На свободную тему

Развитие регуляторных систем организма. Нервная и эндокринная системы – основные регуляторные системы организма человека. Кафедра биологической химии

Год выпуска: 2003

Жанр: Биология

Формат: DjVu

Качество: Отсканированные страницы

Описание: Для последних лет характерно значительное повышение интереса к психологии и смежным с ней наукам. Результатом этого является организация большого числа вузов и факультетов, осуществляющих подготовку профессиональных психологов, в том числе в таких специфических областях, как психотерапия, педагогическая психология, клиническая психология и др. Все это создает предпосылки для разработки учебников и учебных пособий нового поколения, учитывающих современные научные достижения и концепции.
В учебном пособии «Регуляторные системы организма человека» рассматриваются естественнонаучные (прежде всего анатомические и физиологические) факты, актуальные для психологических дисциплин. Оно представляет собой целостный курс, в котором данные о высших функциях мозга излагаются на базе нейроморфоло-гических, нейроцитологических, биохимических и молеку-лярно-биологических представлений. Большое внимание уделяется информации о механизмах действия психотропных препаратов, а также о происхождении основных нарушений деятельности нервной системы.
Авторы надеются, что книга «Регуляторные системы организма человека» поможет студентам получить надежные базовые знания по целому ряду учебных курсов, посвященных анатомии и физиологии нервной системы, физиологии высшей нервной деятельности (поведения), физиологии эндокринной системы.

«Регуляторные системы организма человека»


ОСНОВЫ КЛЕТОЧНОГО СТРОЕНИЯ ЖИВЫХ ОРГАНИЗМОВ

  1. Клеточная теория
  2. Химическая организация клетки
  3. Строение клетки
  4. Синтез белков в клетке
  5. Ткани: строение и функции
СТРОЕНИЕ НЕРВНОЙ СИСТЕМЫ
  1. Рефлекторный принцип работы мозга
  2. Эмбриональное развитие нервной системы
  3. Общее представление о строении нервной системы
  4. Оболочки и полости центральной нервной системы
  5. Спинной мозг
  6. Общее строение головного мозга
  7. Продолговатый мозг
  8. Мозжечок
  9. Средний мозг
  10. Промежуточный мозг
  11. Конечный мозг
  12. Проводящие пути головного и спинного мозга
  13. Локализация функций в коре полушарий большого мозга
  14. Черепные нервы
  15. Спинномозговые нервы
  16. Автономная (вегетативная) нервная система
ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
  1. Синаптические контакты нервных клеток
  2. Потенциал покоя нервной клетки
  3. Потенциал действия нервной клетки
  4. Постсинаптические потенциалы. Распространение потенциала действия по нейрону
  5. Жизненный цикл медиаторов нервной системы
  6. Ацетилхолин
  7. Норадреналин
  8. Дофамин
  9. Серотонин
  10. Глутаминовая кислота (глутамат)
  11. Гамма-аминомасляная кислота
  12. Другие медиаторы-непептиды: гистамин, аспарагиновая кислота, глицин, пурины
  13. Медиаторы-пептиды
ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ
  1. Общие представления о принципах организации поведения. Компьютерная аналогия работы центральной нервной системы
  2. Возникновение учения о высшей нервной деятельности. Основные понятия физиологии высшей нервной деятельности
  3. Разнообразие безусловных рефлексов
  4. Разнообразие условных рефлексов
  5. Неассоциативное обучение. Механизмы кратковременной и долговременной памяти
  6. Безусловное и условное торможение
  7. Система сна и бодрствования
  8. Типы высшей нервной деятельности (темпераменты)
  9. Сложные типы ассоциативного обучения животных
  10. Особенности высшей нервной деятельности человека. Вторая сигнальная система
  11. Онтогенез высшей нервной деятельности человека
  12. Система потребностей, мотиваций, эмоций
ЭНДОКРИННАЯ РЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ
  1. Общая характеристика эндокринной системы
  2. Гипоталамо-гипофизарная система
  3. Щитовидная железа
  4. Паращитовидные железы
  5. Надпочечники
  6. Поджелудочная железа
  7. Эндокринология размножения
  8. Эпифиз, или шишковидная железа
  9. Тимус
  10. Простагландины
  11. Регуляторные пептиды

Механизмы регуляции организма
гуморальная регуляция
(эндокринная система)
осуществляется с помощью БАВ,
выделяемых клетками
эндокринной системы в жидкие
среды (кровь, лимфу)
нервная регуляция
(нервная система)
осуществляется с помощью
электрических импульсов,
идущих по нервным
клеткам
Гомеостаз - постоянство внутренней среды

Эндокринная
система

Классификация желез эндокринной системы
внутренней
секреции
выделяют гормоны,
не имеют выводных
протоков,
гормоны поступают в
кровь и лимфу
внешней
секреции
смешанной
секреции
выделяют секреты,
имеют выводные
протоки,
секреты поступают на
поверхность тела или в
полые органы
проток
клетки
железы
кровеносный
сосуд

Гормоны
биологически активные вещества,
оказывающие регулирующее
влияние на функции организма

Общие свойства гормонов
специфичность,
высокая биологическая активность,
дистанционное действие,
генерализованность действия,
пролонгированность действия

Железы
внутренней секреции

Гипофиз
расположен на нижней поверхности головного мозга
овальной формы ≈1см

Гипофиз
тиреотропин ТТГ
стимулирует работу
щитовидной железы
адренокортикотропин
АКТГ
стимулирует работу
надпочечников
соматотропин СТГ
стимулирует рост
меланотропин МТГ
стимулирует клетки
кожи, влияющие на
её цвет
вазопрессин
(антидиуретический) АДГ
гонадотропин ГТГ
удерживает воду в
почках, регулирует АД
регулирует работу
половых органов

Эпифиз
(шишковидное тело)
расположен
в центре мозга
овальной формы ≈1см
После 7 лет железа
частично атрофируется

Эпифиз
мелатонин
регулирует циклические
процессы в организме
(смена дня и ночи: в светлое время суток
синтез мелатонина подавляется,
а в темное – стимулируется)
тормозит рост и
половое созревание

Щитовидная железа
Расположена спереди и
по бокам ниже гортани
гортань
щитовидная
железа
трахея
Активность железы повышается
в среднем и старшем школьном
возрасте в связи с половым
созреванием

