По литературе

Виды теплопередачи теплопроводность конвекция излучение. Теплопроводность в твердой стенке. Изучение нового материала

Теплопередача - это важный физический процесс. Он предполагает перенос теплоты и является сложным процессом, который состоит из совокупности простых превращений.

Существуют определенные виды теплопередачи: конвекция, теплопроводность, тепловое излучение.

Особенности процесса

Теория теплообмена является наукой об особенностях передачи теплоты. Теплопередача - это перенос энергии в газообразных, жидких, твердых средах.

Теория о теплоте появилась в середине XVIII века. Ее автором стал М. В. Ломоносов, который сформулировал механическую теорию теплоты, воспользовавшись законом сохранения и превращения энергии.

Варианты теплообмена

Теплопередача - это составная часть теплотехники. Разные тела могут обмениваться своей внутренней энергией в форме теплоты. Вариант теплообмена является самопроизвольным процессом передачи теплоты в свободном пространстве, который наблюдается при неравномерном распределении температур.

Разность в значениях температур является обязательным условием проведения теплообмена. Распространение тепла происходит от тел, имеющих более высокую температуру, к телам, обладающим меньшим ее показателем.

Результаты исследований

Теплопередача - это процесс переноса тепла и внутри твердого тела, но при условии, что есть разность температур.

Многочисленные исследования свидетельствуют о том, что теплопередача ограждающих конструкций является сложным процессом. Для того чтобы упростить изучение сути явлений, связанных с передачей тепла, выделяют элементарные операции: кондукцию, излучение, конвекцию.

Теплопроводность: общая информация

Чаще всего используется какой вид теплопередачи? Переносом вещества внутри тела можно изменить температуру, например, нагревая металлический стержень, увеличить скорость теплового движения атомов, молекул, повысить показатель внутренней энергии, увеличить теплопроводность материала. По мере соударения частиц происходит постепенная передача энергии, в результате чего весь стержень меняет свою температуру.

Если рассматривать газообразные и жидкие вещества, то передача энергии путем теплопроводности в них имеет незначительные показатели.

Конвекция

Такие способы теплопередачи связаны с переносом теплоты при движении в газах или жидкостях из области с одним температурным значением в область с другим ее показателем. Существует подразделение конвекции на два вида: вынужденную и свободную.

Во втором случае происходит перемещение жидкости под воздействием разности в плотностях ее отдельных частей из-за нагревания. К примеру, в помещении от горячей поверхности радиатора холодный воздух поднимается вверх, получая от батареи дополнительное тепло.

В тех случаях, когда для перемещения тепла необходимо применение насоса, вентилятора, мешалки, ведут речь о вынужденной конвекции. Прогревание по всему объему жидкости в этом случае происходит существенно быстрее, нежели при свободной конвекции.

Излучение

Какой вид теплопередачи характеризует изменение температурного показателя в газообразной среде? Речь идет о тепловом излучении.

Именно оно предполагает перенос тепла в виде электромагнитных волн, подразумевающий двойной переход тепловой энергии в излучение, затем обратно.

Особенности передачи тепла

Для того чтобы проводить расчет теплопередачи, необходимо иметь представление о том, что для теплопроводности и конвекции нужна материальная среда, а для излучения в этом нет необходимости. В процессе теплообмена между телами наблюдается уменьшение температуры у того тела, у которого этот показатель имел большую величину.

На такую же точно величину повышается температура холодного тела, что подтверждает полноценный процесс обмена энергией.

Интенсивность теплообмена зависит от разности в температурах между телами, которые обмениваются энергией. Если она практически отсутствует, процесс завершается, устанавливается тепловое равновесие.

Характеристика процесса теплопроводности

Коэффициент теплопередачи связан со степенью нагретости тела. Температурным полем называют сумму показателей температур для разных точек пространства в определенный момент времени. При изменении значения температуры в единицу времени поле является нестационарным, для неизменной величины - стационарным видом.

Изотермическая поверхность

Независимо от температурного поля, всегда можно выявить точки, имеющие одинаковое температурное значение. Геометрическое расположение их образует определенную изотермическую поверхность.

В одной точке пространства не допускается одновременного нахождения двух разных температур, поэтому изотермические поверхности не могут пересекаться между собой. Можно сделать вывод о том, что изменение в теле значения температуры проявляется лишь в тех направлениях, которые пересекают изотермические поверхности.

