце вспомним, как устроена электронная Она состоит из оболочек, обозначаемых буквами K, L, M, N, O, P, Q либо цифрами от 1 до 7. Электроны в пределах оболочки характеризуются одинаковым главным квантовым числом n, определяющим возможные значения энергии. Во внешних оболочках энергия электронов выше, а потенциал ионизации для внешних электронов соответственно ниже.

Оболочка включает один или несколько подуровней: s, p, d, f, g, h, i. В каждой оболочке количество подуровней увеличивается на один по сравнению с предыдущей. Количество электронов в каждом подуровне и в каждой оболочке не может превышать определенного значения. Они характеризуются, помимо главного квантового числа, одинаковым значением орбитального определяющего форму электронного облака. Подуровни обозначаются с указанием оболочки, которой они принадлежат, например, 2s, 4d и так далее.

Подуровень содержит которые задаются, кроме главного и орбитального, еще одним квантовым числом - магнитным, определяющим проекцию орбитального момента электрона на направление магнитного поля. Одна орбиталь может иметь не более двух электронов, различающихся значением четвертого квантового числа - спинового.

Рассмотрим подробнее, как возникает характеристическое рентгеновское излучение. Так как происхождение этого типа электромагнитной эмиссии связано с явлениями, происходящими внутри атома, удобнее всего описывать его именно в приближении электронных конфигураций.

Механизм генерации характеристического рентгеновского излучения

Итак, причиной возникновения данного излучения является образование электронных вакансий во внутренних оболочках, обусловленное проникновением высокоэнергичных электронов глубоко внутрь атома. Вероятность того, что жесткий электрон вступит во взаимодействие, возрастает с увеличением плотности электронных облаков. Следовательно, наиболее вероятным будет столкновение в пределах плотно упакованных внутренних оболочек, например, самой нижней К-оболочки. Здесь атом ионизируется, и в оболочке 1s образуется вакансия.

Эта вакансия заполняется электроном из оболочки с большей энергией, избыток которой уносится рентгеновским фотоном. Этот электрон может «упасть» из второй оболочки L, из третьей М и так далее. Так формируется характеристическая серия, в данном примере - К-серия. Указание на то, откуда происходит заполнивший вакансию электрон, дается в виде греческого индекса при обозначении серии. «Альфа» означает, что он происходит из L-оболочки, «бета» - из М-оболочки. В настоящее время существует тенденция к замене греческих буквенных индексов латинскими, принятыми для обозначения оболочек.

Интенсивность альфа-линии в серии всегда наивысшая - это значит, что вероятность заполнения вакансии из соседней оболочки самая высокая.

Теперь мы можем ответить на вопрос, какова максимальная энергия кванта характеристического рентгеновского излучения. Она определяется разностью значений энергии уровней, между которыми совершается переход электрона, по формуле E = E n 2 - E n 1 , где E n 2 и E n 1 - энергии электронных состояний, между которыми произошел переход. Наивысшее значение этого параметра дают переходы К-серии с максимально высоких уровней атомов тяжелых элементов. Но интенсивность этих линий (высота пиков) самая малая, поскольку они наименее вероятны.

Если из-за недостаточности напряжения на электродах жесткий электрон не может достичь К-уровня, он образует вакансию на L-уровне, и формируется менее энергичная L-серия с большими длинами волн. Аналогичным образом рождаются последующие серии.

Кроме того, при заполнении вакансии в результате электронного перехода возникает новая вакансия в вышележащей оболочке. Это создает условия для генерирования следующей серии. Электронные вакансии перемещаются выше с уровня на уровень, и атом испускает каскад характеристических спектральных серий, оставаясь при этом ионизированным.

Тонкая структура характеристических спектров

Атомным рентген-спектрам характеристического рентгеновского излучения свойственна тонкая структура, выражающаяся, как и в оптических спектрах, в расщеплении линий.

Тонкая структура связана с тем, что энергетический уровень - электронная оболочка - представляет собой набор тесно расположенных компонентов - подоболочек. Для характеристики подоболочек введено еще одно, внутреннее квантовое число j, отражающее взаимодействие собственного и орбитального магнитных моментов электрона.

В связи с влиянием спин-орбитального взаимодействия энергетическая структура атома усложняется, и в результате характеристическое рентгеновское излучение имеет спектр, которому свойственны расщепленные линии с очень близко расположенными элементами.

Элементы тонкой структуры принято обозначать дополнительными цифровыми индексами.

Характеристическое рентгеновское излучение обладает особенностью, отраженной только в тонкой структуре спектра. Переход электрона на низший энергетический уровень не происходит с нижней подоболочки вышележащего уровня. Такое событие имеет пренебрежимо малую вероятность.

Использование рентгена в спектрометрии

Это излучение благодаря своим особенностям, описанным законом Мозли, лежит в основе различных рентгеноспектральных методов анализа веществ. При анализе рентгеновского спектра применяют либо дифракцию излучения на кристаллах (волнодисперсионный метод), либо чувствительные к энергии поглощенных рентгеновских фотонов детекторы (энергодисперсионный метод). Большинство электронных микроскопов оснащены теми или иными рентгеноспектрометрическими приставками.

Особенно высокой точностью отличается волнодисперсионная спектрометрия. При помощи особых фильтров выделяются наиболее интенсивные пики в спектре, благодаря чему можно получить практически монохроматическое излучение с точно известной частотой. Материал анода выбирается очень тщательно, чтобы обеспечить получение монохроматического пучка нужной частоты. Его дифракция на кристаллической решетке изучаемого вещества позволяет исследовать структуру решетки с большой точностью. Этот метод применяется также в изучении ДНК и других сложных молекул.

Одна из особенностей характеристического рентгеновского излучения учитывается и в гамма-спектрометрии. Это высокая интенсивность характеристических пиков. В гамма-спектрометрах применяется свинцовая защита от внешних фоновых излучений, вносящих помехи в измерения. Но свинец, поглощая гамма-кванты, испытывает внутреннюю ионизацию, в результате чего активно излучает в рентгеновском диапазоне. Для поглощения интенсивных максимумов характеристического рентгеновского излучения свинца используется дополнительная кадмиевая экранировка. Она, в свою очередь, ионизируется и также излучает в рентгене. Для нейтрализации характеристических пиков кадмия применяют третий экранирующий слой - медный, рентгеновские максимумы которого лежат вне рабочего диапазона частот гамма-спектрометра.

Спектрометрия использует и тормозное, и характеристическое рентгеновское излучение. Так, при анализе веществ исследуются спектры поглощения сплошного рентгена различными веществами.