тироксин (Т4)
повышают
интенсивность обмена
веществ и
теплообразование,
стимулируют рост
скелета,
Щитовидная
железа
трийодтиронин (Т3)
кальцитонин
повышают
возбудимость ЦНС
усиливает отложение
кальция в костной ткани

Паращитовидные железы
Расположены по задней поверхности
щитовидной железы
имеют округлую форму ≈0,5 см
щитовидная
железа
паращитовидные
железы

Паращитовидные железы
паратгормон
регулирует уровень
кальция и фосфора

Тимус
(вилочковая железа)
Тимус
Находится за рукояткой грудины
Ребра
Легкие
Грудина
Сердце
Быстро увеличивается в первые 2 года жизни,
наибольшей величины достигает в возрасте 11-15 лет.
С 25-лет начинается постепенное уменьшение
железистой ткани с замещением ее жировой
клетчаткой.

Тимус состоит из двух долей
Является центральным органом
иммунитета:
в ней происходит размножение иммунных
клеток - лимфоцитов

Тимус
тимозин
влияет на:
обмен углеводов,
обмен кальция и фосфора,
регулирует рост скелета

Надпочечники
Находятся в забрюшинном пространстве
над верхнем полюсом соответствующей
почки.
Д ≈ 2-7 см, Ш ≈ 2-4 см,
Т ≈ 0,5-1 см
Правый надпочечник
треугольной формы,
левый - полулунной

Минералокортикоиды:
альдостерон
Корковый слой
Мозговой слой
Глюкокортикоиды:
гидрокортизон
кортизол
влияют на водно-солевой
обмен
регулируют углеводный,
белковый и жировой обмен
Половые стероиды:
андрогены,
эстрогены
аналогичны гормонам
половых желез
адреналин,
норадреналин
повышают ЧСС, ЧДД, АД

Поджелудочная железа
Д 15-20 см
Ш 6-9 см
Расположена за желудком

Поджелудочная железа
Внешняя секреция
Сок поджелудочной
железы
Поступает в проток железы
Внутренняя секреция
Глюкагон
Поступают в кровь
в 12-п.кишку
участвует в пищеварении
Инсулин
повышает
содержание
глюкозы в крови
снижает
содержание
глюкозы в
крови

Половыежелезы
железы
Половые
Мужские
Женские

Яичники
Внешняя секреция
Внутренняя секреция
Гормоны
Выработка яйцеклеток
Эстрогены
Прогестерон
Поступают в кровь
влияние на
развитие
вторичных
половых
признаков
гормон
беременности

Яички
Внешняя секреция
Выработка сперматозоидов
Внутренняя секреция
Гормоны
Андрогены
(тестостерон)
Поступают в кровь
влияние на развитие
вторичных половых признаков

Нервная система

Функции нервной системы
1. Регуляторная
(обеспечивает согласованную
органов и систем).
работу
2. Осуществляет адаптацию организма
(взаимодействие с окружающей средой).
3. Составляет основу психической
деятельности
(речь, мышление, социальное поведение).
всех

Строение нервной ткани
Нервная ткань
Нейрон
Нейроглия
нервная клетка
опорные клетки
структурная и
функциональная
единица НС
опора, защита и
питание нейронов

Функции нейрона
восприятие (получение),
проведение,
обработка (передача) информации

Классификация нервной системы (топографическая)
ЦНС
Головной мозг
Периферическая
Нервные волокна
Спинной мозг
Нервные узлы
Нервные окончания

Классификация нервной системы (функциональная)
Соматическая
регулирует работу
скелетных мышц, языка, гортани,
глотки и кожную чувствительность
Регулируется корой головного мозга
Вегетативная
Симпатическая
Парасимпатическая
регулируют обмен веществ,
работу внутренних органов,
сосуды, железы
Не регулируется корой головного
мозга
поддерживают гомеостаз

Центральная НС

Спинной мозг
спинномозговой канал
позвонок
спинной мозг
спинномозговые
корешки
Находится в
позвоночном канале
в виде тяжа,
в его центре –
спинномозговой канал.
Длина = 43-45 см

Спинной мозг
состоит из серого и белого вещества
серое вещество скопление тел
нейронов в центре
спинного мозга
(в виде бабочки)
белое вещество –
образованно
нервными волокнами,
окружает серое

Функции спинного мозга
рефлекторная
-осуществляется за счет наличия
рефлекторных центров
мускулатуры туловища и
конечностей.
С их участием осуществляются
сухожильные рефлексы,
сгибательные рефлексы, рефлексы
мочеиспускания, дефекации,
эрекции, семяизвержения и т.д.
проводниковая
- осуществляется проводящими
путями
По ним нервный импульс идет
в головной мозг и обратно.
Деятельность спинного мозга подчинена головного мозгу

Головной мозг
расположен в черепе
Головной мозг
Средний вес:
взрослого (к 25 г.) - 1360 г,
новорожденного – 400 г

Строение головного мозга
серое вещество
белое вещество
скопление тел нейронов
отростки нейронов
Ядра
Кора
- рефлекторные
- наружный слой
больших
полушарий (4мм)
центры
рефлекторная
функция
являются
восходящими и нисходящими
нервными волокнами
(проводящие пути),
связывающие отделы ГМ и СМ
проводящая функция

Отделы головного мозга
задний
средний
продолговатый
мозг
четверохолмие
промежуточный
таламус
гипоталамус
мозжечок
мост
ствол мозга
конечный
большие
полушария

Мозг
современных
млекопитающих –
кора
сознание,
интеллект,
логика
2 млн лет
Мозг
древних
млекопитающих –
подкорка
чувства,
эмоции
(таламус, гипоталамус)
Мозг
рептилий –
ствол мозга
100 млн лет
инстинкты,
выживание

Возрастные особенности развития головного мозга
Структуры ЦНС созревают неодновременно и асинхронно
Отделы головного мозга
Период завершения развития
Подкорковые структуры
созревают внутриутробно и завершают
свое развитие в течение первого года
жизни
Корковые структуры
12-15 лет
Правое полушарие
5 лет
Левое полушарие
8-12 лет

Основные понятия и ключевые термины: регуляторные системы, нервная, эндокринная, иммунная системы.

