На свободную тему

На что направлен корреляционный анализ. Корреляционно-регрессионный анализ: пример, задачи, применение. Метод корреляционно-регрессионного анализа. Корреляционный анализ в психологии

Корреляционный анализ является одним из наиболее широко используемых статистических методов, в частности и в рамках политической науки. При своей относительной простоте он может быть весьма полезен как для тестирования имеющихся гипотез, так и в поисковом исследовании, когда предположения о связях и взаимозависимостях только формируются. Умение работать с данной статистической техникой важно и в силу того, что она используется как составная часть более сложных, комплексных методов, в том числе факторного анализа, некоторых версий кластер-анализа и др.

Целью корреляционного анализа является измерение стати -

стической взаимозависимости между двумя или более переменными. В случае, если исследуется связь двух переменных, корреляционный анализ будет парным; если число переменных более двух - множественным.

Следует подчеркнуть, что переменные в корреляционном анализе как бы «равноправны» - они не делятся на зависимые и независимые (объясняемые и объясняющие). Мы рассматриваем именно взаимозависимость (взаимосвязь) переменных, а не влияние одной из них на другую.

Понятие «корреляционный анализ» фактически объединяет несколько методов анализа статистической связи. В фокусе нашего внимания будет находиться наиболее распространенный из них - метод Пирсона (Реагзоп) . Его применение ограничено следующими условиями:

Переменные должны быть измерены, как минимум, на интервальном уровне;

Связь между переменными должна носить линейный характер, т. е. фиксироваться прямой линией. При наличии нелинейной связи корреляционный анализ Пирсона, скорее всего, не даст ее адекватного отображения;

Анализируемые переменные должны быть распределены нормально (или, во всяком случае, приближаться к нормальному распределению).

Корреляционный анализ фиксирует две характеристики статистической взаимосвязи между переменными:

Направленность связи. Как уже говорилось, по направленности связь бывает прямая (положительная) и обратная (отрицательная);

Интенсивность (плотность, теснота) связи. Эта характеристика определяет наши возможности по предсказанию значений одной переменной на основании значений другой.

Чтобы более наглядно представить себе особенности корреляционного анализа, обратимся к примеру из сферы исследования электоральных процессов. Предположим, мы проводим сравнительный анализ электората двух политических партий либеральной ориентации - Союза правых сил и «Яблока». Наша задача - понять, существует ли общность электората СПС и «Яблока» в территориальном разрезе и насколько она значима. Для этого мы можем, например, взять данные электоральной статистики, характеризующие уровень поддержки этих партий, в разрезе данных избирательных комиссий субъектов Федерации. Проще говоря, мы смотрим на проценты, полученные СПС и «Яблоком» по регионам России. Ниже приводятся данные по выборам депутатов Государственной думы 1999 г. (количество регионов 88, поскольку выборы в Чеченской Республике не проводились) .

Переменные (%)

«Яблоко»

Республика Адыгея

Республика Алтай

Республика Башкортостан

Республика Бурятия

Республика Дагестан

Республика Ингушетия

Кабардино-Балкарская Республика

Республика Калмыкия

Карачаево-Черкесская Республика

Республика Карелия

Республика Коми

Республика Марий Эл

И т. д. (всего 88 случаев)

Таким образом, у нас есть две переменные - «поддержка СПС в 1999 г.» и «поддержка "Яблока" в 1999 г.», простейшим образом операционализированные через процент голосов, поданных за эти партии, от числа избирателей, принявших участие в голосовании на федеральных парламентских выборах 1999 г. В качестве случаев выступают соответствующие данные, обобщенные на уровне регионов РФ.

Далее, в нашем распоряжении есть методический прием, который является одним из основных в статистике, - геометрическое представление. Геометрическим представлением называют представление случая как точки в условном пространстве, формируемом «осями» - переменными. В нашем примере мы можем представить каждый регион как точку в двухмерном пространстве голосований за правые партии. Ось X формирует признак «поддержка СПС», ось У- «поддержка "Яблока"» (или наоборот; для корреляционного анализа это неважно в силу неразличения зависимых и независимых переменных). «Координатами» региона будут: по оси X - значение переменной «поддержка СПС» (процент, набранный в регионе данной партией); по оси У- значение переменной «поддержка "Яблока"». Так, Республика Адыгея будет иметь координаты (3,92; 4,63), Республика Алтай - (3,38; 5,4) и т. д. Осуществив геометрическое представление всех случаев, мы получаем диаграмму рассеяния, или корреляционное поле.

