Сочинения

Владимир петровосновы триз. теория решения изобретательских задач. Практические методы обучения. Суть технологии триз

Разнообразие современных систем воспитания детей, порой, приводит многих родителей в замешательство при выборе воспитательной парадигмы для своего ребенка. Все педагогические системы в настоящее время поддерживают идею гармоничного развития, в равной мере уделяющего внимание интеллектуальной, эмоциональной, морально-нравственной и другим сферам личности ребенка. А главная задача развивающего воспитания – максимально эффективно адаптировать ребенка к предстоящей жизни, научить его справляться с непредсказуемыми ситуациями, в которые он будет попадать в ходе своей жизни, и здесь решающее значение играет способность быстро принимать эффективные, а зачастую, и нестандартные решения.

Одной из передовых педагогических технологий, активно поддерживаемой многими российскими практиками и теоретиками детского воспитания, является так называемая ТРИЗ или технология решения изобретательских задач, созданная в 1946 году Генрихом Альтшуллером. Уделив немалое время анализу данных собранных многочисленными патентными фондами, он пришел к выводу, что в основе всех изобретений лежат одинаковые предпосылки. Выделив и систематизировав их, он смог создать свою теорию, которую нередко называют не теорией решения изобретательских задач, а теорией поиска правильных решений, что гораздо точнее отражает суть метода.

Название этой системы ассоциируется скорее с научным творчеством, чем с воспитанием детей, однако и в воспитании детей использование данной методики дает очень эффективные результаты. Это не мешает использовать ТРИЗ и во «взрослой» жизни – в инженерном деле, бизнесе, политике и даже в творчестве. На самом деле, главное содержание теории – научить ребенка или взрослого не столько изобретать, сколько принимать правильные решения, руководствуясь определенными логикой и алгоритмами оценки текущей ситуации. В настоящее время активно используются даже аналитические компьютерные программы, построенные на основе технологии ТРИЗ, и имеющие возможность предоставлять готовые решения для любых областей человеческой деятельности.

Суть технологии ТРИЗ

Обычно, попадая в ситуацию, требующую от нас принятия какого-либо решения, поиска выхода из затруднительного положения, мы можем начать поиск оптимального варианта решения проблемы лишь опираясь на уже имеющийся опыт, используя метод проб и ошибок, ну и, конечно же, логику. Такой подход не является очень эффективным и при необходимости нестандартного решения может занять продолжительное время и вовсе не гарантирует успеха. Но что, если бы мы владели универсальными принципами поиска нестандартных решений, применимых к любой ситуации и сфере деятельности? Принципами, которые позволили бы вам подойти к проблеме системно, а не ситуативно? Именно этому и учит ТРИЗ.

Поиск решения, выхода из ситуации на основе технологии ТРИЗ основан на стандартизированных логических операциях, вырастающих из общих законов развития любых технических систем. Основная предпосылка ТРИЗ – любые, даже самые сложные технически, системы возникают не сами по себе, а на основе единых закономерностей, которые можно познать и использовать для рождения новых систем, а также для решения текущих задач. Теория изобретательских задач дает возможность не тратить время на метод проб и ошибок или на ожидание творческого озарения, а воспользоваться системным подходом и решить большую часть рутинной работы на интеллектуальном уровне, найдя оптимальное решение.

ТРИЗ в детском саду

Хотя технология ТРИЗ эффективно применяется практически во всех сферах человеческой деятельности, начинать формировать системное мышление лучше всего с самого раннего детства. Именно поэтому во многих детских садах и воспитательных системах для дошкольников все чаще используются элементы ТРИЗ, а в отечественной педагогической науке все чаще приходится слышать о появлении нового направления - ТРИЗ-педагогике.

Задачи ТРИЗ в дошкольном воспитании – это:

  1. Научить видеть объекты окружающего мира как многофункциональные, разносторонние.
  2. Научить ребенка выделять противоречия между объектами окружающего мира.
  3. Научить ребенка фантазировать и изобретать новое.
  4. Научить решать фантастические, сказочные, игровые задачи с помощью приемов ТРИЗ.
  5. Научить находить выход и эффективно решать реальные ситуации.

Эти задачи последовательно реализуются в ходе взаимодействия педагога и ребенка, постепенно приучая его к системному мышлению и нестандартному подходу в поиске решений любой ситуации.

Мы не будем сейчас подробно посвящать вас в тонкости разнообразных вариантов воспитательных программ для дошкольного возраста, созданных на основе ТРИЗ, это не сложно сделать самостоятельно изучив любую из предложенных в конце данной статьи книг по теории изобретательских задач. Отметим лишь, что их немало, и каждая предполагает подробные методические рекомендации для воспитателей по конкретному воплощению теории. В основе ТРИЗ-взаимодействия с детьми – коллективные игры и занятия, на которых детей учат выделять противоречивые свойства предметов и явлений и эффективно разрешать эти противоречия исходя из поставленной воспитателем задачи. При этом ТРИЗ-ориентированные воспитательные программы вовсе не заменяю основную педагогическую программу, а только подкрепляют ее, позволяя сделать процесс воспитания интересным, занимательным и перевести его на качественно новый уровень.