Вспомните! Что такое регуляция функций организма человека?

Регуляция (от лат. regulation) - приводить в порядок, устраивать.

Подумайте!

Организм человека - это сложная система. В нём содержатся миллиарды клеток, миллионы структурных единиц, тысячи органов, сотни функциональных систем, десятки физиологических систем. А благодаря чему они все работают слаженно, как единое целое?

Каковы особенности регуляторных систем организма человека?

РЕГУЛЯТОРНЫЕ СИСТЕМЫ

вокупность органов, оказывающих ведущее влияние на деятельность физиологических систем, органов и клеток. Эти системы имеют особенности строения и функций, связанные с их назначением.

В регуляторных системах имеются центральные и периферические отделы. В центральных органах формируются руководящие команды, а периферические органы обеспечивают распределение и передачу их рабочим органам для выполнения (принцип централизации).

Для осуществления контроля за выполнением команд центральные органы регуляторных систем получают ответную информацию от рабочих органов. Эту особенность деятельности биологических систем называют принципом обратной связи.

Информация от регуляторных систем по всему организму передаётся в виде сигналов. Поэтому клетки таких систем обладают способностью продуцировать электрические импульсы и химические вещества, кодировать и распространять информацию.

Регуляторные системы осуществляют регуляцию функций в соответствии с изменениями внешней или внутренней среды. Поэтому руководящие команды, которые направляются в органы, имеют или стимулирующий, или замедляющий характер (принцип двойного действия).

Такие особенности в организме человека свойственны трём системам - нервной, эндокринной и иммунной. И именно они являются регуляторными системами нашего организма.

Итак, основными особенностями регуляторных систем являются:

1) наличие центральных и периферических отделов; 2) способность продуцировать руководящие сигналы; 3) деятельность по принципу обратной связи; 4) двойной способ регуляции.

Как организована регуляторная деятельность нервной системы?

Нервная система — это совокупность органов человека, которые воспринимают, анализируют и обеспечивают деятельность физиологических систем органов в очень быстром режиме. По строению нервную систему делят на две части -центральную и периферическую. К центральной относят головной и спинной мозг, а к периферической - нервы. Деятельность нервной системы - рефлекторная, осуществляется с помощью нервных импульсов, возникающих в нервных клетках. Рефлекс - это ответная реакция организма на раздражение, которое происходит при участии нервной системы. Любая деятельность физиологических систем имеет рефлекторный характер. Так, с помощью рефлексов регулируются выделение слюны на вкусную еду, отдергивание руки от колючек розы и т. п.


Рефлекторные сигналы передаются с высокой скоростью нервными путями, образующими рефлекторные дуги. Это путь, по которому импульсы передаются от рецепторов к центральным отделам нервной системы и от них - к рабочим органам. Рефлекторная дуга состоит из 5 частей: 1 - рецепторное звено (воспринимает раздражение и превращает в импульсы); 2 - чувствительное (центростремительное) звено (передаёт возбуждение в центральную нервную систему); 3 - центральное звено (в нём происходит анализ информации с участием вставных нейронов); 4 - двигательное (центробежное) звено (передаёт руководящие импульсы к рабочему органу); 5 - рабочее звено (при участии мышцы или железы происходит определённое действие) (ил. 10).

Передача возбуждения с одного нейрона на другой осуществляется с помощью синапсов. Это участок кон

такта одного нейрона с другим или с рабочим органом. Возбуждение в синапсах передаётся особыми веществами-медиаторами. Они синтезируются пресинаптической мембраной и накапливаются в синаптических пузырьках. Когда нервные импульсы доходят до синапса, пузырьки лопаются, и медиаторные молекулы попадают в синаптическую щель. Мембрана дендрита, называемая постсинаптической, принимает информацию и превращает её в импульсы. Возбуждение передаётся дальше уже следующим нейроном.

Итак, благодаря электрической природе нервных импульсов и наличию специальных проводящих путей нервная система осуществляет рефлекторную регуляцию очень быстро и обеспечивает конкретное влияние на органы.

Почему эндокринная и иммунная системы являются регуляторными?

Эндокринная система — это совокупность желёз, обеспечивающих гуморальную регуляцию функций физиологических систем. Высшим отделом эндокринной регуляции является гипоталамус, который вместе с гипофизом управляет периферическими железами. Клетки эндокринных желёз образуют гормоны и посылают их во внутреннюю среду. Кровь, а впоследствии и тканевая жидкость, доставляют эти химические сигналы в клетки. Гормоны могут замедлять или усиливать функции клеток. Например, гормон надпочечников адреналин оживляет работу сердца, ацетилхолин - тормозит. Влияние гормонов на органы - это более медленный способ управления функциями, чем с помощью нервной системы, однако это влияние может быть общим и долгосрочным.

Иммунная система — это совокупность органов, образующих специальные химические соединения и клетки для обеспечения защитного воздействия на клетки, ткани и органы. К центральным органам иммунной системы относятся красный костный мозг и тимус, а к периферическим - миндалины, аппендикс, лимфоузлы. Центральное место среди клеток иммунной системы занимают различные лейкоциты, а среди химических соединений - антитела, вырабатываемые в ответ на чужеродные белковые соединения. Клетки и вещества иммунной системы распространяются с помощью жидкостей внутренней среды. А их воздействие, как и гормонов, имеет медленный, длительный и общий характер.

Итак, эндокринная и иммунная системы являются регуляторными системами и осуществляют в организме человека гуморальную и иммунную регуляцию.

ДЕЯТЕЛЬНОСТЬ

Учимся познавать

Самостоятельная работа с таблицей

Сравните нервную, эндокринную и иммунную регуляторные системы, определите сходство и различия между ними.


Биология + Нейрофизиология

Платон Григорьевич Костюк (1924-2010) -выдающийся украинский нейрофизиолог. Учёный впервые сконструировал и использовал микроэлектродную технику для исследования организации нервных центров, проник в нервную клетку, зарегистрировав её сигналы. Исследовал, как происходит в нервной системе преобразование информации из электрической формы в молекулярную. Платон Костюк доказал, что важную роль в этих процессах играют ионы кальция. А какова роль ионов кальция в нервной регуляции функций организма человека?