Даже сугубо визуальный анализ диаграммы рассеяния наводит на мысль, что совокупность точек можно расположить вдоль некоторой условной прямой, называемой линией регрессии. Математически линия регрессии строится методом наименьших квадратов (высчитывается такое положение линии, при котором сумма квадратов расстояний от наблюдаемых точек до прямой является минимальной).

Интенсивность связи будет зависеть от того, насколько тесно точки (случаи) расположены вдоль линии регрессии. В коэффициенте корреляции (обозначается г), который и является числовым результатом корреляционного анализа, плотность колеблется от 0 до 1. При этом чем ближе значение коэффициента к 1, тем плотнее связь; чем ближе значение к 0, тем связь слабее. Так, при г = 1 связь приобретает характер функциональной - все точки «ложатся» на одну прямую. При г = 0, фиксирующем полное отсутствие связи, построение линии регрессии становится невозможным. В нашем примере г = 0,62, что свидетельствует о наличии значимой статистической связи (подробнее об интерпретации коэффициента корреляции см. ниже).

Тип связи определяется наклоном линии регрессии. В коэффициенте корреляции существует всего два значения типа связи: обратная (знак «-») и прямая (отсутствие знака, так как знак «+» традиционно не записывается). В нашем примере связь прямая. Соответственно, итоговый результат анализа 0,62.

Сегодня коэффициент корреляции Пирсона можно легко подсчитать с помощью всех компьютерных пакетов программ статистического анализа (8Р88, 81аИ8Иса, N088 и др.) и даже в широко распространенной программе Ехсе1 (надстройка «анализ данных»). Настоятельно рекомендуем пользоваться профессиональными пакетами, так как они позволяют визуально оценить корреляционное поле.

Почему важна визуальная оценка геометрического представления данных? Во-первых, мы должны убедиться, что связь линейна по форме, а здесь самый простой и эффективный метод - именно зрительная оценка. Напомним, что в случае ярко выраженной нелинейности связи вычисление коэффициента корреляции окажется бесполезным. Во-вторых, визуальная оценка позволяет найти в данных выбросы, т. е. нетипичные, резко выделяющиеся случаи.

Вернемся к нашему примеру с двумя партиями. Внимательно глядя на диаграмму рассеяния, мы замечаем по меньшей мере один нетипичный случай, лежащий явно в стороне от «общей магистрали», тенденции связи переменных. Это точка, представляющая данные по Самарской области. Хотя и в меньшей степени, но тоже нетипично положение Томской, Нижегородской областей и Санкт-Петербурга.

Можно скорректировать данные анализа, удалив сильно отклоняющиеся наблюдения, т. е. произведя «чистку выбросов». В силу специфики вычисления линии регрессии, связанной с подсчетом суммы квадратов расстояний, даже единичный выброс может существенно исказить общую картину.

на массиве данных, взятых в территориальном разрезе. Логично предположить, что в основе этой связи лежит некий фактор или комплекс факторов, который мы пока непосредственно не учитывали. Исследуя данные электоральной статистики разного уровня, нетрудно заметить, что обе партии демонстрируют лучшие результаты в городах и худшие - в сельских районах. Мы можем выдвинуть гипотезу, что одним из факторов, опосредующих связь между переменными, является уровень урбанизации территорий. Этот признак проще всего опера-ционализировать через переменную «доля сельского населения» или «доля городского населения» . Такая статистика существует по каждому субъекту Федерации.

Теперь в наших исходных данных появляется третья переменная - пусть это будет «доля сельского населения» .

Удалив только один из 88 случаев - Самарскую область, - мы получим значение коэффициента корреляции, отличное от полученного ранее: 0,73 по сравнению с 0,62. Плотность связи усилилась более чем на 0,1 - это весьма и весьма существенно. Избавившись отточек, соответствующих Санкт-Петербургу, Томской и Нижегородской областям, получим еще более высокую плотность: 0,77.

Впрочем, чисткой выбросов не следует увлекаться: сокращая количество случаев, мы понижаем общий уровень статистического доверия к полученным результатам. К сожалению, общепринятых критериев определения выбросов не существует, и здесь многое зависит от добросовестности исследователя. Лучший способ - содержательно понять, с чем связано наличие «выброса». Так, в нашем примере нетипичное положение Самарской области в признаковом пространстве связано с тем, что в 1999 г. одним из активных лидеров правых был глава региона К. Титов. Соответственно, высокий результат СПС в регионе был обусловлен не только поддержкой партии как таковой, но и поддержкой губернатора.