Основное средство, используемое в ТРИЗ не только для дошкольников, но и для более старших детей, - педагогический поиск . Когда ребенку не предлагают готовое решение, а дают возможность найти его самостоятельно, акцентируя внимание не столько на успешном результате решения задачи, сколько на эффективном применении алгоритма его поиска.

Методы ТРИЗ

Занятия ТРИЗ с детьми и взрослыми достаточно часто используют характерные методы, позволяющие изменить представление об исходной ситуации. Это дает возможность выявить новые, до сих пор неизвестные начинающему исследователю черты какого-либо объекта или системы в целом.

Самые часто используемые в ТРИЗ-системах методы – это:

  • Метод маленьких человечков – для простоты понимания сложных, составных процессов они изображаются в виде маленьких человечков, находящихся друг с другом в разных взаимоотношениях. Особенно часто метод маленьких человечков используется при решении задач, связанных с молекулярным уровнем. Так, человечки-молекулы газа не качаются друг друга, жидкости – держатся за руки, а твердых веществ – крепко сцеплены и руками и ногами.
  • Метод фокальных объектов – исходному объекту приписываются свойства изначально ему не присущие, нередко фантастические. Это разрывает шаблонное восприятие системы и позволяет найти неожиданные решения.
  • Системный оператор – для любой системы прорабатываются также подсистемы (составляющие части) и надсистемы (более крупные образования, например, для системы «дерево» надсистемой будет «растение»).
  • Ресурсы – вся система рассматривается с точки зрения ресурсов или их производных. Это дает возможность функционально подойти к решению задачи. Кроме этого, свойства ресурсов могут дополнять друг друга, расширяя тем самым возможности исследователя-изобретателя.
  • Противоречия – любая система обладает противоречивыми свойствами, относительно одной и той же функции. То есть свойство «А» какой-либо системы, позволяющее ей выполнять ей полезную функцию, обязательно предполагает отрицательное свойство «не-А», дающее возможность не выполнять функцию вредную.
  • Фантазирование – через объединение частей целого (например, конь и человек – это кентавр), уменьшение или увеличение, ускорение или замедление, дробление или объединение, статика или динамика, оживление и универсализация предметов и так далее.

Комбинирование этих методик позволяет выстроить единый воспитательный процесс, сделать его интересным, а самое главное – эффективным с точки зрения развития личности и познавательных способностей ребенка, системного видения мира и конструктивного решения жизненных задач.

Игры ТРИЗ в детском саду

Первые занятия в детском саду всегда носят игровую форму, и обучение ТРИЗ – не исключение. Начало критического мышления закладывается в ходе простых игр:

  • «Много-Мало» - детям предлагают быстро выразить условными жестами (сильно разведенные ладони – много, ладони вместе – мало, друг над другом - достаточно) свое отношении к услышанным фразам, типа: «Одна нога для всех людей – это…», «Ведро воды для слона – это…», «Ведро воды для воробья – это…» и так далее.
  • «Хорошо-Плохо» - дети отвечают на вопрос почему это хорошо или плохо применительно к одной и той же ситуации, причем ситуации постепенно вытекают одна из другой. Например, сладкие конфеты – это хорошо и вкусно, но еще и плохо, так как от этого могут заболеть зубы. Заболели зубы – это хорошо, так как это сигнал, что пора идти к врачу, но и плохо, так как можно пойти к врачу и заранее… и так далее.
  • «Разбежались» - группе детей предлагают быстро разбежаться по сторонам по какому-либо признаку, который называет воспитатель. Например, у кого одежда с карманами – направо, а у кого без карманов – налево; кого привел в садик папа – направо, кого не папа – налево.

В рамках данной статьи мы смогли изложить лишь самые общие моменты теории изобретательских задач. Чтобы познакомиться с этой системой поближе, вы можете прочитать одну из многочисленных книг по ТРИЗ, тем более, что это в большинстве случаев не только познавательное, но и увлекательное чтение. В качестве обязательных к прочтению книг мы можем рекомендовать вам:

  • «Творчество как точная наука» Альтшуллер Г.С.;
  • «Колобок и все-все-все, или Как раскрыть в ребенке творца» Шустерман З.Г., ШУстерман М.Н.;
  • «Основы классической ТРИЗ. Практическое руководство для изобретательного мышления» Орлов М.;
  • «Принципы выживания, или Теория творчества на каждый день» Кизевич Г.;
  • «Новые приключения колобка или Наука думать для больших и маленьких» Шустерман З.Г.;
  • «И тут появился изобретатель» Альтов Г.;
  • «Денис-изобретатель. Книга для развития изобретательских способностей детей младших и средних классов» Иванов Г.И.;
  • «Как стать гением: Жизненная стратегия творческой личности» Альтшуллер Г.С., Верткин И.М.;
  • «ТРИЗ в детском саду» Гин.С.;
  • «Мир фантазии» серия книг;
  • «Мир загадок» серия книг.

Таким образом, ТРИЗ – это действенный эффективный метод, применяемый во всех сферах человеческой деятельности и для всех возрастов. Он позволяет системно подходит к решению задач, а также развивать критическое мышление. Дошкольный возраст – самое лучшее время для начала освоения такого способа мировосприятия, так как именно в этом возрасте закладываются основы будущих принципов взаимодействия человека и мира.