Биология + Психология

Каждый человек реагирует на цвета по-разному, в зависимости от темперамента и состояния здоровья. Психологи на основе отношения к цвету определяют характер человека, его наклонности, интеллект, тип психики. Так, красный цвет укрепляет память, придаёт бодрость и энергичность, возбуждает нервную систему, а фиолетовый цвет усиливает творчество, успокаивающе действие на нервную систему, повышает мышечный тонус. Применив знания о регуляторных системах, попробуйте объяснить механизм воздействия цвета на организм человека.

РЕЗУЛЬТАТ

Вопросы для самоконтроля

1. Что такое регуляторные системы? 2. Назовите регуляторные системы организма человека. 3. Что такое рефлекс? 4. Что такое рефлекторная дуга? 5. Назовите составляющие рефлекторной дуги. 6. Что такое эндокринная и иммунная регуляторные системы?

7. Какие особенности имеют регуляторные системы организма человека? 8. Как организована регуляторная деятельность нервной системы? 9. Почему эндокринная и иммунная системы являются регуляторными?

10. Назовите сходство и различия между нервной, эндокринной и иммунной системами регуляции организма.

Это материал учебника

Раздел 1 ОРГАНИЗМ ЧЕЛОВЕКА КАК БИОЛОГИЧЕСКАЯ СИСТЕМА

§ 8.Регуляторные системы организма человека

Гуморальная регуляция (лат. гумор - жидкость) осуществляется с помощью веществ, которые влияют на процессы метаболизма в клетках, следовательно, и на работу органов и организма в целом. Эти вещества попадают в кровь, а из нее - в клетки. Так, повышение уровня углекислого газа в крови увеличивает частоту дыхания.

Некоторые вещества, например гормоны, выполняют свою функцию, даже если их концентрация в крови очень мала. Большинство гормонов синтезируются и выделяются в кровь клетками желез внутренней секреции, образующих эндокринную систему. Путешествуя с кровью по всему организму, гормоны могут попасть в любого органа. Но влияет гормон на работу органа только в случае, если клетки этого органа имеют рецепторы к этому гормону. Рецепторы сочетаются с гормонами (рис. 8.1), и это вызывает изменение активности клетки. Так, гормон инсулин, присоединяясь к рецепторам клетки печени, стимулирует проникновение в нее глюкозы и синтез гликогена из этого соединения.

Рис. 8.1. Схема действия гормона:

1 - кровеносный сосуд; 2 - молекула гормона; 3 - рецептор на плазматической мембране клетки

Эндокринная система обеспечивает рост и развитие организма, отдельных его частей и органов. Она участвует в регуляции метаболизма и приспосабливает его к потребностям организма, которые постоянно меняются.

Нервная регуляция. В отличие от гуморальной системы регуляции, которая отвечает преимущественно на изменения во внутренней среде, нервная система реагирует на события, происходящие как внутри организма, так и за его пределами. С помощью нервной системы организм отвечает на любые воздействия очень быстро. Такие реакции на действие раздражителей называют рефлексами. Осуществляется рефлекс благодаря работе цепи нейронов, образующих рефлекторную дугу (рис. 8.2). Каждая такая дуга начинается с чувствительного, или рецепторного, нейрона (нейрона - рецептора). Он воспринимает действие раздражителя и создает электрический импульс, который называют нервным. Импульсы, возникающие в нейроне-рецепторе, поступают к нервным центрам спинного и головного мозга, где обрабатывается информация. Здесь принимается решение, к какому органа следует послать нервный импульс, чтобы ответить на действие раздражителя. После этого команды направляются по нейронам-ефекторах к органу, который отвечает на раздражитель. Обычно такой ответ - это сокращение определенной мышцы или выделение секрета железы. Чтобы представить себе скорость передачи сигнала по рефлекторной дуге, вспомните, за какое время вы відсмикуєте руку от горячего предмета.

Нервные импульсы передаются с помощью особых веществ - медиаторов. Нейрон, в котором возник импульс, выделяет их в щель синашу - место соединения нейронов (рис. 8.3).

Рис. 8.2. Рефлекторная дуга:

1 - нейрон-рецептор; 2 - нейрон нервного центра спинного мозга; 3 - нейрон-эффектор; 4 - мышца, которая сокращается

Рис. 8.3. Схема передачи информации между нейронами:

1 - окончание отростка одного нейрона; 2 - медиатор;

3 - плазматическая мембрана другого нейрона; 4 - синаптическая щель

Медиаторы присоединяются к белкам-рецепторам нейрона-мишени, а он в ответ генерирует электрический импульс и передает его к следующему нейрону или иной клетки.

Иммунную регуляцию обеспечивает иммунная система, задача которой заключается в создании иммунитета - способности организма противостоять воздействию внешних и внутренних врагов. Ими являются бактерии, вирусы, различные вещества, которые нарушают нормальную жизнедеятельность организма, а также его клетки, которые отмерли или переродились. Главные боевые силы системы иммунной регуляции - определенные клетки крови и специальные вещества, содержащиеся в ней.

Организм человека - саморегулирующаяся система. Задачей саморегуляции является поддержка всех химических, физических и биологических показателей работы организма в определенных пределах. Так, температура тела здорового человека может колебаться в пределах 36-37°C , кровяное давление 115/75-125/90 мм рт. ст., концентрация глюкозы в крови - 3,8-6,1 ммоль/л. Состояние организма, во время которого все параметры его функционирования остаются относительно постоянными, называют гомеостазом (греч. гомео - подобный, стасис - состояние). На поддержание гомеостаза и направлена работа регуляторных систем организма, которые действуют в постоянной взаимосвязи.

ЧЕЛОВЕК И ЕГО ЗДОРОВЬЕ

Здоровье и болезнь

Что понимают под словом «здоровье» люди, желая друг другу «Будьте здоровы!»? Физиологически организм считается здоровым, если все его клетки, ткани, а соответственно, и органы работают в соответствии с возложенными на них функциями. Если на любом уровне системы «организм» возникают перебои в работе, может развиться болезнь.

Среди болезней различают инфекционные и неинфекционные. Первые передаются от больного организма к здоровому и вызываются различными возбудителями (бактериями, вирусами, простейшими). Неинфекционные болезни могут развиваться из-за недостаточного количества в пищевом рационе определенных веществ, вследствие действия радиационного излучения и тому подобное.