Возвратимся к нашему исследованию. Мы выяснили, что голосование за СПС и «Яблоко» довольно плотно коррелирует между собой

Чисто технически мы можем вычислять каждый парный коэффициент корреляции отдельно, но удобнее сразу получить матрицу интеркорреляций (матрицу парных корреляций). Матрица обладает диагональной симметрией. В нашем случае она будет выглядеть следующим образом:

Мы получили статистически значимые коэффициенты корреляции, подтверждающие выдвинутую нами гипотезу. Так, доля городского населения оказалась отрицательно связанной как с поддержкой СПС (г= -0,61), так и с поддержкой «Яблока» (г= -0,55). Можно заметить, что переменная «поддержка СПС» более чувствительна к фактору урбанизации по сравнению с переменной «поддержка "Яблока"».

«Яблоко»

В этом примере мы уже начинаем мыслить в категориях влияния одной переменной на другую. Строго говоря, и это отмечено выше, корреляционный анализ не различает зависимых и независимых переменных, фиксируя лишь их взаимную статистическую связь. В то же время содержательно мы понимаем, что именно принадлежность

Следует отметить, что после чистки выбросов (см. диаграммы рассеяния) связь была бы еще плотнее. Так, после удаления двух выбросов (Самарская область и Усть-Ордынский Бурятский АО) плотность коэффициента для СПС увеличивается до -0,65.

избирателей к городскому или сельскому населению влияет на их электоральный выбор, а никак не наоборот.

Интерпретация интенсивности связи

Мы подошли к проблеме интерпретации интенсивности связи на основе значения коэффициента корреляции Пирсона. Определенного жесткого правила здесь не существует; скорее речь идет о совокупном опыте, накопленном в процессе статистических исследований. Традиционной можно считать следующую схему интерпретации данного коэффициента:

Необходимо отметить, что подобный вариант интерпретации плотности коэффициента корреляции применим в науках, в гораздо большей степени опирающихся на количественные данные, нежели наука политическая (например, в экономике). В эмпирических исследованиях политики довольно редко можно обнаружить г > 0,7; коэффициент же со значением 0,9 - случай просто уникальный. Это связано прежде всего с особенностями мотивации политического поведения - сложной, многофакторной, нередко иррациональной. Ясно, что такое сложное явление, как голосование за определенную политическую партию , не может целиком подчиняться одному или даже двум факторам. Поэтому применительно к политическим исследованиям предлагаем несколько смягченную схему интерпретации:

0,4 > г > 0,3 - слабая корреляция;

0,6 > г > 0,4 - средняя корреляция;

Г > 0,7 - сильная корреляция.

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: г= 0,83; 1995-1996: г = 0,76;

1999-2000: г = 0,74; 2003-2004: г= 0,73). На максимальной временной дистанции - между президентскими и парламентскими выборами 1991 - 1993 и 2003-2004 гг. - связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени происходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парламентских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определенная преемственность обнаруживается на протяжении восьми лет, в течение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свидетельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электоральной культуры территорий.

Использование корреляционного анализа для выявления динамики связи переменных во времени

Корреляционный анализ можно использовать не только для обнаружения связи между переменными, но и для оценки изменения этой связи во времени. Так, при изучении проблемы электоральной активности в регионах России необходимо было убедиться в том, что уровень активности избирателей является некой стабильной характеристикой электоральной культуры российских территорий. Имеются в виду, разумеется, не абсолютные показатели, которые существенно колеблются от выборов к выборам. Речь идет об устойчивости различий в уровне активности избирателей различных регионов России.

Устойчивость пропорционального распределения явки по субъектам Федерации достаточно просто проверяется методом корреляционного анализа. Приводимая ниже матрица парных корреляций электоральной активности на федеральных выборах 1991-2004 гг. довольно четко демонстрирует существующую тенденцию. Статистическая связь наиболее сильна внутри одного электорального цикла (1991-1993; 1995-1996; 1999-2000; 2003-2004), между двумя близкими по времени циклами она несколько слабеет, а по мере удаления электоральных циклов стремится к затуханию.

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: /-= 0,83; 1995-1996: г= 0,76;

1999-2000: г= 0,74; 2003-2004: г= 0,73). На максимальной временной дистанции - между президентскими и парламентскими выборами 1991 - 1993 и 2003-2004 гг. - связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени происходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парламентских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определенная преемственность обнаруживается на протяжении восьми лет, в течение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свидетельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электоральной культуры территорий.

