Краткие содержания

История возникновения и развития квадратных уравнений. Реферат: Квадратные уравнения и уравнения высших порядков. Я уйму всяких разрешал проблем

Министерство образования Российской Федерации

Муниципальное общеобразовательное учреждение

"Средняя общеобразовательная школа №22"

Квадратные уравнения и уравнения высших порядков

Выполнили:

Ученики 8 "Б" класса

Кузнецов Евгений и Руди Алексей

Руководитель:

Зенина Алевтина Дмитриевна

преподаватель математики

Введение

1.1 Уравнения в Древнем Вавилоне

1.2 Уравнения арабов

1.3 Уравнения в Индии

Глава 2. Теория квадратные уравнения и уравнения высших порядков

2.1 Основные понятия

2.2 Формулы четного коэффициента при х

2.3 Теорема Виета

2.4 Квадратные уравнения частного характера

2.5 Теорема Виета для многочленов (уравнений) высших степеней

2.6 Уравнения, сводимые к квадратным (биквадратные)

2.7 Исследование биквадратных уравнений

2.8 Формулы Кордано

2.9 Симметричные уравнения третьей степени

2.10 Возвратные уравнения

2.11 Схема Горнера

Заключение

Список используемой литературы

Приложение 1

Приложение 2

Приложение 3

Введение

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее число задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

В этом реферате хотелось бы отобразить формулы и способы решения различных уравнений. Для этого приводятся уравнения, которые не изучаются в школьной программе. В основном это уравнения частного характера и уравнения высших степеней. Чтобы раскрыть эту тему приводятся доказательства этих формул.

Задачи нашего реферата:

Улучшить навыки решения уравнений

Наработать новые способы решения уравнений

Выучить некоторые новые способы и формулы для решения этих уравнений.

Объект исследования - элементарная алгебра Предмет исследования уравнения. Выбор этой темы основывался на том, что уравнения есть как в программе начальной, так и в каждом последующем классе общеобразовательных школ, лицеев, колледжей. Многие геометрические задачи, задачи по физике, химии и биологии решаются с помощью уравнений. Уравнения решали двадцать пять веков назад. Они создаются и сегодня – как для использования в учебном процессе, так и для конкурсных экзаменов в вузы, для олимпиад самого высокого уровня.

Глава 1. История квадратных уравнений и уравнений высших порядков

1.1 Уравнения в Древнем Вавилоне

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведённых над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучается общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земельными работами военного характера, а также с развитием астрономии и самой математики. Как было сказано ранее, квадратные уравнения умели решать около 2000 лет до нашей эры вавилонянами. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются как неполные, так и полные квадратные уравнения.

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решением, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствует понятие отрицательного числа и общие методы решения квадратного уравнения.

1.2 Уравнения арабов

Некоторые способы решения уравнений как квадратных, так и уравнений высших степеней были выведены арабами. Так известный арабский математик Ал-Хорезми в своей книге «Ал - джабар» описал многие способы решения различных уравнений. Их особенность была в том, что Ал-Хорезми применял сложные радикалы для нахождения корней (решений) уравнений. Необходимость в решении таких уравнений была нужна в вопросах о разделе наследства.

1.3 Уравнения в Индии

Квадратные уравнения решали и в Индии. Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 году индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII век), изложил общее правило решения квадратных уравнений, приведенных к единой конической форме:

aх² + bx= c, где a > 0

В этом уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи ». Задачи часто облекались в стихотворную форму.

Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.

Глава 2. Квадратные уравнения и уравнения высших порядков

2.1 Основные понятия

Квадратным уравнением называют уравнения вида

где коэффициенты a, b, c – любые действительные числа, причём a ≠ 0.

Квадратное уравнение называют приведённым, если его старший коэффициент равен 1.

Пример :

x 2 + 2x + 6 = 0.

Квадратное уравнение называют не приведенным, если старший коэффициент отличен от 1.

Пример :

2x 2 + 8x + 3 = 0.

Полное квадратное уравнение - квадратное уравнение, в котором присутствуют все три слагаемых, иными словами, это уравнение, у которого коэффициенты b и c отличны от нуля.

Пример :

3x 2 + 4x + 2 = 0.

Неполное квадратное уравнение – это квадратное уравнение, у которого хотя бы один коэффициент b, c равен нулю.

Таким образом, выделяют три вида неполных квадратных уравнений:

1) ax² = 0 (имеет два совпадающих корня x = 0).

2) ax² + bx = 0 (имеет два корня x 1 = 0 и x 2 = -)

Пример :

x 1 = 0, x 2 = -5.

Ответ : x 1 =0, x 2 = -5.

Если –<0 - уравнение не имеет корней.

Пример :

Ответ : уравнение не имеет корней.

Если –> 0, то x 1,2 = ±

Пример :


Ответ : х 1,2 =±

Любое квадратное уравнение можно решить через дискриминант (b² - 4ac). Обычно выражение b² - 4ac обозначают буквой D и называют дискриминантом квадратного уравнение ax² +bx + c = 0 (или дискриминантом квадратного трёх члена ax² + bx + c)

Пример :

х 2 +14x – 23 = 0

D = b 2 – 4ac = 144 + 92 = 256

x 2 =

Ответ : x 1 = 1, x 2 = - 15.

В зависимости от дискриминанта уравнение может иметь или не иметь решение.

1) Если D < 0, то не имеет решения.

2) Если D = 0, то уравнение имеет два совпадающих решения x 1,2 =

3) Если D > 0, то имеет два решения, находящиеся по формуле:

x 1,2 =

2.2 Формулы четного коэффициента при х

Мы привыкли к тому, что корни квадратного уравнения

ax² + bx + c = 0 находятся по формуле

x 1,2 =

Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что эту формулу можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если b есть четное число.

В самом деле, пусть у квадратного уравнения ax² + bx + c = 0 коэффициент bимеет вид b = 2k. Подставив в нашу формулу число 2k вместо b, получим:

Итак, корни квадратного уравнения ax² + 2kx + c = 0 можно вычислять по формуле:

x 1,2 =

Пример :

5х 2 - 2х + 1 = 0


Преимущество этой формулы в том, что в квадрат возводится не число b, а его половина, вычитается из этого квадрата не 4ac, а просто ac и, наконец, в том, что в знаменателе содержится не 2a, а просто a.