Все чаще ухудшение здоровья людей становится следствием их собственной халатной деятельности. Так, за загрязнение окружающей среды возросло количество заболеваний раком, астмой. Курение, употребление спиртных напитков и наркотиков наносят непоправимый вред всем системам органов человека.

Отдельную группу составляют наследственные болезни. Они передаются от родителей к детям вместе с программой жизни, содержащейся в хромосомах. К этим болезням относят и врожденные дефекты, которые могут возникнуть во время развития плода. Часто они возникают в тех случаях, когда беременная женщина курит, употребляет спиртные напитки, болеет инфекционные болезни и тому подобное.

Каждому с детства известны правила здорового образа жизни. Следует рационально питаться, заниматься спортом, не употреблять алкоголь, никотин, наркотики, меньше смотреть телевизор и ограничивать использование компьютера.

Что такое рак?

Известный французский ученый Бы. Перільє писал: «Рак - заболевание, трудно и определить, и вылечить». К сожалению, эти слова, сказанные около 200 лет назад, актуальны и сегодня.

Ежедневно в организме человека отмирает и образуется в результате деления около 25 млн клеток. Для нормальной жизнедеятельности организма необходимо, чтобы количество клеток в нем сохранялась неизменной. Если это постоянство нарушается и начинается неконтролируемое размножение клеток, может образоваться опухоль. По характеру роста и биологическими признаками опухоли бывают доброкачественными и злокачественными. Один из главных признаков доброкачественных опухолей - отсутствие способности к распространению в организме (метастазирование). Злокачественные опухоли называют раком. Раковые клетки отличаются от нормальных отсутствием характерной специализации. Например, раковые клетки, образовавшиеся в печени, не способны обезвреживать и выводить вредные вещества. Клетки злокачественных опухолей долговечнее за нормальные, гораздо быстрее размножаются, проникают в соседние ткани, разрушая их.

Каковы причины возникновения злокачественных опухолей? Прежде всего, это еда, содержащая много красителей, пищевых добавок и ароматизаторов, курения табака, что приводит не только к раку легких, но и дыхательных путей, пищевода, мочевого пузыря и других органов. Причиной перерождения клеток также могут быть и различные виды излучения (особенно радиоактивное), некоторые микроорганизмы и вирусы, нарушение иммунной защиты.

Стволовые клетки

Стволовые клетки получили такое название неслучайно: от них происходят все 350 видов клеток организма человека, подобно тому, как от ствола дерева образуются все его веточки. Из стволовых клеток на самых ранних этапах развития эмбрион человека. Вследствие деления такой клетки одна из дочерних клеток становится стовбуровою, а вторая специализируется, приобретая свойства того или иного вида клеток организма. Через некоторое время количество клеток с неограниченными возможностями (так иногда называют стволовые клетки) в эмбрионе уменьшается. У новорожденного их лишь несколько сотых процента, а с возрастом становится еще меньше. Во взрослом организме стволовые клетки содержатся в основном в красном костном мозге, однако встречаются и в других органах.

Стволовые клетки являются резервом организма, который он может использовать для «ремонта» каких-либо поврежденных тканей. Ведь известно, что обычно зрелые специализированные клетки не размножаются, поэтому восстановить ткань за их счет невозможно. В этом случае на помощь

могу приходят стволовые клетки. Они активно делятся, специализируются и замещают погибшие клетки, ликвидируя повреждения. Подобной стволовой есть так называемая камбіальна клетка. Одна из ее дочерних клеток в результате специализации становится клеткой той ткани, к которой относится материнская камбіальна клетка. Камбиальные клетки содержатся почти во всех тканях, они обеспечивают их рост и обновление. Так, благодаря камбіальним клеткам непрерывно восстанавливается эпителий кожи. Ученые тщательно исследуют свойства стволовых и камбиальных клеток в поисках путей использования их свойств в медицине.

Организм человека является многоуровневой открытой системой, которую изучают на молекулярном, клеточном, тканевом уровнях, на уровне органов и физиологических систем, а также на уровне целостного организма.

Химическими составляющими организма являются неорганические (вода, соли, кислород, углекислый газ) и органические (белки, жиры, углеводы и тому подобное) вещества. Основной структурно-функциональной единицей организма является клетка, в которой все время происходят реакции метаболизма, обеспечивают рост и развитие организма. Размножение клеток происходит путем деления.

Клетки, сходные по строению, функцией и происхождением, и міжклітинна вещество образуют ткань определенного вида. Из тканей формируются органы, а из органов состоят физиологические системы. По характеру функций их подразделяют на регуляторные (нервная, эндокринная, иммунная) и исполнительные (опорно-двигательная, пищеварительная, дыхательная, половая и др).

Взаимодействие исполнительных и регуляторных систем направлена на поддержание постоянства показателей жизнедеятельности организма - гомеостаза.

Дубинин, Вячеслав Альбертович Регуляторные системы организма человека: Учебное пособие для

студентов вузов обучающихся по направлению подготовки 510600 Биология и биологич/ Владислав Иванович Сивоглазов, Василий Васильевич Каменский, Михаил Романович Сапин. - М.: Дрофа, 2003.- 368 с. : ил.

ISBN 5-7107-6073 -0, 7000 экз.

В пособии на современном уровне, но в доступной для читателя форме изложены основы знаний по анатомии нервной системы, нейрофизиологии и нейрохимии (с элементами психофармакологии), физиологии высшей нервной деятельности и нейроэндокринологии. Для студентов вузов, обучающихся по направлению подготовки 510600 Биология, биологическим, а также медицинским, психологическим и другим специальностям

Анатомия и гистология человека ББК 28 .706я73

Предисловие..................................................................................................

Введение........................................................................................................

1. Основы клеточного строения живых организмов.................................

1.1. Клеточная теория...............................................................................

1.2. Химическая организация клетки......................................................

1.3. Строение клетки...............................................................................

1.4. Синтез белков в клетке....................................................................

1.5. Ткани: строение и функции............................................................

2. Строение нервной системы....................................................................

2.1. Рефлекторный принцип работы мозга...........................................