Максимальный скачок отмечается в направлении нормали к поверхности. Температурный градиент представляет собой отношение наибольшего показателя температур к промежутку между изотермами и является векторной величиной.

Он показывает интенсивность изменения температуры внутри тела, определяет коэффициент теплопередачи. То количество теплоты, которое будет переноситься через любую изотермическую поверхность, называют тепловым потоком.

Под его плотностью подразумевают отношение к единице площади самой изотермической поверхности. Эти величины являются векторами, противоположными по направлению.

Закон Фурье

Он является основным законом теплопроводности. Суть его заключается в пропорциональности плотности теплового потока градиенту температуры.

Коэффициент теплопроводности характеризует способность тел пропускать теплоту, он зависит от физических свойств вещества и его химического состава, влажности, температуры, пористости. Влага при заполнении пор стимулирует повышение теплопроводности. При высокой пористости внутри тела содержится повышенное количество воздуха, что сказывается на уменьшении показателя теплопроводности.

Определенный коэффициент сопротивления теплопередаче есть у всех материалов, найти его можно в справочниках.

Теплопроводность в твердой стенке

В качестве обязательного условия для данного процесса считается разность температур поверхностей стенки. В такой ситуации образуется поток теплоты, который направлен от стенки с большим значением температуры к поверхности стенки с небольшой температурой.

По закону Фурье тепловой поток будет пропорционален площади стенки, а также температурному напору, и обратно пропорционален толщине этой стенки.

Приведенное сопротивление теплопередаче зависит от теплопроводности материала, из которого изготовлены стенки. Если они включают в себя несколько разных слоев, их считают многослойными поверхностями.

В качестве примера подобных материалов можно назвать стены домов, где на кирпичный слой наносят внутреннюю штукатурку, а также внешнюю облицовку. В случае загрязнения наружной поверхности передающей тепловую энергию, к примеру, радиаторов либо двигателей, грязь можно рассмотреть как наложение нового слоя, имеющего незначительный коэффициент теплопроводности.

Именно из-за этого снижается теплообмен, возникает угроза перегревания работающего двигателя. Аналогичный эффект вызывает нагар и накипь. При увеличении количества слоев стенки растет ее максимальное термическое сопротивление, уменьшается величина теплового потока.

Для многослойных стенок распределение температуры является ломаной линией. Во многих теплообменных аппаратах осуществляется прохождение теплового потока через стенки круглых трубок. Если нагревающее тело движется внутри таких трубок, то в таком случае тепловой поток направлен к наружным стенкам от внутренних частей. При наружном варианте наблюдается обратный процесс.

Теплопередача: особенности процесса

Существует взаимодействие между тепловым излучением, конвекцией, теплопроводностью. Например, в процессе конвекции происходит тепловое излучение. Теплопроводность в пористых материалах невозможна без излучения и конвекции.

При проведении практических вычислений деление сложных процессов на отдельные явления не всегда целесообразно и возможно. В основном результат суммарного воздействия нескольких простейших явлений приписывают тому процессу, который считается основным в конкретном случае.

Второстепенные процессы при таком подходе учитывают только для количественных вычислений.

В современных теплообменных аппаратах происходит передача теплоты от одного вида жидкости к другой жидкости через стенку, которая их разделяет. Важным фактором, который влияет на коэффициент теплообмена, является форма стенки. Если она плоская, в таком случае можно выделить три этапа теплопередачи:

  • к поверхности стенки от нагревающей жидкости;
  • теплопроводностью через стенку;
  • к нагреваемой жидкости к поверхности стенки.

Полное термическое сопротивление теплопередачи является величиной, которая обратна коэффициенту теплопередачи.

Заключение

Теплопроводность является процессом передачи внутренней энергии от нагретых участков тела к его холодным частям. Подобный процесс осуществляется с помощью беспорядочно движущихся атомов, молекул, электронов. Такой процесс может происходить в телах, которые имеют неоднородное распределение значений температур, но будет отличаться в зависимости от агрегатного состояния рассматриваемого вещества.

Можно рассматривать данную величину в качестве количественной характеристики способности тела к провождению тепла. Удельной теплопроводностью называют количество тепла, которое может проходить через материал, имеющий толщину 1м, площадь 1 м²/сек.

Долгое время считали, что существует взаимосвязь между передачей тепловой энергии и перетеканием от тела к телу теплорода. Но после проведения многочисленных экспериментов была выявлена зависимость подобных процессов от температуры.