А напоследочек, ролик о том, как в петразоводском детском саду пользуются и активно внедряют методы ТРИЗ. Интересно)))

В реализации технологии ТРИЗ кружковое занятие - основная форма обучения т.к. эта форма определяет организацию обучения с группой учащихся постоянного состава и по твёрдому расписанию. Из разных видов занятий наиболее приемлемы комбинированные, т.к. они решают несколько педагогических целей: овладение новыми знаниями, формирование и совершенствование умений и навыков, обобщение и систематизация знаний.

Технология ТРИЗ (теория решения изобретательских задач) предполагает различные формы занятий с детьми: фронтальную, индивидуальную, групповую. Первая предполагает совместные действия всех учащихся объединения под руководством учителя. Вторая означает самостоятельную работу каждого обучающегося. Наиболее эффективной является организация групповой работы, когда в группе работают 4-7 человек или в парах. Задания для групп могут быть одинаковыми или разными. Результаты работы групп сообщаются и оцениваются. Состав групп может быть однородным по подготовке или неоднородным. Работа в группах стимулирует активность учеников, их взаимодействие, взаимообучение, создает психологический комфорт.

Методы обучения ТРИЗ (теория решения изобретательских задач)

Словесные методы

Из словесных методов обучения на занятиях по программе ТРИЗ используются: лекция, рассказ, объяснение, беседа, дискуссия, работа с книгой (для составления формально-логических моделей и матрицы идей).

Объяснение как монологическая форма изложения применяется при изучении теоретического материала различных наук, при раскрытии коренных причин и следствий в явлениях природы и общественной жизни, что обучающимся необходимо знать или вспомнить для решения той или иной задачи. Объяснение требует точного и чёткого формулирования задачи, сути проблемы, вопроса, последовательного раскрытия причинно-следственных связей, аргументации и доказательств, использования сравнения, сопоставления, аналогии, привлечения ярких примеров и безукоризненной логики изложения.

Беседа как диалогический метод обучения, при котором учитель путём постановки тщательно продуманной системы вопросов подводит учеников к пониманию нового материала, является главным словесным методом реализации целей технологии ТРИЗ. В ходе эвристической беседы учитель, опираясь на имеющиеся у учащихся знания и практический опыт, подводит их к пониманию и усвоению новых знаний, формулированию правил и выводов. При направляющей роли учителя беседы можно переводить в форму научной дискуссии. Таким формам дискуссий как «метод проб и ошибок» (МПиО), «мозговой штурм» (брейнсторминг) уделяется особое внимание, так как эти понятия входят в план обучения по теории решения изобретательских задач.

Работа с информационными источниками

При изучении технологии ТРИЗ используется ряд приёмов самостоятельной работы с информационными источниками. Основные из них: конспектирование, составление плана текста, цитирование (обязательно указываются выходные данные (автор, название работы, место издания, издательство, год издания, страница, номер авторского свидетельства или патента), аннотирование (краткое свернутое изложение содержания прочитанного без потери существенного смысла, рецензирование (написание краткого отзыва с выражением своего отношения о прочитанном), составление формально-логической модели - словесно-схематического изображения прочитанного, составление тематического тезауруса (упорядоченного комплекса базовых понятий по разделу, теме), составление матрицы идей (сравнительных характеристик однородных предметов, явлений в трудах разных авторов), составление справки (сведений о чем-нибудь, полученных после поисков). Справки делаются статические, биографические, терминологические (ТРИЗ требует знаний новой терминологии).

Наглядные методы обучения

Из наглядных методов обучения при изучении курса "ТРИЗ - теории решения изобретательских задач" предполагается показ обучающимся иллюстративных пособий (плакатов, таблиц, картин, репродукций предметов художественного творчества, зарисовок на доске и пр.).

Метод демонстраций предполагает демонстрацию приборов, опытов, технических установок, кинофильмов, презентаций и др., связанных с изучаемой темой и содержанием изобретательских задач. Для формулирования изобретательских задач следует привлекать самих учеников к нахождению желаемой информации при демонстрации преподавателем технического устройства, наглядного пособия, видеосюжета, биологического объекта и т.д.

Практические методы обучения

Из практических методов наибольшее значение приобретают упражнения - многократные выполнения действий с целью повышения их качества. Упор делается на упражнения умственных действий по определённому алгоритму (АРИЗ). Выбор формы упражнения (устное, письменное, графическое, учебно-трудовое) зависит от содержания изучаемой темы или решаемой задачи и превалирующей формы памяти ребёнка (зрительная, слуховая, механическая, логическая). Желательно перед началом изучения технологии ТРИЗ предложить детям (в игровой форме) выяснить их психологический тип с помощью психологических тестов (визуал, аудиал, кинестетик). Это поможет им выбирать оптимальные для себя методы решения изобретательских задач.

Устные упражнения способствуют развитию логического мышления, памяти, речи и внимания учащихся. Они отличаются динамичностью, не требуют затрат времени на ведение записей.

Письменные упражнения используются для закрепления знаний и выработки умений в их применении. Использование их способствует развитию логического мышления, культуры письменной речи, самостоятельности в работе. Письменные упражнения могут сочетаться с устными и графическими.