2.2. Эмбриональное развитие нервной системы..................................

2.3. Общее представление о cтроении нервной системы....................

2.4. Оболочки и полости центральной нервной cистемы...................

2.5. Спинной мозг...................................................................................

2.6. Общее строение головного мозга...................................................

2.7. Продолговатый мозг........................................................................

2.8. Мост..................................................................................................

2.9. Мозжечок..........................................................................................

2.10. Средний мозг..................................................................................

2.11. Промежуточный мозг....................................................................

2.12. Конечный мозг...............................................................................

2.13. Проводящие пути головного и спинного мозга..........................

2.14. Локализация функций в коре полушарий большого мозга.......

2.15. Черепные нервы.............................................................................

2.16. Спинномозговые нервы.................................................................

2.17. Автономная (вегетативная) нервная система..............................

3. Общая физиология нервной системы...................................................

3.1. Синаптические контакты нервных клеток....................................

3.2. Потенциал покоя нервной клетки..................................................

3.3. Потенциал действия нервной клетки.............................................

3.4. Постсинаптические

потенциалы.

Распространение

потенциала

действия по нейрону.....................................................................................

3.5. Жизненный цикл медиаторов нервной системы.........................

3.6. Ацетилхолин..................................................................................

3.7. Норадреналин.................................................................................

3.8. Дофамин.........................................................................................

3.9. Серотонин.......................................................................................

3.10. Глутаминовая кислота (глутамат) ..............................................

3.11. Гамма-аминомасляная кислота...................................................

3.12. Другие медиаторы-непептиды: гистамин, аспарагиновая кислота,

глицин, пурины...........................................................................................

3.13. Медиаторы-пептиды....................................................................

4. Физиология высшей нервной деятельности.......................................

4.1. Общие представления

принципах организации

поведения.

Компьютерная аналогия работы центральной нервной системы..........

4.2. Возникновение учения о высшей нервной деятельности. Основные

понятия физиологии высшей нервной деятельности..............................

4.3. Разнообразие безусловных рефлексов.........................................

4.4. Разнообразие условных рефлексов..............................................

4.5. Неассоциативное

обучение.

Механизмы кратковременной и

долговременной памяти.............................................................................

4.6. Безусловное и условное торможение...........................................

4.7. Система сна и бодрствования.......................................................

4.8. Типы высшей нервной деятельности (темпераменты)...............

4.9. Сложные типы ассоциативного обучения животных.................

4.10. Особенности высшей

деятельности человека. Вторая

сигнальная система.....................................................................................

4.11. Онтогенез высшей нервной деятельности человека................

4.12. Система потребностей, мотиваций, эмоций..............................

5. Эндокринная регуляция физиологических функций........................

5.1. Общая характеристика эндокринной системы...........................

5.2. Гипоталамо-гипофизарная система.............................................

5.3. Щитовидная железа

.......................................................................

5.4. Паращитовидные железы..............................................................

5.5. Надпочечники................................................................................

5.6. Поджелудочная железа.................................................................

5.7. Эндокринология размножения.....................................................

Предисловие

Для последних лет характерно значительное повышение интереса к психологии и смежным с ней наукам. Результатом этого является организация большого числа вузов и факультетов, осуществляющих подготовку профессиональных психологов, в том числе в таких специфических областях, как психотерапия, педагогическая психология, клиническая психология и др. Все это создает предпосылки для разработки учебников и учебных пособий нового поколения, учитывающих современные научные достижения и концепции.

В предлагаемом учебном пособии рассматриваются естественнонаучные (прежде всего анатомические и физиологические) факты, актуальные для психологических дисциплин. Оно представляет собой целостный курс, в котором данные о высших функциях мозга излагаются на базе нейроморфологических, нейроцитологических, биохимических и молекулярно-биологических представлений. Большое внимание уделяется информации о механизмах действия психотропных препаратов, а также о происхождении основных нарушений деятельности нервной системы.

Авторы надеются, что данное пособие поможет студентам получить надежные базовые знания по целому ряду учебных курсов, посвященных анатомии и физиологии нервной системы, физиологии высшей нервной деятельности (поведения), физиологии эндокринной системы.

Введение

Почему человек всегда пытался узнать, как работают системы, управляющие его организмом? Видимо, потому, что понимание принципов функционирования и взаимодействия нервной и эндокринной систем - самых сложных из всех известных биологических объектов - представляет несомненный интерес. Кроме того, все психические явления выступают производными физических и химических процессов, происходящих в человеческом теле и прежде всего в нервной и эндокринной системах. Раскрыв их суть, можно более осознанно относиться к использованию ресурсов мозга, лечить болезни, корректировать психические функции и т. п.

Подавляющее большинство современных психологов (не говоря уже о

биологах и медиках) исходят из того, что центральная нервная система (ЦНС) в той или иной степени является материальным субстратом психической деятельности. К сожалению, сегодня нейронауки еще далеки от видения полной картины не только принципов, но и частных проявлений работы ЦНС. Недаром один из величайших биологов XX столетия Нобелевский лауреат Ф. Крик пишет, что такие функции мозга человека, как восприятие, сознание, воображение, эмоции, «недоступны пониманию на современном уровне наших знаний. Для того чтобы постичь эти высшие уровни нервной деятельности, очевидно, хорошо было бы как можно больше узнать о более низких уровнях, особенно доступных прямому эксперименту. Необходимо рассмотреть теории, которые касаются переработки информации в больших и сложных системах, будь то информация, поступающая от органов чувств, или инструкции, посылаемые мышцам и железам, или же поток сигналов, заключающийся в обширной нервной и эндокринной активности между этими двумя крайними членами».

Авторы этой книги не ставят целью решение вопроса об отношении психического к физическому. Они лишь исходят из того очевидного факта, что современный психолог, особенно работающий в прикладных сферах, должен владеть базовыми знаниями в таких областях, как анатомия мозга, нейрофизиология, нейрохимия, физиология поведения, нейроэндокринология.

В настоящее время интерес к психологии как профессии чрезвычайно высок. Кроме различных форм подготовки специалистов-психологов, все более развивается система поствузовского обучения, позволяющая осваивать различные области психологии (например, психотерапию) теми, кто уже имеет высшее образование. Студентам читаются курсы анатомии и физиологии нервной системы, физиологии высшей нервной деятельности, физиологии сенсорных систем, иногда - общей биологии и др. Однако специализированных пособий, в которых учитывалась бы специфика преподавания перечисленных дисциплин будущим психологам, явно недостаточно.