Другие коэффициенты корреляции

Как было отмечено, коэффициент корреляции Пирсона является наиболее распространенным критерием связи интервальных и нормально распределенных переменных. Но что делать, если мы имеем переменные, существенно отклоняющиеся от нормального распределения? Или переменные не интервальные, но при этом являются метрическими (порядковые переменные с большим числом категорий)?

В этих ситуациях рекомендуется вычислять коэффициенты корреляции рангов, наиболее известным из которых является коэффициент Спирмана. Ранговая корреляция оперирует логикой порядкового уровня: принимаются во внимание не абсолютные значения, а отношения порядка (возрастания и убывания). В какой-то мере ранговую корреляцию можно считать усложненной версией расчета показателя гамма (у), который мы рассматривали в качестве стандартной меры связи порядковых переменных.

Коэффициент корреляции Спирмана колеблется в том же интервале, что и коэффициент Пирсона - от 0 до ± 1. Принципы интерпретации значений коэффициента также идентичны. Дополнительно стоит отметить, что ранговая корреляция не чувствительна к выбросам, так как не чувствительна к абсолютным значениям вообще.

– это один из самых распространенных методов изучения отношений между численными величинами. Его основная цель состоит в нахождении зависимости между двумя параметрами и ее степени с последующим выведением уравнения. Например, у нас есть студенты, которые сдали экзамен по математике и английскому языку. Мы можем использовать корреляцию для того, чтобы определить, влияет ли успешность сдачи одного теста на результаты по другому предмету. Что касается регрессионного анализа, то он помогает предсказать оценки по математике, исходя из баллов, набранных на экзамене по английскому языку, и наоборот.

Что такое корреляционная диаграмма?

Любой анализ начинается со сбора информации. Чем ее больше, тем точнее полученный в конечном итоге результат. В вышеприведенном примере у нас есть две дисциплины, по которым школьникам нужно сдать экзамен. Показатель успешности на них – это оценка. Корреляционно-регрессионный анализ показывает, влияет ли результат по одному предмету на баллы, набранные на втором экзамене. Для того чтобы ответить на этот вопрос, необходимо проанализировать оценки всех учеников на параллели. Но для начала нужно определиться с зависимой переменной. В данном случае это не так важно. Допустим, экзамен по математике проходил раньше. Баллы по нему – это независимая переменная (откладываются по оси абсцисс). Английский язык стоит в расписании позже. Поэтому оценки по нему – это зависимая переменная (откладываются по оси ординат). Чем больше полученный таким образом график похож на прямую линию, тем сильнее линейная корреляция между двумя избранными величинами. Это означает, что отличники в математике с большой долей вероятности получат пятерки на экзамене по английскому.

Допущения и упрощения

Метод корреляционно-регрессионного анализа предполагает нахождение причинно-следственной связи. Однако на первом этапе нужно понимать, что изменения обеих величин могут быть обусловлены какой-нибудь третьей, пока не учтенной исследователем. Также между переменными могут быть нелинейные отношения, поэтому получение коэффициента, равного нулю, это еще не конец эксперимента.

Линейная корреляция Пирсона

Данный коэффициент может использоваться при соблюдении двух условий. Первое – все значения переменных являются рациональными числами, второе – ожидается, что величины изменяются пропорционально. Данный коэффициент всегда находится в пределах между -1 и 1. Если он больше нуля, то имеет место быть прямо пропорциональная зависимость, меньше – обратно, равен – данные величины никак не влияют одна на другую. Умение вычислить данный показатель – это основы корреляционно-регрессионного анализа. Впервые данный коэффициент был разработан Карлом Пирсоном на основе идеи Френсиса Гальтона.

Свойства и предостережения

Коэффициент корреляции Пирсона является мощным инструментом, но его также нужно использовать с осторожностью. Существуют следующие предостережения в его применении:

  1. Коэффициент Пирсона показывает наличие или отсутствие линейной зависимости. Корреляционно-регрессионный анализ на этом не заканчивается, может оказаться, что переменные все-таки связаны между собой.
  2. Нужно быть осторожным в интерпретировании значения коэффициента. Можно найти корреляцию между размером ноги и уровнем IQ. Но это не означает, что один показатель определяет другой.
  3. Коэффициент Пирсона не говорит ничего о причинно-следственной связи между показателями.

Коэффициент ранговой корреляции Спирмана

Если изменение величины одного показателя приводит к увеличению или уменьшению значения другого, то это означает, что они являются связанными. Корреляционно-регрессионный анализ, пример которого будет приведен ниже, как раз и связан с такими параметрами. Ранговый коэффициент позволяет упростить расчеты.