К графическим упражнениям по ТРИЗ относятся работы учащихся по составлению схем, чертежей, графиков, технологических карт, изготовление альбомов, плакатов, стендов, выполнение зарисовок. Всё это предусматривается содержанием технологии ТРИЗ. Применение их помогает учащимся лучше воспринимать, осмысливать и запоминать учебный материал, способствует развитию пространственного воображения. Графические работы в зависимости от степени самостоятельности учащихся при их выполнении могут носить воспроизводящий, тренировочный или творческий характер.

Особую роль в реализации технологии ТРИЗ приобретают проблемно-поисковые упражнения, которые формируют у учащихся способность к системно-логическому мышлению (тема «АРИЗ», «Вепольный анализ» и др.).

Лабораторные работы

Разновидностью исследовательских лабораторных работ могут быть длительные наблюдения учащихся за отдельными явлениями природы или эффектами различных дисциплин. В любом случае учитель составляет инструкцию, а ученики записывают результаты работы в виде отчетов, числовых показателей, графиков, схем, таблиц и т.д., которые используются в дальнейшем для изучения содержания технологии или для решения изобретательских задач.

Любой метод - лекцию, демонстрацию, практическую работу - можно построить традиционно и проблемно. Содержание технологии ТРИЗ в большинстве требует именно проблемного изложения, которое заключается в том, что учитель ставит проблему (задачу), показывает путь ее решения, а ученик усваивает логику решения.

Частично-поисковый метод включает учеников в решение проблемы, поставленной учителем, на отдельных этапах.

Исследовательский метод предполагает, что ученики под руководством учителя решают проблемы, организуют эксперимент и используют другие средства учебного поиска.

Активизация и интенсификация обучения означает также опору на эмоции и подсознание. С помощью приемов психологического тренинга, предложенных программой, активизируется восприятие, переработка, запоминание и применение информации.

Из интенсивных методов обучения технология ТРИЗ предусматривает использование обучающих дидактических игр, сущность которых - моделирование и имитация. В игре в упрощенном виде воспроизводится, моделируется действительность и операции участников, имитирующие реальные действия. Достоинства игры: изучаемый материал делается личностно значимым для ученика, формируется отношение к материалу; игра стимулирует творческое мышление; создает повышенную мотивацию к учению; формирует коммуникативные качества. Ограничения в применении игры: требует больших затрат учителя по разработке; часто игровой азарт победить заслоняет для ученика познавательные цели.

Кроме имитационных, возможно использование условно соревновательных игр (конкурсов, КВН, викторин, "Аукционов знаний" и т.п.). Их применение, помимо решения основной цели реализации технологии (развитие системно-логического мышления) развивают интерес к знаниям, формируют умения добывать знания, воспитывают коллективизм.

В ТРИЗ предусматривается использование научного метода оперирования с понятиями. Новые научные знания курса отражены в понятиях. Знание понятий говорит об усвоении основ изучаемой науки. Работа с педагогическими понятиями развивает понятийное, абстрактное, научное мышление, освобождает от бытового пересказа. Для овладения предметом выделены пять операций с понятиями:

  • Узнавание термина - отнесение его к определенной области знания.
  • Определение понятия - отнесение его к роду предметов и указание существенных признаков.
  • Раскрытие объема и содержания понятия (объем - перечень классов предметов, отраженных понятием; содержание - характеристика главных признаков).
  • Установление связей данного понятия с другими по принципу ниже, выше, рядом и отдельно стоящее понятие.
  • Практическая интерпретация понятия - раскрытие практических действий, отражаемых понятием.

Технология теории решения изобретательских задач придает большое значение знанию научной терминологии и рекомендует оформлять словарь терминов по изучаемому предмету.

Особое место при изучении темы «Место ТРИЗ в истории развития науки о творческом мышлении» приобретают методы развития творческого мышления (метод проб и ошибок (МПиО), мозговой штурм (брейнсторминг), синектика, ММЧ (метод маленьких человечков), эмпатия, морфологический анализ и ТРИЗ (теория решения изобретательских задач). Эти методы используются для решения поставленных педагогом задач, для их изучения уделяется специальное время.

Выбор методов обучения является делом творческим. Оптимизированное решение - опираясь на научные знания, педагог руководствуется критериями выбора методов. Критерии требуют, чтобы методы были адекватны целям и содержанию обучения, теме урока, уровню знаний, способностям, особенностям учеников, возможностям, подготовленности учителя, условиям и времени обучения.

Дидактический материал

Важнейшим средством обучения, закрепления и контроля по ТРИЗ является дидактический материал. Основным руководящим материалом для создания дидактического комплекса каждого занятия является содержание учебной технологии. В зависимости от темы теоретического занятия и содержания изобретательских задач технология предусматривает использование разных видов дидактического материала:

практического (стенды, макеты, тренажёры),

образного (видео- и фотоматериалы, слайды, электронные средства обучения)

понятийно-логического (учебно-технологические и инструкционные карты, учебники, справочники, схемы, диаграммы, таблицы, плакаты, репродукции, техническая документация (авторские свидетельства и патенты), программированные материалы).

Методы поиска решений технических задач, предшествовавшие АРИЗ и ТРИЗ, были малоэффективны и со временем это становилось всё более очевидным, их уровень не соответствовал уровню и темпам развития техники. Рассмотрим каждый из этих методов в отдельности.