В предлагаемом пособии авторы попытались изложить современные представления о принципах устройства и функционирования двух основных интегрирующих и регулирующих систем организма - нервной и эндокринной. Значительное внимание уделено как отдельным молекулярным регуляторам, так и деятельности клеток и клеточных структур, а также системному уровню, обеспечивающему регуляцию внутренних органов, обучение, изменение эмоционального состояния и т. д.

Задача авторов несколько осложнялась тем, что в учебных заведениях психологического профиля не преподают химию и физику. Поэтому сведения, относящиеся к этим разделам знаний, представлены в доступной форме и лишь тогда, когда они необходимы для понимания основ функционирования нервной и эндокринной систем. Химические формулы медиаторов, гормонов и т. п. будут понятны читателям, обладающим соответствующей подготовкой.

Те же, для кого восприятие формул затруднительно, вполне могут овладеть материалом, пользуясь лишь текстом учебника. Авторы старались привести как можно больше примеров, позволяющих наглядно представить, в каких областях могут быть использованы специалистом-психологом излагаемые сведения.

Книга состоит из пяти глав.

В первой главе, посвященной строению клетки - функциональной единицы любого живого организма, изложены основы клеточной теории, данные о химическом составе клеток и важнейших протекающих в них процессах, характеристики основных тканей человеческого организма, в том числе нервной.

Во второй главе дано описание анатомического строения различных составляющих нервной системы: головного и спинного мозга, периферических нервов, вегетативной нервной системы; приведена функциональная характеристика описываемых структур (ядер, трактов и др.).

В третьей главе изложены электрофизиологические и химические основы работы нервных клеток, способы передачи информации от нейрона к нейрону

и от нейронов к исполнительным органам; перечислены основные группы психотропных препаратов, употребляемых в клинике; указаны механизмы действия ряда наркотиков.

В четвертой главе рассмотрены принципы, особенности и типология высшей нервной деятельности (ВНД), разнообразие рефлекторных поведенческих проявлений, механизмы обучения и памяти, системы условного торможения, сна и бодрствования, системы потребностей, мотиваций и эмоций.

В пятой главе, посвященной современным представлениям о деятельности эндокринной системы, ее взаимосвязях с нервной системой и участии гормонов в обеспечении психической деятельности, особое внимание уделено роли эндокринной системы в развитии ряда видов психопатологии.

Пособие может быть использовано при изучении курсов анатомии и физиологии нервной системы, физиологии ВНД, а также родственных учебных дисциплин (например, общей биологии, зоопсихологии, психофизиологии), которые читаются будущим психологам и студентам некоторых других специальностей (педагоги, биологи, медики и т. п.).

1. Основы клеточного строения живых организмов

1.1. Клеточная теория

Все живые организмы на Земле, за небольшим исключением, состоят из клеток. Впервые клетки были описаны в 1665 г. Р. Гуком, увидевшим их в коре пробкового дерева. Но только к 1839 г. усилиями многих ученых была

создана клеточная теория, имеющая в своей основе следующие положения.

1. Все живые существа, от одноклеточных до крупнейших растительных и животных организмов, состоят из клеток.

2. Все клетки сходны по строению, химическому составу, жизненным функциям.

3. Несмотря на то что в многоклеточных организмах отдельные клетки специализируются на выполнении какой-то определенной функции, они способны и к самостоятельной жизнедеятельности, т. е. могут питаться, расти, размножаться.

4. Каждая клетка возникает из клетки.

Таким образом, клетка - элементарная единица живого, лежащая в основе строения, развития и размножения всех живых организмов. Так как многоклеточные организмы представляют собой сложные клеточные структуры, образующие целостные системы, то без понимания основ строения и регуляции процессов жизнедеятельности в одной клетке невозможно понять принципов регуляции всего организма.

1.2. Химическая организация клетки

Организм человека включает множество химических элементов: обнаружено присутствие 86 элементов из таблицы Д. И. Менделеева. Однако 98% массы нашего организма образовано всего четырьмя элементами: кислородом (около 70%), углеродом (15-18%), водородом (около 10%) и азотом (около 2%). Все остальные элементы подразделяются на

макроэлементы (около 2% массы) имикроэлементы (около 0,1% массы). К

макроэлементам относят фосфор, калий, натрий, железо, магний, кальций, хлор и серу, а к микроэлементам - цинк, медь, иод, фтор, марганец и другие элементы. Несмотря на очень малые количества, микроэлементы необходимы как каждой клетке, так и всему организму в целом.

В клетках атомы и группы атомов различных элементов способны терять или приобретать электроны. Так как электрон имеет отрицательный заряд, то потеря электрона приводит к тому, что атом или группа атомов становятся положительно заряженными, а приобретение электрона делает атом или группу атомов отрицательно заряженными. Такие электрически заряженные атомы и группы атомов называются ионами. Противоположно заряженные ионы притягивают друг друга. Связь, обусловленная таким притяжением, называетсяионной. Ионные соединения состоят из отрицательных и положительных ионов, противоположные заряды которых равны по величине,

и поэтому в целом молекула электронейтральна. Примером ионного

соединения может служить поваренная соль, или хлорид натрия NaCl. Это вещество образуют ионы натрия Na+ с зарядом +1 и хлорид-ионы Cl− с зарядом

В состав клетки входят неорганические и органические вещества. Среди неорганических преобладает вода, содержание которой колеблется от 90% в

организме эмбриона до 65% в организме пожилого человека. Вода - универсальный растворитель, и почти все реакции в нашем организме проходят в водных растворах. Внутреннее пространство клеток и органоидов клеток представляет собой водный раствор различных веществ. Растворимые в воде вещества (соли, кислоты, белки, углеводы, спирты и др.) называют гидрофильными, а нерастворимые (например, жиры) -гидрофобными.

