9 класс

Закон архимеда год открытия. Как был открыт закон Архимеда? Интересные факты и легенды из жизни и смерти Архимеда

Архимед (287 до н.э. - 212 до н.э.) родился в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку. После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца.

В теоретическом отношении труд этого великого ученого был блистателен. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении «Параболы квадратуры» Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления.

В труде «Об измерении круга» Архимед впервые вычислил число «пи» - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.

Любопытен отзыв Цицерона, великого оратора древности, увидевшего «архимедову сферу» - модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».

Архимед проверяет и создает теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это - рычаг («Дайте мне точку опоры, - говорил Архимед, - и я сдвину Землю»), клин, блок, бесконечный винт и лебедка.

Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие.

Великий сиракузец изучал эти силы и изобретал новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, статика, а также гидростатика.

Учение о гидростатике Архимед развивает в труде «О плавающих телах». «Предположим, - говорит ученый, - что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-нибудь другим». Полагаясь на это положение, Архимед математически доказывает, что следующие ниже «следствия» полностью объясняются с помощью приведенной гипотезы:

«1) Тела, равнотяжелые с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости, и не будут двигаться вниз.

2) Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью жидкости.

3) Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погруженной [части тела], имел вес, равный весу всего тела.

4) Тела, более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела.

5) Тела, более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела».

Пункт 5 содержит фактически общеизвестный закон Архимеда, открытие которого позволило ему, согласно преданию, осуществить проверку состава короны сиракузского царя Гиерона. Знаменитый рассказ о первом практическом применении Закона Архимеда приведен у древнеримского автора Витрувия в его труде «Об архитектуре»:

«…Исходя из своего открытия, он, говорят, сделал два слитка, каждый такого же веса, какого была корона, - один из золота, другой из серебра. Сделав это, он наполнил водой сосуд до самых краев и опустил в него серебряный слиток, и вот, какой объем слитка был погружен в сосуд, соответственное ему количество вытекло воды. Вынув слиток, он долил в сосуд такое количество воды, на какое количество стало там ее меньше, отмеряя вливаемую воду секстарием, чтобы, как и прежде, сосуд был наполнен водой до самых краев. Так отсюда он нашел, какой вес серебра соответствует какому определенному количеству воды.

Произведя такое исследование, он после этого таким же образом опустил золотой слиток в полный сосуд. Потом, вынув его и добавив той же мерой вылившееся количество воды, нашел на основании меньшего количества секстариев воды, насколько меньший объем занимает слиток золота по сравнению с одинаково с ним весящим слитком серебра. После этого, наполнив сосуд и опустив в ту же воду корону, нашел, что при погружении короны вытекло больше воды, чем при погружении золотой массы одинакового с ней веса; и таким образом на основании того заключения, что короной вытеснялось большее количество воды, чем золотым слитком, он вскрыл примесь в золоте серебра и обнаружил явное воровство поставщика».

«В этом рассказе, - отмечает Я.Г. Дорфман, - убедительно лишь заключение Архимеда о том, что корона состоит из сплава, а не из чистого золота. Но ниоткуда не следует, что второй компонентой было обязательно серебро. Во всяком случае, следует отметить, что это выдающееся открытие Архимеда знаменует собой первое в истории применение физического измерительного метода к контролю и анализу химического состава без нарушения целостности изделия. Огромное практическое значение этого открытия в эпоху, когда еще никаких других методов подобного рода не было, естественно, привлекло к себе всеобщее внимание и стало предметом дальнейших исследований и практических использований на протяжении многих последующих веков.

По-видимому, и сам Архимед не ограничился описанным полукачественным экспериментом, а перешел к более точному количественному измерению. Автор арабского сочинения XII века «Книга о весах мудрости» ал-Хазини, цитируя «слово в слово» не дошедший до нас трактат грека Менелая, жившего во времена римского императора Домициана (81-96 гг. до н.э.), сообщает, что Архимед «изобрел механическое приспособление, которое благодаря своему тонкому устройству позволило ему определить, сколько золота и сколько серебра содержится в короне, не нарушая ее формы». Ал-Хазини приводит также схему устройства «весов Архимеда» с подвижным грузом.

Сравнивая на этом приборе веса упомянутых слитков в воде, Архимед мог с помощью подвижного груза определять численное отношение удельных весов золота и серебра, а, сопоставляя таким же способом веса короны и одного из этих слитков, мог установить относительное количество золота и серебра в короне (если в состав короны входили только эти два металла)».

Синезий из Кирэны в IV веке, ученик знаменитой александрийской ученой Ипатии, основываясь на принципах Архимеда, изобрел «гидроскоп» - ареометр для определения удельного веса жидкостей. Прибор, изготовленный из бронзы, имел насечки. По-видимому, этот прибор использовался для составления таблиц удельных весов различных жидкостей. К сожалению, подобные таблицы до нас не дошли.

По материалам книги «100 Великих Открытий»

Документальное видео о жизни Архимеда из проекта Энциклопедия

Великолепный математик, блестящий механик, инженер и талантливый астроном, автор удивительных гидростатических открытий и изобретений, которые более, чем на тысячу лет опередили свое время.