В случае если квадратное уравнение приведенное, то наша формула будет выглядеть так:

Пример :

х 2 – 4х + 3 = 0

Ответ : х 1 = 3, х 2 = 1.

2.3 Теорема Виета

Очень любопытное свойство корней квадратного уравнения обнаружил французский математик Франсуа Виет. Это свойство назвали теорема Виета:

Чтобы числа x 1 и x 2 являлись корнями уравнения:

ax² + bx + c = 0

необходимо и достаточно выполнения равенства


x 1 + x 2 = -b/aи x 1 x 2 = c/a

Теорема Виета позволяет судить о знаках и абсолютной величине квадратного уравнения

x² + bx + c = 0

1. Если b>0, c>0 то оба корня отрицательны.

2. Если b<0, c>0 то оба корня положительны.

3. Если b>0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине больше положительного.

4. Если b<0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине меньше положительного.

2.4 Квадратные уравнения частного характера

1) Если a + b + c = 0 в уравнении ax² + bx + c = 0, то

х 1 =1, а х 2 = .

Доказательство :

В уравнении ax² + bx + c = 0, его корни

x 1,2 = (1).

Представим b из равенства a + b + c = 0

Подставим это выражение в формулу (1):


=

Если рассмотрим по отдельности два корня уравнения, получим:

1) х 1 =

2) х 2 =

Отсюда следует: х 1 =1, а х 2 = .

1. Пример :

2х² - 3х + 1 = 0

a = 2, b = -3, c = 1.

a + b + c = 0, следовательно

2. Пример :

418х² - 1254х + 836 = 0

Этот пример очень тяжело решить через дискриминант, но, зная выше приведенную формулу его с легкостью можно решить.

a = 418, b = -1254, c = 836.

х 1 = 1 х 2 = 2


2) Если a - b + c = 0, в уравнении ax² + bx + c = 0, то:

х 1 =-1, а х 2 =- .

Доказательство :

Рассмотрим уравнение ax² + bx + c = 0, из него следует, что:

x 1,2 = (2).

Представим b из равенства a - b + c = 0

b = a + c, подставим в формулу (2):

=

Получаем два выражения:

1) х 1 =

2) х 2 =

Эта формула похожа на предыдущую, но она тоже важна, т.к. часто встречаются примеры такого типа.

1) Пример :

2х² + 3х + 1 = 0

a = 2, b = 3, c = 1.


a - b + c = 0, следовательно

2) Пример :

Ответ : x 1 = -1; х 2 = -

3) Метод “переброски

Корни квадратных уравнений y² + by + аc = 0 и ax² + bx + c = 0 связанны соотношениями:

х 1 = и х 2 =

Доказательство :

а) Рассмотрим уравнение ax² + bx + c = 0

x 1,2 = =

б) Рассмотрим уравнение y² + by + аc = 0

y 1,2 =


Заметим, что дискриминанты у обоих решений равны, сравним корни этих двух уравнений. Они отличаются друг от друга на старший коэффициент, корни первого уравнения меньше корней второго на а. Используя теорему Виета и выше приведенное правило, нетрудно решать разнообразные уравнения.

Пример :

Имеем произвольное квадратное уравнение

10х² - 11х + 3 = 0

Преобразуем это уравнение по приведенному правилу

y² - 11y + 30 = 0

Получим приведенное квадратное уравнение, которое можно достаточно легко решить с помощью теоремы Виета.

Пусть y 1 и y 2 корни уравнения y² - 11y + 30 = 0

y 1 y 2 = 30 y 1 = 6

y 1 + y 2 = 11 y 2 = 5

Зная, что корни этих уравнений отличны друг от друга на а, то

х 1 = 6/10 = 0,6

х 2 = 5/10 = 0,5

В некоторых случаях удобно решать сначала не данное уравнение ax² + bx + c = 0, а приведенное y² + by + аc = 0, которое получается из данного «переброской» коэффициента а, а затем разделить найденный корни на а для нахождения исходного уравнения.

2.5 Формула Виета для многочленов (уравнений) высших степеней

Формулы, выведенные Виетом для квадратных уравнений, верны и для многочленов высших степеней.

Пусть многочлен

P(x) = a 0 x n + a 1 x n -1 ­­­ + … +a n

Имеет n различных корней x 1 , x 2 …, x n .

В этом случае он имеет разложение на множители вида:

a 0 x n + a 1 x n-1 +…+ a n = a 0 (x – x 1)(x – x 2)…(x – x n)

Разделим обе части этого равенства на a 0 ≠ 0 и раскроем в первой части скобки. Получим равенство:

x n + ()x n -1 + … + () = x n – (x 1 + x 2 + … + x n) x n -1 + (x 1 x 2 + x 2 x 3 + … + x n -1 x n)x n -2 + … +(-1) n x 1 x 2 … x n

Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство

x 1 + x 2 + … + x n = -

x 1 x 2 + x 2 x 3 + … + x n -1 x n =

x 1 x 2 … x n = (-1) n


Например, для многочленов третей степени

a 0 x³ + a 1 x² + a 2 x + a 3

Имеем тождества

x 1 + x 2 + x 3 = -

x 1 x 2 + x 1 x 3 + x 2 x 3 =

x 1 x 2 x 3 = -

Как и для квадратных уравнений, эту формулу называют формулами Виета. Левые части этих формул являются симметрическими многочленами от корней x 1 , x 2 …, x n данного уравнения, а правые части выражаются через коэффициент многочлена.

2.6 Уравнения, сводимые к квадратным (биквадратные)

К квадратным уравнениям сводятся уравнения четвертой степени:

ax 4 + bx 2 + c = 0,

называемые биквадратными, причем, а ≠ 0.

Достаточно положить в этом уравнении х 2 = y, следовательно,

ay² + by + c = 0

найдём корни полученного квадратного уравнения


y 1,2 =

Чтобы найти сразу корни х 1, x 2, x 3, x 4 , заменим y на x и получим

x² =

х 1,2,3,4 = .

Если уравнение четвёртой степени имеет х 1 , то имеет и корень х 2 = -х 1 ,

Если имеет х 3 , то х 4 = - х 3 . Сумма корней такого уравнения равна нулю.