Корреляционно-регрессионный анализ: пример

Предположим, происходит оценка эффективности деятельности десяти предприятий. У нас есть двое судей, которые выставляют им баллы. Корреляционно-регрессионный анализ предприятия в этом случае не может быть проведен на основе линейного коэффициента Пирсона. Нас не интересует взаимосвязь между оценками судей. Важны ранги предприятий по оценке судей.

Данный тип анализа имеет следующие преимущества:

  • Непараметрическая форма отношений между исследуемыми величинами.
  • Простота использования, поскольку ранги могут приписываться как в порядке возрастания значений, так и убывания.

Единственное требование данного типа анализа – это необходимость конвертации исходных данных.

Проблемы применения

В основе корреляционно-регрессионного анализа лежат следующие предположения:

  • Наблюдения считаются независимыми (пятикратное выпадение «орла» никак не влияет на результат следующего подбрасывания монетки).
  • В корреляционном анализе обе переменные рассматриваются как случайные. В регрессионном – только одна (зависимая).
  • При проверке гипотезы должно соблюдаться нормальное распределение. Изменение зависимой переменной должно быть одинаковым для каждой величины на оси абсцисс.
  • Корреляционная диаграмма – это только первая проверка гипотезы о взаимоотношениях между двумя рядами параметров, а не конечный результат анализа.

Зависимость и причинно-следственная связь

Предположим, мы вычислили коэффициент корреляции объема экспорта и ВВП. Он оказался равным единице по модулю. Провели ли мы корреляционно-регрессионный анализ до конца? Конечно же нет. Полученный результат вовсе не означает, что ВВП можно выразить через экспорт. Мы еще не доказали причинно-следственную связь между показателями. Корреляционно-регрессионный анализ – прогнозирование значений одной переменной на основе другой. Однако нужно понимать, что зачастую на параметр влияет множество факторов. Экспорт обуславливает ВВП, но не только он. Есть и другие факторы. Здесь имеет место быть и корреляция, и причинно-следственная связь, хотя и с поправкой на другие составляющие валового внутреннего продукта.

Гораздо опаснее другая ситуация. В Великобритании был проведен опрос, который показал, что дети, родители которых курили, чаще являются правонарушителями. Такой вывод сделан на основе сильной корреляции между показателя. Однако правилен ли он? Во-первых, зависимость могла быть обратной. Родители могли начать курить из-за стресса от того, что их дети постоянно попадают в переделки и нарушают закон. Во-вторых, оба параметра могут быть обусловлены третьим. Такие семьи принадлежат к низким социальным классам, для которых характерны обе проблемы. Поэтому на основе корреляции нельзя сделать вывод о наличии причинно-следственной связи.

Зачем использовать регрессионный анализ?

Корреляционная зависимость предполагает нахождение отношений между величинами. Причинно-следственная связь в этом случае остается за кадром. Задачи корреляционного и регрессионного анализа совпадают только в плане подтверждения наличия зависимости между значениями двух величин. Однако первоначально исследователь не обращает внимания на возможность причинно-следственной связи. В регрессионном анализе всегда есть две переменные, одна и которых является зависимой. Он проходит в несколько этапов:

  1. Выбор правильной модели с помощью метода наименьших квадратов.
  2. Выведение уравнения, описывающего влияние изменения независимой переменной на другую.

Например, если мы изучаем влияние возраста на рост человека, то регрессионный анализ может помочь предсказать изменения с течением лет.

Линейная и множественная регрессия

Предположим, что X и Y – это две связанные переменные. Регрессионный анализ позволяет предсказать величину одной из них на основе значений другой. Например, зрелость и возраст – это зависимые признаки. Зависимость между ними отражается с помощью линейной регрессии. Фактически можно выразить X через Y или наоборот. Но зачастую только одна из линий регрессии оказывается правильной. Успех анализа во многом зависит от правильности определения независимой переменной. Например, у нас есть два показателя: урожайность и объем выпавших осадков. Из житейского опыта становится ясно, что первое зависит от второго, а не наоборот.

Множественная регрессия позволяет рассчитать неизвестную величину на основе значений трех и более переменных. Например, урожайность риса на акр земли зависит от качества зерна, плодородности почвы, удобрений, температуры, количества осадков. Все эти параметры влияют на совокупный результат. Для упрощения модели используются следующие допущения:

  • Зависимость между независимой и влияющими на нее характеристиками является линейной.
  • Мультиколлинеарность исключена. Это означает, что зависимые переменные не связаны между собой.
  • Гомоскедастичность и нормальность рядов чисел.