Дошедшие до нас сведения о древнегреческом ученом Архимеде в основном были оставлены не менее знаменитыми личностями: Титом Левием, Плутархом и Цицероном . Однако сегодня не представляется возможным определить их достоверность, так как все они жили гораздо позже описываемого времени.

Предположительно датой его появление на свет является 287 год до н. э. Он родился в Сиракузах – небольшой греческой колонии на Сицилии. Отец мальчика, Фидий, был одаренным математиком и астроном, именно его заслуга в том, что Архимед увлекся изучением этих предметов. Согласно версии Плутарха его семья по отцовской линии находилась в родстве с деспотом Сиракуз – Гиероном II.

Заметив выдающиеся способности сына, Фидий отправил его в Александрию Египетскую. Она считалась крупным сосредоточением науки, истории и культуры той эпохи. Знаменитая Александрийская библиотека славилась на весь мир уникальной книжной коллекцией, составляющей не менее 700 000 экземпляров.

Архимед углубленно изучает труды по геометрии известных древнегреческих авторов, в том числе работы Демокрита и Евдокса , что еще больше усиливает его интерес к точным знаниям. Здесь же он знакомится с научными светилами своего времени: астрономом Кононом и ученым Эратосфеном.

Окончив обучение, он вернулся на родину, где был встречен с почетом и особым вниманием. Став на Сицилии личным советником и приближенным правителя Гиерона, он не испытывал стеснения в денежных средствах и получал возможность свободно заниматься наукой.

Народная слава гениального ученого была, прежде всего, связана с его удивительными изобретениями, которые порою изумляли окружающих. Так, одна из легенд повествует о том, как ему было поручено определить содержание золота и серебра в короне Гиерона, так как тот подозревал придворного ювелира в обмане. И хотя удельный вес золота был известен, определить объем изделия, имевшего нестандартную форму, было очень трудно.

По преданию идея решения задачи пришла к нему во время купания. Он заметил, что объем вытесняемой жидкости идентичен объему его тела, находящегося в ванной. Это и позволило открыть ему базовый закон гидростатики: “Всякое тело при погружении в жидкость теряет в своем весе столько, сколько весит вытесненная им жидкость”.

Интересная история связана с постройкой им системы блоков для перемещения огромного корабля «Сиракузия», предназначавшегося Гиероном в дар Птолемею – царю Египта. Этот невероятно сложный труд он сумел осуществить единственным движением руки, сказав фразу, вошедшую в историю в сокращенном виде: «Дайте мне опору, и я переверну землю».

По свидетельствам биографов математика настолько сильно увлекала Архимеда, что порою, он даже забывал об элементарных потребностях, таких, как еда и сон. Ученый работал практически во всех математических областях, проводя исследования в геометрии, арифметике и алгебре. Ему удалось найти универсальный способ для нахождения площадей и объемов различных фигур на основе открытия Е. Книдского. Однако больше всего он гордился своими успешными исследованиями по определению поверхности и объема шара, приведенными позднее в труде «О шаре и цилиндре». Ученый даже завещал установить памятник в виде, шара, вписанного в цилиндр, на своей могиле, что и было исполнено впоследствии.

В одном из математических трудов «Об измерении круга» Архимед вывел известное отношение длины окружности к диаметру и дал приближенное значение для числа П, которое позже было названо «архимедовым числом». Удивительно, но исследования ученого значительно опередили свое время. Только в 17 - ом веке математики смогли осмыслить и развить идеи гения.

Всему миру известны его уникальные механические конструкции. Так, например, рычаг был известен и ранее, но только Архимед смог максимально улучшить его устройство и эффективно осуществлять практическое применение. В морском порту он сконструировал множество механизмов, предназначенных для упрощенного перемещения больших грузов. Придуманный им «архимедов винт» по сей день используется в Египте для вычерпывания значительных объемов воды.

В своем трактате «О равновесии плоских фигур» он на первых страницах приводит научное обоснование закона рычага, а работу «О плавании тел» начинает с доказательства важнейшего закона гидростатики и статики газов, впоследствии получившего его имя. Данные исследования делают его несомненным первопроходцем в сфере теоретической механики.

Кроме точных наук Архимед серьезно занимался астрономическими исследованиями, изучал проблемы расчета космических расстояний. Он сконструировал и построил модель «небесной сферы», наблюдая за которой можно было увидеть вращение планет, восход Солнца и затмение Луны.

Архимед был гениальным инженером, благодаря созданным им высокотехнологичным машинам Сиракузы долгое время смогли сопротивляться напору бесчисленного римского войска. Они не только забрасывали громадными булыжниками солдат, осаждающих город, но и при помощи железных крюков поднимали и переворачивали римские корабли. Недавно многие из изобретений ученого были воссозданы для подтверждения их удивительных способностей, и проведенные эксперименты оказались успешными.

В 212 году до нашей эры римляне, воспользовавшись изменой, все же захватили Сиракузы, при этом во время штурма был убит и ученый. Однако до сих пор доподлинно неизвестны точные обстоятельства смерти Архимеда, мы же знаем лишь несколько предполагаемых версий.