Пример :

2х 4 - 9x² + 4 = 0

Подставим уравнение в формулу корней биквадратных уравнений:

х 1,2,3,4 = ,

зная, что х 1 = -х 2 , а х 3 = -х 4 , то:

х 3,4 =

Ответ : х 1,2 = ±2; х 1,2 =

2.7 Исследование биквадратных уравнений

Возьмем биквадратное уравнение

ax 4 + bx 2 + c = 0,

где a, b, c –действительные числа, причем а > 0. Введя вспомогательную неизвестную y = x², исследуем корни данного уравнения, и результаты занесем в таблицу (см. приложение №1)

2.8 Формула Кардано

Если воспользоваться современной символикой, то вывод формулы Кардано может иметь такой вид:

х =

Эта формула определяет корни общего уравнения третей степени:

ax 3 + 3bx 2 + 3cx + d = 0.

Эта формула очень громоздкая и сложная (она содержит несколько сложныных радикалов). Она не всегда примениться, т.к. очень сложна для заполнения.

2.9 Симметричные уравнения третей степени

Симметричными уравнениями третей степени называют уравнения вида


ax³ + bx² +bx + a = 0 (1 )

ax³ + bx² - bx – a = 0 (2 )

где a и b – заданные числа, причём a¹0.

Покажем, как решаются уравнение (1 ).

ax³ + bx² + bx + a = a(x³ + 1) + bx(x + 1) = a(x + 1) (x² - x + 1) + bx(x + 1) = (x + 1) (ax² +(b – a)x + a).

Получаем, что уравнение (1 ) равносильно уравнению

(x + 1) (ax² +(b – a)x + a) = 0.

Значит его корнями, будут корни уравнения

ax² +(b – a)x + a = 0

и число x = -1

аналогично решается уравнение (2 )

ax³ + bx² - bx - a = a(x³ - 1) + bx(x - 1) = a(x - 1) (x² + x + 1) + bx(x - 1) = (x - 1) (ax 2 + ax + a + bx) = (x - 1) (ax² +(b + a)x + a).

1) Пример :

2x³ + 3x² - 3x – 2 = 0


Ясно, что x 1 = 1, а

х 2 и х 3 корни уравнения 2x² + 5x + 2 = 0 ,

Найдем их через дискриминант:

x 1,2 =

x 2 = -, x 3 = -2

2) Пример :

5х³ + 21х² + 21х + 5 = 0

Ясно, что x 1 = -1, а

х 2 и х 3 корни уравнения 5x² + 26x + 5 = 0 ,

Найдем их через дискриминант:

x 1,2 =

x 2 = -5, x 3 = -0,2.

2.10 Возвратные уравнения

Возвратное уравнение – алгебраическое уравнение

а 0 х n + a 1 x n – 1 + … + a n – 1 x + a n =0,

в котором а к = a n – k , где k = 0, 1, 2 …n, причем, а ≠ 0.

Задачу нахождения корней возвратного уравнения сводят к задаче нахождения решений алгебраического уравнения меньшей степени. Термин возвратные уравнения был введён Л. Эйлером.

Уравнение четвёртой степени вида:


ax 4 + bx 3 + cx 2 + bmx + am² = 0, (a ≠ 0).

Приведя это уравнение к виду

a (x² + m²/x²) + b(x + m/x) + c = 0, и y = x + m/x и y² - 2m = x² + m²/x²,

откуда уравнение приводится к квадратному

ay² + by + (c-2am) = 0.

3х 4 + 5х 3 – 14х 2 – 10х + 12 = 0

Разделив его на х 2 , получим эквивалентное уравнение

3х 2 + 5х – 14 – 5 × , или

Где и

3(y 2 - 4) + 5y – 14 = 0, откуда

y 1 = y 2 = -2, следовательно

И , откуда


Ответ: х 1,2 = х 3,4 = .

Частным случаем возвратных уравнений являются симметричные уравнения. О симметричных уравнениях третей степени мы говорили ранее, но существуют симметричные уравнения четвертой степени.

Симметричные уравнения четвертой степени.

1) Если m = 1, то это симметричное уравнение первого рода, имеющее вид

ax 4 + bx 3 + cx 2 + bx + a = 0 и решающееся новой подстановкой

2) Если m = -1, то это симметричное уравнение второго рода, имеющее вид

ax 4 + bx 3 + cx 2 - bx + a = 0 и решающееся новой подстановкой

2.11 Схема Горнера

Для деления многочленов применяется правило “деления углом”, или схема Горнера. С этой целью располагают многочлены по убывающим степеням х и находят старший член частного Q(x) из условия, что при умножении его на старший член делителя D(x) получается старший член делимого P(x). Найденный член частного умножают, затем на делитель и вычитают из делимого. Старший член частного определяют из условия, что он при умножении на старший член делителя даёт старший член многочлена разности и т.д. Процесс продолжается до тех пор, пока степень разности не окажется меньше степени делителя.(см. приложение №2).

В случае уравнений R = 0 этот алгоритм заменяется схемой Горнера.

Пример :

х 3 + 4х 2 + х – 6 = 0

Находим делители свободного члена ±1; ± 2; ± 3; ± 6.

Левую часть уравнения обозначим f(x). Очевидно, что f(1) = 0, x1 = 1. Делим f(x) на х – 1. (см. приложение №3)

х 3 + 4х 2 + х – 6 = (х – 1) (х 2 + 5х + 6)

Последний множитель обозначим через Q(x). Решаем уравнение Q(x) = 0.

х 2,3 =

Ответ : 1; -2; -3.

В этой главе мы привели некоторые формулы решения различных уравнений. Большинство этих формул решения уравнений частного характера. Эти свойства очень удобны так, как гораздо легче решать уравнения по отдельной формуле для этого уравнения, а не по общему принципу. К каждому из способов мы привели доказательство и несколько примеров.

Заключение

В первой главе была рассмотрена история возникновения квадратных уравнений и уравнений высших порядков. Различные уравнения решали более 25 веков назад. Множество способов решения таких уравнений были созданы в Вавилоне, Индии. Потребность в уравнениях была и будет.