Применение корреляционно-регрессионного анализа

Существует три основных случая использования данного метода:

  1. Тестирование казуальных отношений между величинами. В этом случае исследователь определяет значения переменной и выясняет, влияют ли они на изменение зависимой переменной. Например, можно дать людям разные дозы алкоголя и измерить их артериальное давление. В этом случае исследователь точно знает, что первое является причиной второго, а не наоборот. Корреляционно-регрессионный анализ позволяет обнаружить прямо-пропорциональную линейную зависимость между данными двумя переменными и вывести формулу, ее описывающую. При этом сравниваться могут величины, выраженные в совершенно различных единицах измерения.
  2. Нахождение зависимости между двумя переменными без распространения на них причинно-следственной связи. В этом случае нет разницы, какую величину исследователь назовет зависимой. При этом в реальности может оказаться, что на их обе влияет третья переменная, поэтому они и изменяются пропорционально.
  3. Расчет значений одной величины на основе другой. Он осуществляется на основе уравнения, в которое подставляются известные числа.

Таким образом корреляционный анализ предполагает нахождение связи (не причинно-следственной) между переменными, а регрессионный – ее объяснение, зачастую с помощью математической функции.

Любой закон природы или общественного развития может быть представлен описанием совокупности взаимосвязей. Если эти зависимости стохастичны, а анализ осуществляется по выборке из генеральной совокупности, то данная область исследований относится к задачам статистического исследования зависимостей, которые включают в себя корреляционный, регрессионный, дисперсионный, ковариационный анализ и анализ таблиц сопряженности.

    Существует ли связь между исследуемыми переменными?

    Как измерить тесноту связей?

Общая схема взаимосвязи параметров при статистическом исследовании приведена на рис. 1.

На рисунке S – модель исследуемого реального объекта, Объясняющие (независимые, факторные) переменные описывают условия функционирования объекта. Случайные факторы – это факторы, влияние которых трудно учесть или влиянием которых в данный момент пренебрегают. Результирующие (зависимые, объясняемые) переменные характеризуют результат функционирования объекта.

Выбор метода анализа взаимосвязи осуществляется с учетом природы анализируемых переменных.

Корреляционный анализ - метод обработки статистическихданных, заключающийся в изучении связи между переменными.

Цель корреляционного анализа - обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. Корреляция отражает лишь линейную зависимость величин, но не отражает их функциональной связности. Например, если вычислить коэффициент корреляции между величинами A = sin(x) и B = cos(x), то он будет близок к нулю, т.е. зависимость между величинами отсутствует.

При исследования корреляции используются графический и аналитический подходы.

Графический анализ начинается с построения корреляционного поля. Корреляционное поле (или диаграмма рассеяния) является графической зависимостью между результатами измерений двух признаков. Для ее построения исходные данные наносят на график, отображая каждую пару значений (xi,yi) в виде точки с координатами xi и yi в прямоугольной системе координат.

Визуальный анализ корреляционного поля позволяет сделать предположение о форме и направлении взаимосвязи двух исследуемых показателей. По форме взаимосвязи корреляционные зависимости принято разделять на линейные (см. рис. 1) и нелинейные (см. рис. 2). При линейной зависимости огибающая корреляционного поля близка к эллипсу. Линейная взаимосвязь двух случайных величин состоит в том, что при увеличении одной случайной величины другая случайная величина имеет тенденцию возрастать (или убывать) по линейному закону.

Направление связи является положительным, если увеличение значения одного признака приводит к увеличению значения второго (см. рис. 3) и отрицательным, если увеличение значения одного признака приводит к уменьшению значения второго (см. рис. 4).

Зависимости, имеющие только положительные или только отрицательные направленности, называются монотонными.

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.

В статье рассматриваются определения корреляции,корреляционного анализа и коэффициента корреляции. Дается определение корреляционной связи и ее основных характеристик.

  • Корреляционно-регрессионный анализ в исследовании факторов рождаемости
  • Оценка факторов рождаемости в Республике Башкортостан

Исследователей нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, такая связь может наблюдаться между погрешностью аппаратной обработки экспериментальных данных и величиной скачков сетевого напряжения. Другим примером может служить связь между пропускной способностью канала передачи данных и соотношением сигнал/шум.