В реальности при проведении математических расчетов, касающихся определения количества теплоты, передаваемой разными способами, учитывают проводимость путем конвекции, а также проникающее излучение. Коэффициент теплопередачи связан со скоростью передвижения жидкости, характером движения, его природой, а также с физическими параметрами движущейся среды.

В качестве носителей лучистой энергии выступают электромагнитные колебания, имеющие разную длину волн. Излучать их могут любые тела, температура которых превышает нулевое значение.

Излучение является результатом процессов, происходящих внутри тела. При попадании его на другие тела наблюдается частичное ее поглощение и частичное поглощение телом.

Закон Планка определяет зависимость плотности поверхностного потока излучения черного тела от абсолютной температуры и длины волны.

Простейшие виды теплообмена, которые были рассмотрены выше, не существуют по отдельности, они взаимосвязаны друг с другом. Сочетание их является сложным теплообменом, который предполагает серьезное изучение и детальное рассмотрение.

В теплотехнических расчетах используют суммарный коэффициент передачи тепла, который представляет собой совокупность коэффициентов теплоотдачи соприкосновением, которое учитывает теплопроводность, конвекцию, излучение.

При правильном подходе и учете отдельных тепловых явлений можно с высокой достоверностью рассчитать количество теплоты, переданное телу.

Теплообмен - это процесс изменения внутренней энергии без совершения работы над телом или самим телом.
Теплообмен всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой .
Когда температуры тел выравниваются, теплообмен прекращается.
Теплообмен может осуществляться тремя способами:

  1. теплопроводностью
  2. конвекцией
  3. излучением

Теплопроводность

Теплопроводность - явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.
Наибольшей теплопроводностью обладают металлы - она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец , но и здесь теплопроводность в десятки раз больше, чем у воды.
При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.
Нагревание кастрюли на электрической плитке происходит через теплопроводность.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью .
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность .
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.
Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь .
Теплопроводность у различных веществ различна.
Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность - это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения.

Конвекция

Конвекция - это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.
Пример явления конвекции : небольшая бумажная вертушка, поставленная над пламенем свечи или электрической лампочкой, под действием поднимающегося нагретого воздуха начинает вращаться. Это явление можно объяснить таким образом. Воздух, соприкасаясь с теплой лампой, нагревается, расширяется и становится менее плотным, чем окружающий его холодный воздух. Сила Архимеда, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, которая действует на теплый воздух. В результате нагретый воздух «всплывает», поднимается вверх, а его место занимает холодный воздух.
При конвекции энергия переносится самими струями газа или жидкости.
Различают два вида конвекции:

  • естественная (или свободная)
Возникает в веществе самопроизвольно при его неравномерном нагревании. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется.
  • вынужденная
Наблюдается при перемешивании жидкости мешалкой, ложкой, насосом и т. д.
Для того, чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу.
Конвекция в твердых телах происходить не может.

Излучение

Излучение - электромагнитное излучение, испускаемое за счет внутренней энергии веществом, находящимся при определенной температуре.
Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно черного тела, описывается законом Стефана - Больцмана.
Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.
Передача энергии излучением отличается от других видов теплопередачи: она может осуществляться в полном вакууме .
Излучают энергию все тела: и сильно нагретые, и слабо, например тело человека, печь, электрическая лампочка и др. Но чем выше температура тела, тем больше энергии передает оно путем излучения. При этом энергия частично поглощается этими телами, а частично отражается. При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.
Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. В то же время тела с темной поверхностью охлаждаются быстрее путем излучения, чем тела со светлой поверхностью. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в темном.

Предмет: Физика и астрономия

Класс: 8 рус

Тема: Теплопроводность, конвекция, излучение.

Тип урока: Комбинированный

Цель занятия:

Учебная: познакомить с понятием теплопередачи, с видами теплопередачи, объяснить, что передача теплоты при любом из видов теплопередачи всегда идет в одном направлении; что в зависимости от внутреннего строения теплопроводность различных веществ(твердых, жидких и газообразных) различна, что черная поверхность лучший излучатель и лучший поглотитель энергии.

Развивающая: развить познавательный интерес к предмету.