Во второй главе приведены различные способы решения (нахождения корней) квадратных уравнений и уравнений высших порядков. В основном это способы решения для уравнений частного характера, то есть к каждой группе уравнений, объединенных какими- либо общими свойствами или видом, приведено особое правило, которое применяется только для этой группы уравнений. Этот способ (подбора к каждому уравнению собственной формулы) гораздо легче, чем нахождение корней через дискриминант.

В этом реферате достигнуты все цели и выполнены основные задачи, доказаны и разучены новые, ранее неизвестные формулы. Мы проработали много вариантов примеров перед тем, как занести их в реферат, по этому мы уже представляем, как решать некоторые уравнения. Каждое решение пригодится нам в дальнейшей учебе. Этот реферат помог классифицировать старые знания и познать новые.


Список литературы

1. Виленкин Н.Я. “Алгебра для 8 класса”, М., 1995.

2. Галицкий М.Л. “Сборник задач по алгебре”, М. 2002.

3. Даан-Дальмедико Д. “Пути и лабиринты”, М., 1986.

4. Звавич Л.И. “Алгебра 8 класс”, М., 2002.

5. Кушнир И.А. “Уравнения”, Киев 1996.

6. Савин Ю.П. “Энциклопедический словарь юного математика”, М., 1985.

7. Мордкович А.Г. “Алгебра 8 класс”, М., 2003.

8. Худобин А.И. “Сборник задач по алгебре”, М., 1973.

9. Шарыгин И.Ф. “Факультативный курс по алгебре”, М., 1989.

Приложение 1

Исследование биквадратных уравнений

C b Выводы
О корнях вспомогательного уравнения ay² +by+c=0 О корнях данного уравнения a(x²)² +bx² +c=0

C < 0

b- любое действительное число

y < 0 ; y > 0

1 2

x = ±Öy

C > 0 b<0 D > 0

x = ±Öy

D = 0 y > 0

x = ±Öy

D < 0 Нет корней Нет корней
b ≥ 0 Нет корней
Нет корней Нет корней

y > 0 ; y < 0

1 2

x = ±Öy

C = 0 b > 0 y = 0 x = 0
b = 0 y = 0 x = 0
b < 0 y = 0 x = 0

Приложение 2

Деление многочлена на многочлен «уголком»

A 0 a 1 a 2 ... a n c
+
b 0 c b 1 c b n-1 c
B 0 b 1 b 2 b n = R (остаток)

Приложение 3

Схема Горнера

Корень
1 4 1 -6 1
х 1 = 1
сносим 5 6 0
1 1×1 +4 = 5 5×1 + 1 = 6 6×1 – 6 = 0
корень
х 1 = 1

Ковальчук Кирилл

Проект "Квадратные уравнения через века и страны" знакомит учащихся с учеными математики, открытия которых являются основой научно-технического прогресса, развивает интерес к математике как к предмету на основе знакомства с историческим материалом, расширяет кругозор учащихся, стимулирует их познавательную активность и творчество.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Проектная работа ученика 8 класса МОУ СОШ №17 с.Борисовка Ковальчука Кирилла Руководитель Мулюкова Г.В.

Квадратные уравнения через века и страны

Цель проекта: Познакомить учащихся с учеными математики, открытия которых являются основой научно-технического прогресса. Показать значимость работ ученых для развития геометрии и физики.??????????? Наглядно продемонстрировать применение научных открытий в жизни. Развивать интерес к математике как к предмету на основе знакомства с историческим материалом. Расширять кругозор учащихся, стимулировать их познавательную активность и творчество

Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Правила решения этих уравнений, изложенные в вавилонских текстах, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

. (ок. 365 - 300 г. до н.э.) - древне­греческий математик, автор первых дошедших до нас теоретических трактатов по математике. Евклид, или Эвклид

Евклид Начала Там, где с морем Сливается Нил, В древнем жарком краю Пирамид Математик греческий жил - Многознающий, Мудрый Эвклид. Геометрию он изучал, Геометрии он обучал. Написал он великий труд. Эту книгу «Начала» зовут.

Евклид 3 век до н.э. Евклид решал квадратные уравнения, применяя геометрический способ. Вот одна из задач из древнегреческого трактата: «Имеется город с границей в виде квадрата со стороной неизвестного размера, в центре каждой стороны находятся ворота. На расстоянии 20бу(1бу=1,6м) от северных ворот стоит столб. Если пройти от южных ворот 14бу прямо, затем повернуть на запад и пройти еще 1775бу, то можно увидеть столб. Спрашивается: какова сторона границы города? »

Чтобы определить неизвестную сторону квадрата, получаем квадратное уравнение x ² +(k+l)x-2kd =0 . В данном случае уравнение имеет вид x ² +34x-71000=0 , откуда х=250бу l x d k

Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются и в астрономическом трактате « Ариабхаттиам », составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c , a>0 В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».

Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?.

Решение. () 2 +12 = х, х 2 - 64х +768 = 0, а =1, в = -64, с = 768, тогда Д = (-64) 2 -4·1·768 = 1024 > 0. Х 1 , 2 = , х 1 = 48, х 2 = 16. Ответ.Обезьян было 16 или 48. Давайте решим её.

Формула корней квадратного уравнения « переоткрывалась » неоднократно. Один из первых дошедших до наших дней выводов этой формулы принадлежит индийскому математику Брахмагупте. Среднеазиатский ученый ал-Хорезми в трактате « Китаб аль-джерб валь-мукабала » получил эту формулу методом выделения полного квадрата.

Как же решал ал-Хорезми это уравнение. Он писал: "Правило таково: раздвои число корней, х=2х · 5 получите в этой задаче пять, 5 умножь на это равное ему, будет двадцать пять, 5 · 5=25 прибавь это к тридцати девяти, 25+39 будет шестьдесят четыре, 64 извлеки из этого корень, будет восемь, 8 и вычти из этого половину числа корней, т.е.пять, 8- 5 останется три- это и 3 Будет корень квадрата, который ты искал." А второй корень? Второй корень не находили, так как отрицательные числа не были известны. х 2 +10 х = 39

Квадратные уравнения в Европе 13-17вв. Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники 16-17вв. и частично 18.