Метод проб и ошибок

Обычно изобретательские задачи в первую очередь пытаются решить методом проб и ошибок, который любой человек осваивает с раннего детства через удачи и неудачи своего опыта. Этот метод применялся с самого начала возникновения технического творчества. История человечества - это история учёбы на собственных и чужих ошибках. Плата за промахи порою была очень высокой: получилась лодка лёгкой и быстрой, но неустойчивой - и испытатель утонул в бурном потоке или ледяной воде, не пробило новое копьё шкуру медведя - надейся на быстрые ноги и смекалку. Поэтому эволюция техники шла медленно, а достижения часто оплачивались многими жертвами.

Правил выдвижения идей у этого метода нет. Нет и определённых правил оценки идей: пригодна или не пригодна идея - об этом судят совершенно субъективно. Во многих случаях нет и субъективных критериев: приходится ставить эксперименты, на опыте определяя достоинства и недостатки того или иного варианта. Ранее вели перебор вариантов буквально наугад. По мере совершенствования технических знаний формировались представления о приемлемых и неприемлемых принципах. Сообразно этому некоторые варианты отбрасывали сразу, поскольку они казались в соответствии и имеющимся опытом нецелесообразными. Увеличение степени «фильтрации» идей - главная тенденция развития метода проб и ошибок. На выработку поисковой концепции сильное влияние оказывает специальность инженера, его личный опыт решения творческих задач.

Другая тенденция развития метода проб и ошибок - замена вещественных, экспериментов мысленными. Объём знаний современного инженера настолько велик, что результаты многих проб могут быть предсказаны заранее. При этом инженер может опираться не только на свой опыт, но и на научно-техническую литературу, может консультироваться с другими специалистами. Благодаря этому удаётся оценить большое количество вариантов решения задачи, не прибегая к опытам. Основное преимущество мысленных экспериментов - большая скорость, но они не сопровождаются побочными открытиями, обнаружением всевозможных непредвиденных явлений и эффектов.

Всё же со временем стали складываться определённые приёмы решения изобретательских задач: знакомство с опытом предшественников (позволяет наметить направление поиска решения); копирование природных прототипов, увеличение размеров и числа одновременно действующих объектов, объединение разнородных объектов в одну систему и т. п. Однако по мерс развития техники задачи становились всё сложнее, а количество их возрастало, и этих приёмов постоянно оказывалось мало.

В конце XIX в. применение метода проб и ошибок развивал Томас Эдисон. В его мастерской работало до тысячи человек, поэтому можно было разделить начальную техническую проблему, которая решалась на научном или изобретательском уровне, на несколько задач и по одной такой задаче дать отдельному маленькому коллективу или с помощью нескольких малых коллективов проверять разные варианты решения одной и той же задачи. Достаточно вспомнить, что для создания щелочного аккумулятора Т. Эдисону пришлось поставить порядка 50 000 опытов! Это только вещественных опытов, а мысленных экспериментов и всевозможных «а если сделать так?» наверняка было значительно больше.

> Томас Эдисон - крупнейший изобретатель и одновременно предприниматель. Жил в США (11.02.1847 г. - 18.10.1931 г.), является автором более 1000 изобретений, среди которых биржевой телеграф (1869 г.), угольная телефонная мембрана (1870 г.), пишущая машинка (1872 г.), фонограф (1977 г.), лампа накаливания (1880 г.), электросчетчик (1881 г.), кинетоскоп (1891 г.), кинокамера (1895 г.), щелочной аккумулятор (1900 г.). Т. Эдисон являет собой пример предприимчивого изобретателя, лозунг которого «Не стоит изобретать то, что нельзя применить на практике». Один из основоположников крупнейшей компании «General Electric».

В наше время, время быстроразвивающсйся сложной техники, авторы неудачных проб не расплачиваются жизнями, но подобно Эдисону тратят большие государственные средства, средства фирм и обществ или расплачиваются своим временем, а подчас и здоровьем.

Работать методом проб и ошибок в XXI в. - это анахронизм, но метод очень живуч, и существует потому, что о других многие не знают или не хотят тратить время на изучение. Учиться же методу проб и ошибок не нужно. К чему приводят неудачные пробы можно показать и на современных примерах.

В первую мировую войну стратеги Антанты решили внедрить абсолютную защиту своих морских коммуникаций от немецких подводных лодок. Была изобретена система минирования вод Балтийского и Северного морей. Изготовили несколько сотен тысяч безотказных мин, израсходовали на них многие миллионы рублей. Однако на этих минах, по одним данным, подорвалась только одна немецкая подлодка, по другим - вообще ни одной. Лодки свободно плавали, где хотели. Ошибочной оказалась система минирования. За неудачную пробу (плохую систему) расплачивались русские, английские, французские корабли, которые страдали от немецких подводных лодок.

Другой пример. Фармацевтические фирмы ФРГ и США не один раз на рынки выбрасывали неудачные новые лекарства и успокоительные препараты. Плата за неудачу - тысячи пострадавших граждан и их новорожденных больных детей.

Примеры можно бы приводить ещё и еще, но при чём тут метод проб и ошибок? Дело в том, что при современных высоких темпах технического прогресса метод проб и ошибок не справляется с генерацией нужного количества первоклассных идей. Он пригоден лишь для решения задач первого уровня и частично второго. Современные изобретатели, пользующиеся методом проб и ошибок, похожи на шофёра, отлично знающего теорию и материальную часть, но не желающего изучать правила дорожного движения. Современных студентов инженерных профилей обучают разнообразным наукам, кроме науки о развитии техники и самой науки, о методах творчества. Поэтому на некоторых кафедрах бурения был введён данный курс, хотя бы частично восполняющий пробел.