Воспитательная: воспитать чувство ответственности, способность грамотно и четко выражать свои мысли, уметь держать себя и работать в коллективе

Межпредметная связь: химия, математика

Наглядные пособия: 21-30 рисунки, таблица теплопроводности

Технические средства обучения: __________________________________________________

_______________________________________________________________________

Структура урока

1. О рганизация урока (2 мин.)

Приветствие учащихся

Проверка явки учащихся и готовности класса к уроку.

2. Опрос домашнего задания(15 мин) Тема: Внутренняя энергия. Способы изменения внутренней энергии.

3. Объяснение нового материала. (15 мин)

Способ изменения внутренней энергии при котором частицы более нагретого тела, имея большую кинетическую энергию, при контакте с менее нагретым телом передают энергию непосредственно частицам менее нагретого тела называют теплопередачей Существуют три способа теплопередачи: теплопроводность, конвекция и излучение.

Эти виды теплопередачи имеют свои особенности, однакопередача теплоты при каждом из них всегда идет в одном направлении:от более нагретого тела к менее нагретому . При этом внутренняя энергия более нагретого тела уменьшается, а более холодного –увеличивается.

Явление передачи энергии от более нагретой части тела к менее нагретой или от более нагретоготела к менее нагретому через непосредственный контакт или промежуточные тела называется теплопроводностью.

В твердом теле частицы постоянно находятся в колебательном движении, но не изменяют своего равновесного состояния. По мере роста температуры тела при его нагревании молекулы начинают колебаться интенсивнее, так как увеличивается их кинетическая энергия. Часть этой увеличившейся энергии постепенно передается от одной частицы к другой, т.е. от одной части тела к соседнтм частям тела и т.д. Но не все твердые тела одинаково передают энергию. Среди них есть так называемые изоляторы, у которых механизм теплопроводности происходит достаточно медленно. К ним относятся асбест, картон, бумага, войлок, нранит, дерево, стекло и ряд других твердых тел. Большую теплопроводность имеют медб, серебро. Они являются хорошими проводниками тепла.

Ужидкостей теплопроводность невелика. При нагревании жидкости внутренняя энергия переносится из более нагретой области в менее нагретую при соударениях молекул и частично за счет диффузии: юолее быстрые молекулы проникают в менее нагретую область.

Вгазах, особенно в разреженных, молекулы находятся на достаточно больших расстояниях друг от друга, поэтому их теплопроводность еще меньше, чем у жидкостей.

Совершенным изолятором является вакуум , поптому что в нем отсутствуют частицы для передачи внутренней энергии.

Взависимости от внутреннего состояния теплопроводность разных веществ(твердых, жидуих и газообразных) различна.

Теплопроводность зависит от характера переноса энергии в веществе и не связана перемещением самого вещества в теле.

Известно, что теплопроводность воды мала, и при нагревании верхнего слоя воды нижний слой остается холдным. Воздух еще хуже, чем вода, проводит тепло.

Конвекция - это процесс теплопередачи, при котором энергия переносится струями жидкости или газа.Конвекция в переводе с латинского означает «перемешивание». Конвекция отсутствует в твердых телах и не имеет места в вакууме.

Широко используемая в быту и технике ковекция является естественной или свободной .

Когда для равномерного перемешивания жидкостей или газов их перемешивают насосом или мешалкой конвекция называется вынужденной.

Теплоприемник –это прибор, представляющий собойплоскую цилиндрическую емкость из металла, одна сторона которой черная, а другая блестящая. Внутри нее имеется воздух, который при нагревании может расширяться и выходить наружу через отверстие.

В случае, когда теплота передается от нагретого тела к теплоприемнику с помощью невидимых глазом тепловых лучей вид теплопередачи называется излучением или лучистым теплообменом

Поглощением называетсяпроцесс превращения энергии излучения во внутреннюю энергию тела

Излучением (или лучистым теплообменом)- называется процесс передачи энергии от одного тела к другому с помощью электромагнитных волн.

Чем больше температура тела, тем выше интенсивность излучения. Передача энергии излучением не нуждается в среде: тепловые лучи могут распространяться и через вакуум.

Черная поверхность -лучший излучатель и лучший поглотитель, а затем следуют грубая, белая и полированная поверхности.

Хорошие поглотители энергии- хорошие излучатели, а плохие поглотители- плохие излучатели энергии.

4. Закрепление : (10 мин) вопросы для самопроверки, задания и упражнения

ные задания:1)Сравнение теплопроводности металла и стекла, воды и воздуха, 2)Наблюдение конвекции в жилом помещении.