Франсуа Виет – крупнейший математик 16 века

До Ф. Виета решение квадратного уравнения выполнялось по своим правилам в виде очень длинных словесных рассуждений и описаний, довольно громоздких действий. Даже само уравнение не могли записать, для этого требовалось довольно длинное и сложное словесное описание. Он ввел термин «коэффициент». Предложил искомые величины обозначать гласными, а данные – согласными. Благодаря символике Виета можно записать квадратное уравнение в виде: ax 2 + bx + c =0 . Теорема: Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Несмотря на то, что эта теорема называется «Теорема Виета», она была известна и до него, а он только преобразовал ее в современный вид. Виета называют «отцом алгебры»

Человечество прошло длительный путь от незнания к знанию, непрерывно заменяя на этом пути неполное и несовершенное знание все более полным и совершенным. Заключительное слово

Нас, живущих в начале XXI века, влечет старина. В своих предках мы замечаем прежде всего то, чего им не хватает с современной точки зрения, и обычно не замечаем того, что нам самим не хватает по сравнению с ними.

Не будем и мы забывать о них…

СПАСИБО ЗА внимание!

Министерство образования и науки РТ

Муниципальное бюджетное общеобразовательное учреждение

«Усадская средняя общеобразовательная школа

Высокогорского муниципального района Республики Татарстан»

Исследовательская работа:

«История возникновения квадратных уравнений »

Выполнила: Андреева Екатерина,

ученица 8Б класса

Научный руководитель:

Пожарская Татьяна Леонидовна,

учитель математики

Введение

Кто хочет ограничиться настоящим

без знания прошлого,

тот никогда его не поймет.

Г.В. Лейбниц

Уравнения в школьном курсе математики занимают ведущее место, но ни один из видов уравнений не нашел столь широкого применения, как квадратные уравнения.

Уравнение второй степени или квадратные уравнения, люди умели решать еще в Древнем Вавилоне во II тысячелетии до нашей эры. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактатах. И в настоящее время многие задачи алгебры, геометрии, физики так же решаются с помощью квадратных уравнений. Решая их, люди находят ответы на различные вопросы науки и техники.

Цель данного исследования - изучить историю возникновения квадратных уравнений.

Для достижения данной цели необходимо решить следующие задачи:

  1. Изучить научную литературу по теме.
  2. Проследить историю возникновения квадратных уравнений.

Объект исследования: квадратные уравнения.

Предмет исследования: история возникновения квадратных уравнений.

Актуальность темы :

  1. Решением квадратных уравнений люди занимались еще с древних веков. Мне захотелось узнать историю возникновения квадратных уравнений.
  2. В школьных учебниках нет информации об истории возникновения квадратных уравнений.

Методы исследования:

  1. Работа с учебной и научно-популярной литературой.
  2. Наблюдение, сравнение, анализ.

Научная ценность работы, на мой взгляд, заключается в том, что данный материал может быть интересен школьникам, увлекающимся математикой, и учителям на факультативных занятиях.

Квадратные уравнения в Древнем Вавилоне.

В Древнем Вавилоне необходимость решать уравнения не только первой, но и второй степени была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 - х = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Пример, взятый из одной из глиняных табличек этого периода.

«Площадь, состоящая из суммы двух квадратов, составляет 1000. Сторона одного из квадратов составляет стороны другого квадрата, уменьшенные на 10. Каковы стороны квадратов?»

Это приводит к уравнениям, решение которых сводится к решению квадратного уравнения, имеющему положительный корень.

В действительности решение в клинописном тексте ограничивается, как и во всех восточных задачах, простым перечислением этапов вычисления, необходимого для решения квадратного уравнения:

«Возведи в квадрат 10; это дает 100; вычти 100 из 1000; это дает 900» и т. д

Как составлял и решал Диофант квадратные уравнения

Диофант представляет одну из наиболее трудных загадок в истории науки. Он был одним из самых своеобразных древнегреческих математиков был Диофант Александрийский, труды которого имели большое значение для алгебры и теории чисел. До сих пор не выяснены ни год рождения, ни дата смерти Диофанта. Промежуток времени, когда мог жить Диофант, составляет полтысячелетия! Полагают, что он жил в III в.н.э. Зато место жительства Диофанта хорошо известно — это знаменитая Александрия, центр научной мысли эллинистического мира.

Из работ Диофанта самой важной является “Арифметика”, из 13 книг которой только 6 сохранились до наших дней.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача: «Найти два числа, зная, что их сумма равна 20, а произведение - 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 - х . Разность между ними .

Отсюда уравнение:

(10 + х)(10 - х) = 96

100 - х 2 = 96

х 2 - 4 = 0 (1)

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

Квадратные уравнения из арифметики Диофанта:

  1. 12x 2 +x = 1
  2. 630x 2 +73x=6.

Еще в глубокой древности Индия славилась знаниями в области астрономии, грамматики и других наук.

Наибольших успехов Индийские ученые достигли в области математики . Они явились основоположниками арифметики и алгебры, в разработке которых пошли дальше греков.

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 +bх=с, а>0.

Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования
в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».

Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары:

« Обезьянок резвых стая,

Всласть поевши, развлекалась.

Их в квадрате часть восьмая,

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать, повисая…

Сколько ж было обезьянок,

Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствуют о том, что он знал о двузначности корней квадратных уравнений.

Соответствующее задаче уравнение

Бхаскара пишет под видом х 2 - 64х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляют к обеим частям 32 2 ,получая затем:

х 2 -64х+32 2 =-768+1024,

х 1 =16, х 2 =48.

Квадратные уравнения в Китае (1 тысячелетие до н.э.).

Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан (XVIII--XII вв. до н. э.). И уже на гадальных костях XIV в. до н. э., найденных в Хэнани, сохранились обозначения цифр. Но подлинный расцвет науки начался после того, как в XII в. до н. э. Китай был завоёван кочевниками Чжоу. В эти годы возникают и достигают удивительных высот китайская математика и астрономия. Появились первые точные календари и учебники математики. К сожалению, «истребление книг» императором Цинь Ши Хуаном (Ши Хуанди) не позволило ранним книгам дойти до нас, однако они, скорее всего, легли в основу последующих трудов.

«Математика в девяти книгах» - это первое математическое сочинение из ряда классических в древнем Китае, замечательный памятник древнего Китая времени династии Ранней Хань (206г. до н.э. - 7 г. н. э.). В этом сочинении содержится разнообразный и богатый по содержанию математический материал, в том числе и квадратные уравнения.