Существуют две принципиально отличные возможности перехода к новой технологии решения изобретательских задач:

  • - интенсифицировать метод проб и ошибок, используя различные приёмы для более активного генерирования вариантов;
  • - выявить законы развития технических систем и применить для выявления и решения изобретательских задач.

Первый путь сохраняет и углубляет метод проб и ошибок. По такому пути впервые пошёл Т. Эдисон. Второй путь предполагает замену перебора вариантов точными операциями, основанными на знании законов развития технических систем. К методам перебора вариантов относятся морфологический анализ, «мозговой штурм», синектика и десятки других методов.

Как форма , основанная на закреплении случайно совершённых двигательных и мыслительных , за счёт которых была решена значимая для животного . В следующих пробах время, которое затрачивается животным на решение аналогичных задач в аналогичных условиях, постепенно, хотя и не линейно, уменьшается, до тех пор, пока не приобретает форму мгновенного решения. Последующий проб и ошибок показал, что он не является полностью хаотическим и нецелесообразным, а интегрирует в себе прошлый опыт и новые условия для .

Достоинства и недостатки

Если рассматривать абсолютно случайный перебор вариантов, то можно сделать следующие выводы:

Достоинства метода:

  1. Этому методу не надо учиться.
  2. Методическая простота решения.
  3. Удовлетворительно решаются простые задачи (не более 10 проб и ошибок).

Недостатки метода:

  1. Плохо решаются задачи средней сложности (более 20—30 проб и ошибок) и практически не решаются сложные задачи (более 1000 проб и ошибок).
  2. Нет приёмов решения.
  3. Нет алгоритма мышления, процесс мышления не контролируется. Идет почти хаотичный перебор вариантов.
  4. Неизвестно, когда будет решение и будет ли вообще.
  5. Отсутствуют критерии оценки силы решения, поэтому неясно, когда прекращать думать. А вдруг в следующее мгновение придет гениальное решение?
  6. Требуются большие затраты времени и волевых усилий при решении трудных задач.
  7. Иногда ошибаться нельзя ИЛИ этот метод не подходит (человек не будет резать на бомбе провода наугад).

Считается, что для метода проб и ошибок выполняется правило — «первое пришедшее в голову решение — слабое». Объясняют этот феномен тем, что человек старается поскорее освободиться от неприятной неопределённости и делает то, что пришло в голову первым.

ТРИЗ

МПиО — аббревиатура, обозначающая метод проб и ошибок. Часто встречается в текстах, так или иначе связанных с . В ТРИЗ метод проб и ошибок рассматривается как эталон неэффективности. Для оценки какого-либо другого эвристического метода его сравнивают с МПиО. Так как МПиО — это метод перебора вариантов, то можно количественно определить число вариантов при использовании МПиО и сравнить с ним какой-либо другой . Такое математическое исследование предполагает, что количество необходимых вариантов обратно пропорционально эффективности метода и прямо пропорционально времени нахождения решения при его использовании. Однако точные количественные и статистические исследования проводятся редко. В ТРИЗ ограничиваются приблизительной количественной оценкой эффективности по уровням изобретательских задач (Ю. П. Саламатов).

Как точные, так и приблизительные количественные сравнения с МПиО возможны при допущении полной случайности перебора вариантов при использовании МПиО. В рамках ТРИЗ такая точка зрения служит обоснованием неэффективности МПиО. Однако с другой стороны выбор вариантов не может быть полностью произвольным. Он ограничен предыдущим опытом, инерцией мышления, стереотипами и . На этом ставится акцент в рамках другой теории — . В рамках метасистематики основным недостатком МПиО считается фактическая неслучайность перебора вариантов.

См. также

Примечания

Литература

  • (1960: Second Edition). Design for a Brain . London: (англ.)
  • Jackson, Robert R.; Fiona R. Cross & Chris M. Carter (2006), "Geographic Variation in a Spider’s Ability to Solve a Confinement Problem by Trial and Error ", International Journal of Comparative Psychology Т. 19: 282-296, . Проверено 9 февраля 2018.
  • Jackson, Robert R.; Chris M. Carter & Michael S. Tarsitano (2001), "Trial-and-error solving of a confinement problem by a jumping spider, Portia fimbriata ", (англ.) (Leiden: Koninklijke Brill) . — Т. 138 (10): 1215-1234,

Задав вопрос «Является ли профессия аналитика творческой (креативной)?», я получил следующие ответы:

50% опрошенных ответили – Конечно, да!

25% ответили – Да, конечно!

25% — это еще один парень, который ответил: «Не знаю». (Правда, потом он объяснил, что не расслышал вопроса, и подумал, что я спросил: «Какой счет в последнем матче «Арсенала»?»)

Если бы на самом деле был проведен релевантный социологический опрос на эту тему, то, скорее всего, подавляющее большинство аналитиков ответило бы на этот вопрос утвердительно.

Но если бы был задан вопрос: «Должен ли быть аналитик изобретателем?», то утвердительных ответов было бы, скорее всего, меньше.