6. Оценка знаний учащихся.(1 мин)

Основная литература: Физика и астрономия 8 класс

Дополнительная литература: Н. Д. Бытько «Физика» части 1 и 2

Теплопередача - это один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы.

Существует 3 вида теплопередачи:

Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними.
Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому.

Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене.
Это является частным случаем закона сохранения энергии.

ИНТЕРЕСНО

Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма!

Теплопроводность - это перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела.
Не сопровождается переносом вещества!

Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов.
Теплопроводность различных веществ разная.
Металлы обладают самой высокой теплопроводностью,

причем у разных металлов теплопроводность отличается.

Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости.

При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.
Интересно, что можно было бы поднести руку почти вплотную к пламени, например, газовой горелки (температура больше 1000 градусов) и не обжечь ее, если бы …

А что если бы?

Газ, как правило, очень плохой проводник тепла, поэтому достаточно было бы лишь небольшой прослойки воздуха между рукой и пламенем. Но!
Но существует такое явление, как конвекция в газах, поэтому вблизи пламени руку сильно жжет.

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

Знаешь ли ты, что...

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
Это не сказка, не фантастика!
Такой проект реально разработан и испытан!

Итальянские ученые изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Ученые обещают, что летом в ней не будет жарко, а зимой – холодно, поскольку она сшита из специальных материалов. Подобные материалы уже используются при космических полетах.

В старых пулеметах "Максим" нагревание воды предохраняло оружие от расплавления.

На кухне, поднимая посуду, наполненную горячей жидкостью, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все прмежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной - водой. Смотри, не обожгись!

Огонь в решете

Явление, о котором рассказано ниже демонстрирует свойство металлов хорошо проводить тепло.
Если изготовить сетку из проволоки, обеспечив хорошее соединение металла в местах перекрещивания проволоки, и поместить ее над газовой горелкой, то можно при включенном вентиле поджечь газ над сеткой, в то время как под сеткой он гореть не будет. А если зажечь газ под сеткой, то наверх через сетку огонь « не просочится»!

В те времена, когда еще не было электрических шахтерских лампочек, пользовались лампой Дэви.
Это была свеча, «посаженная» в металлическую клетку. И даже, если шахта наполнялась легковоспламеняющимися газами, лампа Дэви была безопасна и не вызывала взрыва - пламя не выходило за пределы лампы,благодаря металлической сетке.

Положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало - холоднее.
Почему?
Ведь температура окружающего воздуха одинаковая!
Стекло - хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет "отбирать" от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет, нагреваясь, "отбирать" тепло у руки, но медленнее, поэтому и покажется теплее.


ДОМАШНИЕ ОПЫТЫ

Оберните толстый гвоздь или металлический стержень полоской бумаги в один слой. Подержите над пламенем свечи до момента возгорания, засеките время. Объясните, почему бумага загорелась не сразу.

Используйте свои руки как термодатчики – обследуйте окружающие вас предметы. Найдите самые холодные на ощупь, сделайте вывод об их теплопроводности. По своим ощущениям составьте список веществ, обладающих разной теплопроводностью, от самой хорошей до самой плохой.

Подберите ложки из разных материалов (алюминиевую, мельхиоровую, стальную, деревянную и т.д.). Опустите их наполовину в сосуд с горячей водой. Через 1–2 мин проверьте, одинаково ли нагрелись их ручки. Проанализируйте результат.

Приготовьте три одинаковых кусочка льда, один из них заверните в фольгу, второй – в бумагу, третий– в вату и оставьте на блюдцах в комнате. Определите время полного таяния. Объясните разницу.

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч,затем проверьте сохранность льда. Объясните наблюдаемое состояние. Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.


ЗАДАЧИ ДЛЯ УМЕЮЩИХ ДУМАТЬ

(или " покумекаем"?)

1. Какая почва прогревается солнцем быстрее: влажная или сухая? Почему?

2. Почему толстый человек в холодной воде меньше мерзнет, чем худой?

3. Человек не чувствует прохлады на воздухе при температуре 20 градусов Цельсия, но в воде мерзнет при температуре 25 градусов Цельсия. Почему?

4. Если зимой к замерзшему стеклу(покрытому инеем) трамвая или автобуса приложить на одинаковое время палец, а другим пальцем прижать монету, то площадь оттаивания под монетой окажется больше.
Почему?