Китайская задача: «Имеется водоём со стороной 10 чи. В центре его растёт камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его. Спрашивается: какова глубина воды и какова длина камыша?»

(х+1) 2 =х 2 +5 2 ,

х 2 +2х+1= х 2 +25,

Ответ:12чи; 13чи.

Квадратные уравнения у ал-Хорезми

«Я составил краткую книгу об исчислении алгебры и алмукабалы, заключающую в себе простые и сложные вопросы арифметики, ибо это необходимо людям.» Ал-Хорезми Мухаммед бен-Муса.

Ал-Хорезми (Узбекистан) известен прежде всего своей «Книгой о восполнении и противопоставлении» («Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала»), от названия которой произошло слово «алгебра». Этот трактат является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

В теоретической части своего трактата ал-Хорезми даёт Классификацию уравнений 1-й и 2-й степени и выделяет шесть их видов:

1) «Квадраты равны корням», т. е. ах 2 = bх. (пример:)

2) «Квадраты равны числу», т. е. ах 2 = с.(пример:)

3) «Корни равны числу», т. е. ах = с. (пример:)

4) «Квадраты и числа равны корням», т. е. ах 2 + с = bх. (пример:)

5) «Квадраты и корни равны числу», т. е. ах 2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах 2 . (пример:)

Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

«Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: « Раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень».

Знаменитое уравнение Аль-Хорезми: «Квадрат и десять корней равны 39». x 2 + 10x = 39 (IX век) . В своем трактате он пишет: «Правило таково: раздвой число корней, получится в этой задаче пять. Прибавь это к тридцатидевяти, будет шестьдесят четыре. Извлеки из этого корень, будет восемь, и вычти из этого половину числа корней, т.е. пять, останется три: это и будет корень квадрата, который ты искал»

Квадратные уравнения в Европе XII-XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к виду x 2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Заключение.

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.

В настоящее время, умение решать квадратные уравнения необходимо для всех. Умение быстро, рационально и правильно решать квадратные уравнения облегчает прохождение многих тем курса математики. Квадратные уравнения решаются не только на уроках математики, но и на уроках физики, химии, информатики. Большинство практических задач реального мира тоже сводится к решению квадратных уравнений.

Литература

  1. Башмакова И. Г. Диофант и диофантовы уравнения. М.: Наука, 1972.
  2. Березкина Э.И. Математика древнего Китая - М.: Наука, 1980
  3. Пичурин Л.Ф. За страницами учебника алгебры: Кн. для учащихся

7-9 кл. сред.шк. - М.: Просвещение, 1990

  1. Глейзер Г. И. История математики в школе VII - VIII кл. Пособие для учителей. - М.: Просвещение, 1982.

Как составлял и решал Диофант квадратные уравнения. Отсюда уравнение: (10+х)(10 -х) =96 или же: 100 - х2 =96 х2 - 4=0 (1) Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Src="https://present5.com/presentation/137369579_55459696/image-4.jpg" alt="Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1) "> Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1)

Квадратные уравнения у ал – Хорезми. 1) «Квадраты равны корнями» , т. е. ах2 + с = bх. 2) «Квадраты равны числу» , т. е. ах2 = с. 3) «Корни равны числу» , т. е. ах = с. 4) «Квадраты и числа равны корням» , т. е. ах2 + с = bх. 5) «Квадраты и корни равны числу» , т. е. ах2 + bx = с. 6) «Корни и числа равны квадратам» , т. е. bx + с = ах2.

Квадратные уравнения в Европе ХIII ХVII вв. х2 +bх = с, при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

О теореме Виета. «Если В + D, умноженное на А - А 2, равно ВD, то А равно В и равно D» . На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b)х - х2 = ab, т. е. х2 - (а + b)х + аb = 0, то х1 = а, х2 = b.

Способы решения квадратных уравнений. 1. СПОСОБ: Разложение левой части уравнения на множители. Решим уравнение х2 + 10 х - 24 = 0. Разложим левую часть на множители: х2 + 10 х - 24 = х2 + 12 х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2). Следовательно, уравнение можно переписать так: (х + 12)(х - 2) = 0 Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10 х - 24 = 0.

2. СПОСОБ: Метод выделения полного квадрата. Решим уравнение х2 + 6 х - 7 = 0. Выделим в левой части полный квадрат. Для этого запишем выражение х2 + 6 х в следующем виде: х2 + 6 х = х2 + 2 х 3. полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как х2 + 2 х 3 + 32 = (х + 3)2. Преобразуем теперь левую часть уравнения х2 + 6 х - 7 = 0, прибавляя к ней и вычитая 32. Имеем: х2 + 6 х - 7 = х2 + 2 х 3 + 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16. Таким образом, данное уравнение можно записать так: (х + 3)2 - 16 =0, (х + 3)2 = 16. Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.

3. СПОСОБ: Решение квадратных уравнений по формуле. Умножим обе части уравнения ах2 + bх + с = 0, а ≠ 0 на 4 а и последовательно имеем: 4 а 2 х2 + 4 аbх + 4 ас = 0, ((2 ах)2 + 2 ах b + b 2) - b 2 + 4 ac = 0, (2 ax + b)2 = b 2 - 4 ac, 2 ax + b = ± √ b 2 - 4 ac, 2 ax = - b ± √ b 2 - 4 ac,

4. СПОСОБ: Решение уравнений с использованием теоремы Виета. Как известно, приведенное квадратное уравнение имеет вид х2 + px + c = 0. (1) Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид x 1 x 2 = q, x 1 + x 2 = - p а) x 2 – 3 x + 2 = 0; x 1 = 2 и x 2 = 1, так как q = 2 > 0 и p = - 3 0 и p= 8 > 0. б) x 2 + 4 x – 5 = 0; x 1 = - 5 и x 2 = 1, так как q= - 5 0; x 2 – 8 x – 9 = 0; x 1 = 9 и x 2 = - 1, так как q = - 9

5. СПОСОБ: Решение уравнений способом «переброски» . Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. Умножая обе его части на а, получаем уравнение а 2 х2 + аbх + ас = 0. Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0, равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета. Окончательно получаем х1 = у1/а и х1 = у2/а.