В данном обзоре представлена информация о Теории Решения Изобретательских Задач (ТРИЗ), а также изложены некоторые мысли о применении ТРИЗ в работе аналитиков. Возможно, познакомившись с ТРИЗ поближе, вы захотите изменить свой отрицательный ответ на вопрос об аналитике-изобретателе; а если вы ответили положительно, то лишний раз укрепитесь в своем мнении.

Проблемы и решения в инженерии требований

Упрощенно аналитический процесс можно представить так, как это показано на следующем рисунке.

Паттерны проектирования

Решения удовлетворяют требованиям
Экспертиза в предметной области Экспертиза в области ИТ решений

Решения 1-го рода порождают проблемы
Паттерны решения проблем

Решения удовлетворяют требованиям и не порождают проблем

Рисунок 1. Схема перехода от требований к решениям

Работа аналитика начинается со сбора и изучения требований. Чтобы не усложнять модель аналитического процесса, мы не будем рассматривать такие аспекты, как изучение границ системы, определение целей, знакомство с заинтересованными сторонами и т.п. С другой стороны, чтобы совсем не упрощать, мы не будем сводить аналитический процесс только к работе с требованиями.

Общую цель работы аналитика можно определить как превращение требований в решения. Бизнес-аналитик должен произвести бизнес-решения, соответственно, системный аналитик – ИТ-решения.

Решения, с которыми имеет дело аналитик, имеют разную природу.

Решения 1-го рода

Изучая литературу, наблюдая за работой других аналитиков, выполняя собственные проекты, аналитик накапливает опыт создания решений. Сталкиваясь с какой-то ситуацией, аналитик вспоминает похожую ситуацию и решение, которое в такой ситуации применялось.

Например, если заказчик хочет наладить канал продаж через Интернет, то аналитик сразу представляет, что необходимо создать Web-сайт, на котором будет размещаться витрина, система работы с заказами покупателей, возможно, платежная система.

В 70-х годах архитектор Кристофер Александр сформулировал идею: собрать и обобщить известные архитектурные решения. Архитекторы могли бы пользоваться такими решениями, как кубиками в известной детской игре. Позднее эта идея успешно прижилась в сфере разработки программного обеспечения в виде паттернов проектирования .

Те, кто сталкивался с разработкой программного обеспечения на платформах Microsoft, знакомы с MSDN – базой знаний, в которой накапливаются и хранятся различные известные решения для создания, тестирования и использования программного кода.

Шаблоны бизнес-процессов, примеры наилучших практик (best business practice), стандарты менеджмента, – все это источники известных решений.

Любой аналитик имеет свой «золотой запас» готовых решений и шаблонов (паттернов), которые он использует в своей практике.

Проблемы

Известное решение хорошо до тех пор, пока его применение не приводит к возникновению каких-либо проблем.

Например, разрабатывая систему работы с заказами покупателей, аналитик может столкнуться с ситуацией, когда длина списка товаров в заказе будет достаточно большой. (При покупке электронных компонентов список товаров в заказе может включать десятки и даже сотни позиций.) Если список будет достаточно длинным, то страница сайта не будет помещаться на одном экране – потребуется прокрутка экрана. В какой-то момент времени шапка страницы может исчезнуть с экрана; для возврата к шапке страницы потребуется прокручивать экран наверх. Такое решение может противоречить требованию заказчика – сделать простой и интуитивно понятный интерфейс с минимальным количеством прокруток экрана.

Проблемы возникают в тех случаях, когда известное решение не может удовлетворить каким-либо требованиям заказчика или других заинтересованных сторон.

Как часто аналитики, не находя подходящего решения в течение 5 минут, начинают искать компромиссы типа: разделим страницу на фреймы и все будет «Ок!»… наверное.

Решения 2-го рода

Решение 2-го рода – это новое решение, которое должен придумать аналитик, чтобы избавиться от возникших проблем. Другими словами, решение 2-го рода – это изобретение; а аналитик, который столкнулся с необходимостью искать решения 2-го рода – это изобретатель.

Метод проб и ошибок

Традиционно мы представляем изобретательскую деятельность как творческую, трудоемкую, плохо организованную, с непредсказуемым результатом. Сложившийся в отношении изобретательской деятельности стереотип основан во многом на представлении о том, что процесс поиска новых решений сводится к более или менее целенаправленному перебору вариантов возможных решений проблемы. Такой процесс имеет даже свое название – метод проб и ошибок (МПиО). Схематично этот процесс представлен на следующем рисунке.

Недостатки метода:

1. Плохо решаются задачи средней сложности (20-30 вариантов) и практически не решаются сложные (более 1000 вариантов).

2. Нет приёмов решения.

3. Нет алгоритма мышления, мы не управляем процессом думанья. Идет почти хаотичный перебор вариантов.

4. Неизвестно, когда будет решение и будет ли вообще.

5. Отсутствуют критерии оценки решения, поэтому неясно, когда прекращать думать. А вдруг в следующее мгновение придет гениальное решение?

6. Требуются большие затраты времени при решении трудных задач.

ВИ – вектор психологической инерции

ПК – поисковая концепция

Рисунок 2. Метод проб и ошибок

Аналитикам требуется более совершенная технология поиска решений 2-го рода: гарантировано, быстро и с минимальными затратами.