В 1886 году английский естествоиспытатель Френсис Гальтон для обозначения характера подобного рода взаимодействий ввёл термин «корреляция». Позже его ученик Карл Пирсон разработал математическую формулу, позволяющую дать количественную оценку корреляционным связям признаков.

Зависимости между величинами (факторами, признаками) разделяют на два вида: функциональную и статистическую.

При функциональных зависимостях каждому значению одной переменной величины соответствует определенное значение другой переменной. Кроме того, функциональная связь двух факторов возможна только при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. В случае зависимости величины от множества факторов, функциональная связь возможна, если первая величина не зависит ни от каких других факторов, кроме входящих в указанное множество.

При статистической зависимости изменение одной из величин влечёт изменение распределения других величин, которые с определенными вероятностями принимают некоторые значения.

Значительно больший интерес представляет другой частный случай статистической зависимости, когда существует взаимосвязь значений одних случайных величин со средним значением других, при той особенности, что в каждом отдельном случае любая из взаимосвязанных величин может принимать различные значения.

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией.

Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.

Корреляционный анализ решает две основные задачи:

  • Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь. Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
  • Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат. Она решается математически путем определения параметров корреляционного уравнения.

Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.

Методами корреляционного анализа решаются следующие задачи:

  1. Взаимосвязь. Есть ли взаимосвязь между параметрами?
  2. Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.
  3. Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

Корреляция - статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой переменной.

Для определения наличия взаимосвязи между двумя свойствами используется коэффициент корреляции.

Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (x i , y i), полученную при совместном измерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.

К основным свойствам коэффициента корреляции относятся:

  1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
  2. Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 < r < 1.
  3. При независимом варьировании признаков, когда связь между ними отсутствует, r = 0 .
  4. При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный (+) знак и находится в пределах от 0 до +1, т.е. 0 < r < 1.
  5. При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным (–) знаком и находится в пределах от 0 до –1, т.е. -1 < r <0.
  6. Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к ô1ô. Если r = ± 1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y.
  7. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы k = n –2, где: n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.

Рассчитывается коэффициент корреляции по следующей формуле:

где x - значение факторного признака; y - значение результативного признака; n - число пар данных.

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения x i ,y i двух признаков x,y. Если экспериментальных данных сравнительно немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i ,y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал, то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x и y графически в виде геометрического места точек в системе прямоугольных координат. Эта графическая зависимость называется диаграммой рассеивания или корреляционным полем.

Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров:

  • математических ожиданий E[x], E[y] величин x,y;
  • стандартных отклонений px, py случайных величин x,y ;
  • коэффициента корреляции p , который является мерой связи между случайными величинами, х и у. Приведем примеры корреляционных полей.

Если р = 0, то значения x i ,y i , полученные из двумерной нормальной совокупности, располагаются на графике в пределах области, ограниченной окружностью. В этом случае между случайными величинами x и y отсутствует корреляция, и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин x и y.

Если р = 1 или р = -1, то говорят о полной корреляции, то есть между случайными величинами x и y существует линейная функциональная зависимость.

При р = 1 значения x i ,y i определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением x i значения y i также увеличиваются).

В промежуточных случаях, когда -1< p <1, определяемые значениями x i ,y i точки попадают в область, ограниченную некоторым эллипсом, причём при p>0 имеет место положительная корреляция (с увеличением x значения y в целом имеют тенденцию к возрастанию), при p<0 корреляция отрицательная. Чем ближе p к ±1, тем уже эллипс и тем теснее точки, определяемые экспериментальными значениями, группируются около прямой линии.

Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях рассматривают нелинейную корреляцию.

Корреляционную зависимость между признаками можно описывать разными способами, в частности, любая форма связи может быть выражена уравнением общего вида y=f(x), где признак y – зависимая переменная, или функция от независимой переменной x, называемой аргументом.

Таким образом, визуальный анализ корреляционного поля помогает определить не только наличие статистической связи (линейной или нелинейной) между исследуемыми признаками, но и ее тесноту и форму.

При изучении корреляционной связи важным направлением анализа является оценка степени тесноты связи. Понятие степени тесноты связи между двумя признаками возникает вследствие того, что в действительности на изменение результативного признака влияет множество факторов. При этом влияние одного из факторов может выражаться более заметно и четко, чем влияние других факторов. С изменением условий роль решающего фактора может перейти к другому признаку.

При статистическом изучении взаимосвязей, как правило, учитываются только основные факторы. Также с учетом степени тесноты связи оценивается необходимость более подробного изучения конкретной данной связи и значение практического ее использования.