Пример. Решим уравнение 2 х2 – 11 х + 15 = 0. Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у2 – 11 у + 30 = 0. Согласно теореме Виета у1 = 5 у2 = 6 х1 = 5/2 x 2 = 6/2 Ответ: 2, 5; 3. x 1 = 2, 5 x 2 = 3.

6. СПОСОБ: Свойства коэффициентов квадратного уравнения. А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. 1) Если, а+ b + с = 0 (т. е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а. Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение x 2 + b/a x + c/a = 0. Согласно теореме Виета x 1 + x 2 = - b/a, x 1 x 2 = 1 c/a. По условию а – b + с = 0, откуда b = а + с. Таким образом, x 1 + x 2 = - а + b/a= -1 – c/a, x 1 x 2 = - 1 (- c/a), т. е. х1 = -1 и х2 = c/a, что и требовалось доказать.

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней В. Приведенное уравнение х2 + рх + q= 0 совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

7. СПОСОБ: Графическое решение квадратного уравнения. Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = - px - q. Построим графики зависимости у = х2 и у = - px - q.

Пример 1) Решим графически уравнение х2 - 3 х - 4 = 0 (рис. 2). Решение. Запишем уравнение в виде х2 = 3 х + 4. Построим параболу у = х2 и прямую у = 3 х + 4. Прямую у = 3 х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Ответ: х1 = - 1; х2 = 4

8. СПОСОБ: Решение квадратных уравнений с помощью циркуля и линейки. нахождения корней квадратного циркуля и линейки (рис. 5). уравнения Тогда по теореме о секущих имеем OB OD = OA OC, откуда OC = OB OD/ OA= х1 х2/ 1 = c/a. ах2 + bх + с = 0 с помощью

Src="https://present5.com/presentation/137369579_55459696/image-19.jpg" alt="1) Радиус окружности больше ординаты центра (AS > SK, или R > a +"> 1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2 a), окружность пересекает ось Ох в двух точках (6, а рис.) В(х1; 0) и D(х2; 0), где х1 и х2 - корни квадратного уравнения ах2 + bх + с = 0. 2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2 a), окружность касается оси Ох (рис. 6, б) в точке В(х1; 0), где х1 - корень квадратного уравнения. 3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс (рис. 6, в), в этом случае уравнение не имеет решения.

9. СПОСОБ: Решение квадратных уравнений с помощью номограммы. z 2 + pz + q = 0. Криволинейная шкала номограммы построена по формулам (рис. 11): Полагая ОС = р, ED = q, ОЕ = а (все в см.), Из подобия треугольников САН и CDF получим пропорцию

Примеры. 1) Для уравнения z 2 - 9 z + 8 = 0 номограмма дает корни z 1 = 8, 0 и z 2 = 1, 0 (рис. 12). 2) Решим с помощью номограммы уравнение 2 z 2 - 9 z + 2 = 0. Разделим коэффициенты этого уравнения на 2, получим уравнение z 2 - 4, 5 z + 1 = 0. Номограмма дает корни z 1 = 4 и z 2 = 0, 5. 3) Для уравнения z 2 - 25 z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5 t, получим уравнение t 2 - 5 t + 2, 64 = 0, которое решаем посредством номограммы и получим t 1 = 0, 6 и t 2 = 4, 4, откуда z 1 = 5 t 1 = 3, 0 и z 2 = 5 t 2 = 22, 0.

10. СПОСОБ: Геометрический способ решения квадратных уравнений. Примеры. 1) Решим уравнение х2 + 10 х = 39. В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39» (рис. 15). Для искомой стороны х первоначального квадрата получим

у2 + 6 у - 16 = 0. Решение представлено на рис. 16, где у2 + 6 у = 16, или у2 + 6 у + 9 = 16 + 9. Решение. Выражения у2 + 6 у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6 у - 16 + 9 - 9 = 0 - одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = - 8 (рис. 16).

Из истории возникновения квадратных уравнений

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.

Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне . Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

https://pandia.ru/text/78/002/images/image002_15.gif" width="93" height="41 src=">

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение - 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х. Другое же меньше, т. е. 10 - х. Разность между ними 2х. Отсюда уравнение:

(10+x)(10-x) =96,

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то можно прийти к решению уравнения:

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ax2 + bх = с, а>

В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

Соответствующее задаче 3 уравнение:

https://pandia.ru/text/78/002/images/image004_11.gif" width="12" height="26 src=">x2 - 64x = - 768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:

x2 - б4х + 322 = -768 + 1024,

(х - 32)2 = 256,

x1 = 16, x2 = 48.

Квадратные уравнения у Аль-Хорезми

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. ах2 = bх.

2) «Квадраты равны числу», т. е. ах2 = с.

3) «Корни равны числу», т. е. ах = с.

4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.

5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах2.

Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

Задача 4. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х2 + 21 = 10х).

Решение: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

Квадратные уравнения в Европе XII - XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид..

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX-VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI-Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака. А затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры, использование букв, введение символов арифметических операций, скобок и т. д. На рубеже XVI-XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Итак, ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики связано с тремя главными областями своего возникновения и функционирования.

Для того чтобы решить любое квадратное уравнение, надо знать:

· формулу нахождения дискриминанта;

· формулу нахождения корней квадратного уравнения;

· алгоритмы решения уравнений данного вида.

· решать неполные квадратные уравнения;

· решать полные квадратные уравнения;

· решать приведенные квадратные уравнения;

· находить ошибки в решенных уравнениях и исправлять их;

· делать проверку.

Решение каждого уравнения складывается из двух основных частей:

· преобразования данного уравнения к простейшим;

· решения уравнений по известным правилам, формулам или алгоритмам.

Обобщение способов деятельности учащихся при решении квадратных уравнений происходит постепенно. Можно выделить следующие этапы при изучении темы «Квадратные уравнения»:

I этап – «Решение неполных квадратных уравнений».

II этап – «Решение полных квадратных уравнений».

III этап – «Решение приведенных квадратных уравнений».

На первом этапе рассматриваются неполные квадратные уравнения. Так как сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Это уравнения вида: ах2 = 0, ах2 + с = 0, где с≠ 0, ах2 + bх = 0, где b ≠ 0. Рассмотрим решение несколько таких уравнений:

1. Если ах2 = 0. Уравнения такого вида решаются по алгоритму:

1) найти х2;

2) найти х.