Цели:

  • повторить способы изменения внутренней энергии;
  • актуализировать личностный смысл учащихся к изучению темы;
  • способствовать развитию умения сопоставлять факты;
  • создавать условия для повышения интереса к изучаемому материалу;
  • развивать исследовательские и творческие навыки;
  • помочь учащимся осмыслить практическую значимость, полезность приобретаемых знаний и умений;
  • создавать условия для развития навыков общения и совместной деятельности.

Демонстрации:

  • №1. Перемещение тепла по металлическому стержню
  • №2. Перемещение тепла по стержням из разных металлов
  • №3. Шевеление бумаги электрического султана над включенной плиткой
  • №4. Нагревание марганца в колбе с водой
  • №5. Естественная и вынужденная конвекции
  • №6. Взаимодействие источника излучения с теплоприемником.

Ход урока

1. Организационный момент. (подравнялись, здравствуйте, садитесь)

На столе: дневник, тетрадь, учебник, ручка, карандаш, линейка. Сели правильно, слушаем внимательно.

Цель урока - повторить домашнее задание, познакомиться с видами теплообмена и объяснить их на основе молекулярно-кинетической теории(знаний о внутреннем строении вещества) и применить полученные знания на практике.

2. Проверка домашнего задания (фронтальный опрос).

1. Устно проверяется №921 Л.

2. Экспериментальное задание №1, стр.10.

3. Способы изменения внутренней энергии тела на примерах.

Учитель: Открыли тетради, записали число и тему урока “Виды теплообмена: теплопроводность, конвекция, излучение”.

3. Изучение нового материала.

Итак, сегодня на уроке мы познакомимся с тремя видами теплообмена.

План изучения вида теплообмена.

1. Определение;

2. Особенности;

3. Где и как можно наблюдать;

4. Использование на практике, учет.

(На этапе актуализации знаний ставится проблемная ситуация.)

Учитель: (дает нескольким учащимся попробовать на ощупь ножницы и карандаш).

Они имеют одинаковую температуру, т.к. давно находятся в классе.

Почему на ощупь ножницы холоднее, чем карандаш?

Ученик: (версий выдвигается много, но чаще неверные).

Учитель: Почему красиво оформленные радиаторы отопления не помещают в комнате у потолка?

Ученик: (на этот вопрос 1-2 учащихся дают верный ответ).

Учитель: Почему в жаркий солнечный летний день мы надеваем легкую, и светлую одежду, закрываем голову светлой шляпой, панамой и т.д.?

Ученик: (версий тоже много, но редко - правильная).

Учитель: Чтобы ответить правильно на эти и другие интересные вопросы обратимся к опытам. В тетради запишите первый вид теплообмена. Обратите внимание на план изучения видов теплообмена, который находится на экране.

Теплопроводность.

Демонстрация опыта №1: стальной стержень со спичками на пластилине нагреваем с одного конца.

Учитель: Что будет происходить? Как передается тепло? Меняется форма стержня?

Происходит бурное обсуждение этих вопросов и в результате учащиеся сами дают определение теплопроводности, записывают в тетрадь.

Теплопроводность - это вид теплообмена, при котором энергия передается частицами, имеющими большую энергию, частицам, имеющим меньшую энергию (от нагретой части тела к холодной).

Учитель: Далее выясняем, как она происходит? (Учитель привлекает учащихся к выяснению этого вопроса с точки зрения внутреннего строения тел. Результат обсуждения: частицы передают энергию в результате теплового движения и взаимодействия частиц (записывается учащимися в тетрадь).

Демонстрация опыта № 2: нагреваем 2 стержня: стальной и медный одновременно.

Учитель: Вещества разные. Одинаково ли они передают тепло? В процессе опыта они видят, что медь нагревается быстрее, чем железо. Результат этих двух опытов позволяет вместе сформулировать особенности этого вида теплообмена, с записью в тетрадь.

Особенности:

1) само вещество не переносится;

2) разные вещества имеют разную теплопроводность

(у металлов – хорошая; у жидкостей – мала; у газов – почти нет)

Учитель: Давайте ответим на вопрос, прозвучавший в начале урока. Почему на ощупь ножницы холоднее, чем карандаш?

Ученик: теплопроводность металла больше, он быстрее забирает тепло от руки, поэтому мы ощущаем прохладу.