В общем, знание количественной оценки тесноты корреляционной связи позволяет решить следующую группу вопросов:

  • необходимость глубокого изучения данной связи между признаками и целесообразность ее практического применения;
  • степень различий в проявлении связи в конкретных условиях (сопоставление оценки тесноты связи для различных условий);
  • выявление главных и второстепенных факторов в данных конкретных условиях путём последовательного рассмотрения и сравнения признака с различными факторами.

Показатели тесноты связи должны удовлетворять ряду основных требований:

  • величина показателя тесноты связи должна быть равна или близка к нулю, если связь между изучаемыми признаками (процессами, явлениями) отсутствует;
  • при наличии между изучаемыми признаками функциональной связи величина показателя тесноты связи должна быть равна единице;
  • при наличии между признаками корреляционной связи абсолютное значение показателя тесноты связи должно выражаться правильной дробью, которая по величине тем больше, чем теснее связь между изучаемыми признаками (стремится к единице).

Корреляционная зависимость определяется различными параметрами, среди которых наибольшее распространение получили парные показатели, характеризующие взаимосвязь двух случайных величин: коэффициент ковариации (корреляционный момент) и линейный коэффициент корреляции (коэффициент корреляции Пирсона).

Сила связи определяется абсолютным значением показателя тесноты связи и не зависит от направления связи.

В зависимости от абсолютного значения коэффициента корреляции p корреляционные связи между признаками по силе делятся следующим образом:

  • сильная, или тесная (при p >0,70);
  • средняя (при 0,50< p <0,69);
  • умеренная (при 0,30< p <0,49);
  • слабая (при 0,20< p <0,29);
  • очень слабая (при p <0,19).

По форме корреляционная связь может быть линейной или нелинейной.

Линейной может быть, например, связь между уровнем подготовки студента и оценками итоговой аттестации. Пример нелинейной связи - уровень мотивации и эффективность выполнения поставленной задачи. (При повышении мотивации эффективность выполнения задачи сначала возрастает, затем, при определённом уровне мотивации, достигается максимальная эффективность; но дальнейшему повышению мотивации сопутствует уже снижение эффективности.)

По направлению корреляционная связь может быть положительной (прямой) и отрицательной (обратной).

При положительной линейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - более низкие значения другого. При отрицательной корреляции соотношения обратные.

Знак коэффициента корреляции зависит от направления корреляционной связи: при положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак.

Список литературы

  1. Аблеева, А. М. Формирование фонда оценочных средств в условиях ФГОС [Текст] / А. М. Аблеева, Г. А. Салимова // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 11-14.
  2. Ганиева, А.М. Статистический анализ занятости и безработицы [Текст] / А.М. Ганиева, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 315-316.
  3. Исмагилов, Р. Р. Творческая группа - эффективная форма организации научных исследований в высшей школе [Текст] / Р. Р. Исмагилов, М. Х. Уразлин, Д. Р. Исламгулов // Научно-технический и научно-образовательный комплексы региона: проблемы и перспективы развития: материалы научно-практической конференции / Академия наук РБ, УГАТУ. - Уфа, 1999. - С. 105-106.
  4. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 62-69.
  5. Исламгулов, Д. Р. Научно-исследовательская работа студентов - важнейший элемент подготовки специалистов в аграрном вузе [Текст] / Д. Р. Исламгулов // Проблемы практической подготовки студентов в вузе на современном этапе и пути их решения: сб. материалов науч.-метод. конф., 24 апреля 2007 года / Башкирский ГАУ. - Уфа, 2007. - С. 20-22.
  6. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
  7. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 79-84.
  8. Лубова, Т.Н. Организация самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Реализация образовательных программ высшего образования в рамках ФГОС ВО: материалы Всероссийской научно-методической конференции в рамках выездного совещания НМС по природообустройству и водопользованию Федерального УМО в системе ВО. / Башкирский ГАУ. - Уфа, 2016. - С. 214-219.
  9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 85-93.
  10. Саубанова, Л.М. Уровень демографической нагрузки [Текст] / Л.М. Саубанова, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 321-322.
  11. Фахруллина, А.Р. Статистический анализ инфляции в России [Текст] / А.Р. Фахруллина, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 323-324.
  12. Фархутдинова, А.Т. Рынок труда в Республике Башкортостан в 2012 году [Электронный ресурс] / А.Т. Фархутдинова, Т.Н. Лубова // Студенческий научный форум. Материалы V Международной студенческой электронной научной конференции: электронная научная конференция (электронный сборник). Российская академия естествознания. 2013.