Важнейшими органическими веществами, входящими в состав клеток, являются белки. Содержание белков в различных клетках колеблется от 10 до 20%. Белковые молекулы очень велики и представляют собой длинные цепочки (полимеры), собранные из повторяющихся единиц (мономеров). Мономерами белков являютсяаминокислоты. Длина, а следовательно, и масса белковой молекулы могут сильно варьировать: от двух аминокислот до многих тысяч. Короткие белковые молекулы принято называтьпептидами. В состав белков входит около 20 видов аминокислот, соединенных между собойпептидными связями. Последовательность аминокислот в молекуле каждого белка строго определена и называетсяпервичной структурой белка. Эта цепочка аминокислот свертывается в спираль, называемуювторичной структурой белка. У каждого белка эта спираль по-своему располагается в пространстве, скручиваясь в более или менее сложнуютретичную структуру, или глобулу, определяющую биологическую активность молекулы белка. Молекулы некоторых белков образованы несколькими удерживающимися вместе глобулами. Принято говорить, что такие белки имеют, кроме того, и

четвертичную структуру.

Белки выполняют целый ряд важнейших функций, без которых невозможно существование ни отдельно взятой клетки, ни целого организма.

Структурно-строительная функцияоснована на том, что белки - важнейшие составляющие части всех мембран: в большинстве клеток есть цитоскелет, образованный определенными видами белков. В качестве примеров белков, выполняющих структурно-строительную функцию, можно привести коллаген и эластин, которые обеспечивают упругость и прочность кожи и являются основой связок, соединяющих мышцы с суставами и суставы между собой.

Каталитическая функция белков заключается в том, что особые виды белков -ферменты - способны ускорять течение химических реакций, причем иногда во много миллионов раз. Все движения клеток осуществляются с помощью специальных белков (актин, миозин и др.). Таким образом, белки выполняютдвигательную функцию. Другая функция белков,транспортная,

проявляется в том, что они способны переносить кислород (гемоглобин) и целый ряд других веществ: железо, медь, витамины. Основой иммунитета также являются особые белки - антитела, способные связывать бактерии и другие чужеродные агенты, делая их безопасными для организма. Эта функция белков получила названиезащитной. Многие гормоны и другие вещества, регулирующие функции клеток и всего организма, являются

короткими белками, или пептидами. Таким образом, белки выполняют регуляторные функции. (Подробно о регуляторных белках и пептидах см. в разделе, посвященном эндокринной системе.) При окислении белков выделяется энергия, которую организм может использовать. Однако белки слишком важны для организма, да и энергетическая ценность белков ниже, чем у жиров, поэтому обычно белки расходуются на энергетические нужды только в крайнем случае, при истощении запасов углеводов и жиров.

Другой класс химических веществ, необходимый для жизни, - углеводы,

или сахара.Углеводы подразделяются на моносахаридыи полисахариды,

построенные из моносахаридов. Среди моносахаридов важнейшими являются глюкоза, фруктоза, рибоза. Из полисахаридов в животных клетках чаще всего встречается гликоген, а в растительных - крахмал и целлюлоза.

Углеводы выполняют две важнейшие функции: энергетическую и структурно-строительную. Так, для клеток нашего мозга глюкоза является практически единственным источником энергии, и уменьшение ее содержания в крови опасно для жизни. В печени человека хранится небольшой запас полимера глюкозы - гликогена, его достаточно, чтобы покрывать потребность в глюкозе в течение приблизительно двух суток.

Суть структурно-строительной функции углеводов заключается в следующем: сложные углеводы, соединенные с белками (гликопротеины) или жирами (гликолипиды), входят в состав клеточных мембран, обеспечивая взаимодействие клеток между собой.

В состав клеток входят также жиры, илилипиды. Их молекулы построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, стероиды, фосфолипиды и др. Липиды входят в состав всех клеточных мембран, являясь их основой. Липиды гидрофобны и вследствие этого непроницаемы для воды. Таким образом, липидные слои мембраны защищают содержимое клетки от растворения. Это их структурностроительная функция. Однако липиды - важный источник энергии: при окислении жиров выделяется в два с лишним раза больше энергии, чем при окислении такого же количества белков или углеводов.

Нуклеиновые кислоты представляют собой полимеры, построенные из мономеров -нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара и остатка фосфорной кислоты. Существуют два вида нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), отличающиеся по составу азотистых оснований и сахаров.

Азотистых оснований четыре: аденин, гуанин, цитозин итимин. Они и определяют названия соответствующих нуклеотидов: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т) (рис. 1.1).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей, которые по всей длине соединены друг с другом

водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом обнаруживается важная закономерность: против аденина одной цепи всегда располагается тимин другой цепи, против гуанина - цитозин и наоборот. Это объясняется тем, что пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными, или комплементарными (от лат.complementum - дополнение), друг другу. Между аденином и тимином всегда возникают две, а между гуанином и цитозином - три водородные связи (рис. 1.2). Следовательно, у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Зная последовательность нуклеотидов в одной цепи ДНК, по принципу комплементарности можно установить порядок нуклеотидов другой цепи.

С помощью четырех типов нуклеотидов в ДНК записана вся важная информация об организме, передающаяся по наследству следующим поколениям, другими словами, ДНК выступает носителем наследственной информации.

Рис. 1.1. Четыре нуклеотида, из которых построены все ДНК живой природы

Молекулы ДНК в основном находятся в ядрах клеток, но небольшое их количество содержится в митохондриях и пластидах.

Молекула РНК, в отличие от молекулы ДНК, - полимер, состоящий из одной цепочки значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из рибозы, остатка фосфорной кислоты и одного из четырех азотистых оснований. Три азотистых основания - аденин, гуанин и

цитозин - такие же, как и у ДНК, а четвертое - урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и остатком фосфорной кислоты соседних нуклеотидов.

Выделяют три типа РНК, различающихся по структуре, величине молекул, расположению в клетке и выполняемым функциям.

Рибосомные РНК (р-РНК) входят в состав рибосом и участвуют в формировании активного центра рибосомы, где происходит процесс биосинтеза белка.

Транспортные РНК (т-РНК) - самые небольшие по размеру - транспортируют аминокислоты к месту синтеза белка.

Информационные, илиматричные, РНК (и-РНК) синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется.

Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Комплементарное соединение нуклеотидов и образование двухцепочечной молекулы ДНК

Рис. 1.3. Строение молекулы АТФ