Учитель: А где на практике используются полученные нами знания? Найдите ответ на стр.13.

Учитель: записываем второй вид теплообмена.

2. Конвекция.

Демонстрация опыта №3: включенная электрическая плитка, сверху к которой подносят электрический султан.

Учитель: Почему бумага шевелится? В результате обсуждения – вывод: нагретый воздух поднимается вверх (всплывает по закону Архимеда) и шевелит бумагу.

Демонстрация опыта №4: колба с водой и крупинкой марганца нагревается снизу.

Учитель: Что наблюдаем? Учащиеся четко видят, что нагретые подкрашенные слои жидкости поднимаются вверх, и их место занимают холодные. Так что же такое конвекция?

Ученик: Конвекция – это вид теплообмена, при котором тепло переносится самими струями газа или жидкости.

Учитель: запишите в тетрадь.

Демонстрация опыта №5: одна колба с водой и крупинкой марганца нагревается сама, а другая нагревается и постепенно перемешивается.

Учитель: Чем они отличаются? В обоих происходит конвекция. Так чем? В результате обсуждения делается вывод, записывается в тетрадь.

Ученик: их 2 вида: естественная и вынужденная.

Учитель: Какие особенности вы увидели?

Ученик:

1) само вещество переносится;

2) существует только в жидкостях и газах, ее нет в твердых телах,

3) чтобы она происходила, нагревать нужно снизу.

Учитель: Запишите особенности в тетрадь. Мы с вами подошли к ответу на второй вопрос: “Почему красиво оформленные радиаторы отопления не помещают в комнате у потолка?”

Ученик: Нагревание воздуха в комнате происходит в результате конвекции, а чтобы она происходила, нагревать нужно снизу, значит, радиаторы отопления должны быть внизу, под окном, т.е. в самом холодном месте комнаты.

Демонстрация опыта №6: включенная электрическая плитка, к которой сбоку подносится теплоприемник, соединенный с жидкостным манометром.

Учитель: Что наблюдаем? Почему изменился уровень воды в манометре?

Ученик: Воздух в теплоприемнике нагрелся, расширился, в этом колене манометра жидкость опустилась, а в другом поднялась.

Учитель: Каким способом нагрелся воздух в теплоприемнике? Есть здесь теплопроводность? Конвекция?

Ученик: Теплопроводности нет, т.к. между ним и плиткой есть воздух, а у него очень маленькая теплопроводность. Конвекции тоже нет, т.к. теплоприемник не над плиткой, а рядом с ней.

Учитель: Это действительно новый вид теплообмена- излучение (лучистый теплообмен).

Примером являются солнечные лучи и тепловые лучи, испускаемые нагретыми телами. Записали в тетрадь третий вид теплообмена.

Излучение - это теплообмен, при котором энергия переносится электромагнитными лучами.

Особенности:

1) излучают все нагретые тела (твердые, жидкие, газообразные),

2) происходит в вакууме,

3) зависит от цвета поверхностей (темная поверхность лучше излучает и поглощает тепло, светлая- наоборот).

Теперь мы с вами можем ответить на вопрос, поставленный в начале урока:

“Почему в жаркий солнечный летний день мы надеваем легкую и светлую одежду, закрываем голову светлой шляпой, панамой и т.д.?”

Идет обсуждение вопроса и делается вывод.

Ученик: Одежда светлого цвета меньше нагревается в жаркий солнечный летний день, и нам не так жарко.

Учитель: А где на практике используются полученные нами знания? Найдите ответ на стр.17, последний абзац и далее.

Выясняется практическое применение веществ с разной теплопроводностью.

Учащиеся осмысливают практическую значимость, полезность приобретаемых знаний.

3. Домашнее задание.

Желающие ученики могут подготовить к следующему уроку небольшие сообщения о применении теплообмена в природе и технике (“Виды теплопередач в быту, в авиации, в сельском хозяйстве” и др.); №979 из сборника задач В.И. Лукашика, Е.В. Ивановой.

4. Закрепление изученного материала.

Учитель: Закрепление изученного материала (упражнение 1(1) , 2(1), 3(1) по учебнику А.В Перышкина).

Подведение итогов работы на уроке:

  • Все ли было на уроке понятно?
  • Было ли на уроке интересно?
  • Усвоена ли тема урока?

Учитель: Если вопросов нет, то решаем тест.(3 вариант- “3”)