Теория Решения Изобретательских Задач

С подобным вызовом в середине XX века столкнулись инженеры, занимающиеся проектированием и созданием новых технических систем (от космических ракет до бытовых приборов). Ответом на этот вызов было создание Теории Решения Изобретательских Задач (ТРИЗ).

ТРИЗ был придуман Генрихом Сауловичем Альтшуллером (1926 – 1998) – советским инженером и писателем-фантастом – еще в 50-х годах прошлого века.

С середины 90-х годов ТРИЗ начинает использоваться для поиска решений в не-технических системах: биологических, социальных, информационных, управленческих и т.п.

Сегодня ТРИЗ широко распространен по всему миру. Более 100 университетов преподают ТРИЗ. Большинство крупнейших мировых компаний, входящих в список Fortune500, применяют ТРИЗ для проектирования и создания своих продуктов и услуг.

С биографией Г.С. Альтшуллера, а также историей ТРИЗ можно познакомиться .

Принципы ТРИЗ

ТРИЗ базируется на следующих двух принципах:

1. Технические системы развиваются по объективно существующим законам

Огромное количество фактов подтверждают этот принцип. А это означает, что изобретения, которые являются отдельными актами развития систем, не являются исключительно фантазией изобретателей. Здесь уместна аналогия с выстрелом и полетом пули: стрелок произвольно выбирает цель и нажимает на курок; пуля летит и попадает (или не попадает) в цель в соответствии с физическими законами инерции и гравитации.

Из этого принципа следует, что, познавая законы развития систем, мы можем научиться правильно изобретать.

В ТРИЗ определены некоторые законы развития технических систем (ЗРТС). Много материалов посвящено применению ЗРТС для решения изобретательских задач. Например,

Знание ЗРТС применяется для прогнозирования развития технических систем.

Особый интерес представляет закон повышения идеальности, который рассматривает развитие технической системы как процесс увеличения степени ее идеальности, которую можно представить следующим образом:

С экономической точки зрения факторы расплаты могут быть выражены как затраты на всех этапах жизненного цикла рассматриваемой системы: проектирование, производство, продажа, эксплуатация, ремонт, утилизация и т.д. Факторы расплаты включают в себя, в том числе, стоимость времени, необходимого для использования системы, чтобы получить желаемый результат.

Например, для того, чтобы отправить e- mail, необходимо ввести текст сообщения и адрес получателя. Функция рассматриваемой системы – отправка e- mail; а к факторам расплаты относится время, потраченное нами на ввод текста и выбор адреса из справочника.

Закон повышения идеальности определяет главное направление развития систем. Подтверждение этого закона мы можем наблюдать повсеместно в окружающем нас мире.

Другими примерами проявления закона повышения идеальности являются:

1. Современная технология печати по требованию (Print-on-Demand) позволяет избавиться от тиражей книг . Такие тиражи не надо печатать, хранить, перевозить.

2. Аренда приложений (SaaS) позволяет отказаться от приобретения приложений. Компаниям и организациям теперь не нужно приобретать компьютеры, строить и поддерживать сетевую инфраструктуру, содержать штат высококвалифицированных специалистов.

В одной из будущих статей из данного цикла будут подробно рассмотрены законы развития систем и идеи по их применению в работе аналитиков.

2. Для решения изобретательских задач необходимо выявить и разрешить противоречия

Второй принцип ТРИЗ определяет такое фундаментальное понятие как «противоречие».

Весь окружающий нас мир мы можем рассматривать как системы. (Пожалуй, отличительной особенностью аналитика как раз и является способность воспринимать окружающий мир как множество различных систем.)

Рассматривая хитросплетения отношений между объектами в системе, мы можем увидеть, что они очень часто сплетены так, чтобы разрешать какие-то противоречия.

Светофор на пешеходном переходе помогает разрешить противоречие: нужно, чтобы машины могли беспрепятственно двигаться по дороге; нужно, чтобы пешеходы могли безопасно пересекать дорогу. Если светофор разрешает противоречие во времени, то подземный (или надземный) пешеходный переход делает это в пространстве.

Или вот еще.

Задавая запрос для поиска информации в Интернете, мы можем получить огромное количество ссылок на Web-страницы, так или иначе имеющие отношение к нашему запросу. Сейчас количество информации в Интернете так велико, что мы физически не в состоянии даже бегло прочитать Web-страницы, касающиеся нашего запроса. Google выдает нам отсортированный список ссылок, где в начале списка располагаются ссылки на наиболее релевантные нашему запросу страницы. Google разрешает противоречие: нужно просмотреть много страниц; можно просмотреть мало страниц.

И наоборот, можно часто увидеть, как противоречия в системах не разрешены, а всего лишь «сглажены», замаскированы в виде компромисса между противоречивыми требованиями.

Второй принцип ТРИЗ указывает нам, что если мы хотим создавать и развивать (улучшать) системы, мы должны находить и устранять противоречия.

Структура ТРИЗ

На следующем рисунке схематично представлена структура ТРИЗ.

Рисунок 3. Структура ТРИЗ

С точки зрения паттернов ТРИЗ можно разделить на 2 части: паттерны выявления и решения проблем и паттерны мышления. Про паттерны, про отдельные инструменты ТРИЗ, а также про возможности применения ТРИЗ в ИТ и в анализе в частности вы узнаете в будущих статьях данного цикла статей про ТРИЗ.