Например, 5х2 = 0 . Разделив обе части уравнения на 5 получается: х2 = 0, откуда х = 0.

2. Если ах2 + с = 0, с≠ 0 Уравнения данного вида решаются по алгоритму:

1) перенести слагаемые в правую часть;

2) найти все числа, квадраты которых равны числу с.

Например, х2 - 5 = 0,Это уравнение равносильно уравнению х2 = 5. Следовательно, надо найти все числа, квадраты которых равны числу 5..gif" width="16" height="19">..gif" width="16" height="19 src="> и других корней не имеет.

3. Если ах2 + bх = 0, b ≠ 0. Уравнения такого вида решаются по алгоритму:

1) перенести общий множитель за скобки;

2) найти x1, x2.

Например, х2 - 3х = 0. Перепишем уравнение х2 – 3х = 0 в виде х (х – 3) = 0. Это уравнение имеет, очевидно, корни x1 = 0, x2 = 3. Других корней оно не имеет, ибо если в него подставить вместо х любое число, отличное от нуля и 3, то в левой части уравнения х (х – 3) = 0 получится число, не равное нулю.

Итак, данные примеры показывают, как решаются неполные квадратные уравнения:

1) если уравнение имеет вид ах2 = 0, то оно имеет один корень х = 0;

2) если уравнение имеет вид ах2 + bх = 0, то используется метод разложения на множители: х (ах +b) = 0; значит, либо х = 0, либо ах + b = 0..gif" width="16" height="41"> В случае, когда - < 0, уравнение х2 = - не имеет корней (значит, не имеет корней и исходное уравнение ах2 + с = 0). В случае, когда - > 0, т. е. - = m, где m>0, уравнение х2 = m имеет два корня

https://pandia.ru/text/78/002/images/image010_9.gif" width="29" height="24 src=">.gif" width="29" height="24 src=">, (в этом случае допускается более короткая запись = .

Таким образом, неполное квадратное уравнение может иметь два корня, один корень, ни одного корня.

На втором этапе осуществляется переход к решению полного квадратного уравнения. Это уравнения вида ах2 + bx + c = 0, где a, b,c – заданные числа, а ≠ 0, х – неизвестное.

Любое полное квадратное уравнение можно преобразовать к виду , для того, чтобы определять число корней квадратного уравнения и находить эти корни. Рассмотриваются следующие случаи решения полных квадратных уравнений: D < 0, D = 0, D > 0.

1. Если D < 0, то квадратное уравнение ах2 + bx + c = 0 не имеет действительных корней.

Например, 2х2 + 4х + 7 = 0. Решение: здесь а = 2, b = 4, с = 7.

D = b2 – 4ас = 42 – 4*2*7 = 16 – 56 = - 40.

Так как D < 0, то данное квадратное уравнение не имеет корней.

2. Если D = 0, то квадратное уравнение ах2 + bx + c = 0 имеет один корень, который находится по формуле .

Например, 4х – 20х + 25 = 0. Решение: а = 4, b = - 20, с = 25.

D = b2 – 4ас = (-20) 2 – 4*4*25 = 400 – 400 = 0.

Так как D = 0, то данное уравнение имеет один корень. Этот корень находится по формуле ..gif" width="100" height="45">.gif" width="445" height="45 src=">.

Составляется алгоритм решения уравнения вида ах2 + bx + c = 0.

1. Вычислить дискриминант D по формуле D = b2 – 4ас.

2. Если D < 0, то квадратное уравнение ах2 + bx + c = 0 не имеет корней.

3. Если D = 0, то квадратное уравнение имеет один корень, который находится по формуле

4..gif" width="101" height="45">.

Это алгоритм универсален, он применим как к неполным, так и к полным квадратным уравнениям. Однако неполные квадратные уравнения обычно по этому алгоритму не решают.

Математики – люди практичные, экономные, поэтому пользуются формулой: https://pandia.ru/text/78/002/images/image022_5.gif" width="155" height="53">. (4)

2..gif" width="96" height="49 src=">, имеющее тот же знак, что и D..gif" width="89" height="49"> то уравнение (3) имеет два корня;

2) если то уравнение имеет два совпадающих корня;

3) если то уравнение не имеет корней.

Важным моментом в изучении квадратных уравнений является рассмотрение теоремы Виета, которая утверждает наличие зависимости между корнями и коэффициентами приведенного квадратного уравнения.

Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Иначе говоря, если x1 и x2 - корни уравнения х2 +px + q = 0, то

Данные формулы называют формулами Виета в честь французского математика Ф. Виета (), который ввел систему алгебраических символов, разработал основы элементарной алгебры. Он был одним из первых, кто числа стал обозначать буквами, что существенно развило теорию уравнений.

Например, приведенное уравнение х2 - 7х +10 = 0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Видно, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Справедлива также теорема, обратная теореме Виета.

Теорема, обратная теореме Виета. Если для чисел x1, x2, p, q справедливы формулы (5), то x1 и x2 - корни уравнения х2 +px + q = 0 .

Теорема Виета и теорема, обратная ей, часто применяются при решении различных задач.

Например. Напишем приведенное квадратное уравнение, корнями которого являются числа 1 и -3.

По формулам Виета

– p = x1 + x2 = - 2,

Следовательно, искомое уравнение имеет вид х2 + 2х – 3 = 0.

Сложность освоения теоремы Виета связана с несколькими обстоятельствами. Прежде всего, требуется учитывать различие прямой и обратной теоремы. В прямой теореме Виета даны квадратное уравнение и его корни; в обратной - только два числа, а квадратное уравнение появляется в заключении теоремы. Учащиеся часто совершают ошибку, обосновывая свои рассуждения неверной ссылкой на прямую или обратную теорему Виета.

Например, при нахождении корней квадратного уравнения подбором ссылаться нужно на обратную теорему Виета, а не на прямую, как часто делают учащиеся. Для того чтобы распространить теоремы Виета на случай нулевого дискриминанта, приходится условиться, что в этом случае квадратное уравнение имеет два равных корня. Удобство такого соглашения проявляется при разложении квадратного трехчлена на множители.