Плутарх рассказывал о том, что Архимед был пронзен мечом разгневавшегося солдата, сообщившего, что его зовет Марцелл. Ученый не успел решить математическую задачу и просил повременить еще несколько минут.

В книге И.Цеца повествуется о том, как 75-летний Архимед около своего дома размышлял над начерченными на песке схемами. Бежавший мимо в разгар битвы солдат повредил один из чертежей, за что ученый набросился на него с криками: «Оставь мои чертежи». И был жестоко зарублен мечом.

Еще одна версия - гибель Архимеда от рук римских солдат, которые решили ограбить его, приняв блеск измерительных приборов за золото и драгоценные камни.

Достоверно известно, что Марцелл, осаждающий город, узнав о смерти Архимеда, чрезвычайно огорчился и велел устроить пышные похороны, достойные великого гения, а убийцу казнить. Могила ученого с изображением шара, вписанного в цилиндр, была обнаружена Цицероном почти через 150 лет после описываемых событий.

Сегодня имя Архимеда навеки увековечено не только на Земле, но и во вселенной: им назван один из кратеров на поверхности Луны, астероид, блуждающий в космическом пространстве и множество улиц по всему миру.

Наименование параметра Значение
Тема статьи: Архимед.
Рубрика (тематическая категория) География

Это ученый-естественник в строгом смысле, не философ, хотя очень разносторонний ученый. Он - математик , взявшийся за труднейшие проблемы своего времени: вычисление площадей криволинœейных фигур, вычисление поверхностей и объёма цилиндра и шара. В его методах проявляются элементы высшей математики, в частности, интегральные методы. Причем уже древние восхищались строгостью, изяществом и простотой его доказательств. Он - оптик , но, к сожалению, его объёмистый труд об отражениях “Катоптрика” не сохранился. Он - астроном , строитель первого “планетария” (астрономической сферы) и прибора для измерения видимого диаметра Солнца. Он – физик , создатель гидростатики и автор одноименного закона. Наконец, он - механи к, причем одновременно и механик-теоретик (создатель статики) и механик-практик - автор многочисленных механических приспособлений, в т.ч. боевых машин, успешно использовавшихся при обороне Сиракуз.

В гидростатике Архимед формулирует известный закон . При этом он исходит из одного предположения, задающего модель идеальной жидкости: “Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из частиц сдавливается жидкостью, находящейся над ней по отвесу, в случае если только жидкость не заключена в каком-нибудь сосуде и не сдавливается чем-то другим". Это единственное предположение, исходя из которого, Архимед выводит всœе остальное. С гидростатическими исследованиями, связан и метод определœения удельного веса , разработанный Архимедом.

В теоретической механике Архимед.- основатель статики, одного из трех разделов механики. Именно он разработал учение о равновесии твердых тел : установил понятие центра тяжести , разработал методы его нахождения, дал первую теорию рычага, вообще создал единую систему, дающую возможность решать задачи на равновесие, которая оформилась в самостоятельную научную область.

В области практической механики Архимед изобрел “архимедов винт ” - винт для подъема воды, который затем широко использовался в Египте для подъема воды из Нила на высоту до 4-х метров; около сорока других механических изобретений.

Архимед по своему геометрическому подходу к решению физических проблем и ценностным установкам близок, скорее, к математической программе Платона, но по своему инженерному и экспериментальному, опытному характеру идет даже дальше Аристотеля к методам и воззрениям новой физики. Тем не менее, на своей могиле он просил установить памятник с изображением шара, вписанного в цилиндр и надписать установленное им соотношение их объёмов 2:3, считая это главной своей заслугой .

Астрономия. На первом этапе становления греческой астрономии данный процесс шел в двух направлениях:

I) выдвижение астрономических гипотез. В первом направлении развивали астрономию в основном философы: Анаксимандр, Анаксимен, Пифагор, Анаксагор, Филолай. По-видимому, пифагорейцам принадлежит идея о шарообразности Земли , очевидно, из идей симметрии и геометрической идеальности. Эта идея стала общепризнанной в античной астрономии. Еще Анаксимандр выдвинул идею о центральном положении Земли, свободно висящей в пространстве (правда ее форма ему виделась цилиндрической). Парадоксальная идея, но также принятая практически без доказательств.

2)развитие систематических и всœе более точных и регулярных наблюдений. занимался календарной астрономией: Клеостат с Тенедоса (конец 6-го в. до н.э.), Эпонид Хиосский (ок.450 ᴦ.до н.э.), Метон и Евктемон из Афин (ок. 430 ᴦ. до н.э.).

Выдвигались разного рода негеоцентрические системы . Из них первой следует признать пифагорейскую, согласно которой в центре мира находится огонь - Гестия . Земля совместно с подобной ей Противоземлей вращается вокруг Гестии. Гестия в находящуюся между Землей и Противоземлей щель посылает свет, отражением которого светит Солнце, планеты и звезды. Подвижные планеты, Луна и Солнце находятся на одной оси

Наиболее близкой к современным воззрениям следует признать гелиоцентрическую систему Аристарха Самосского (ок. 250 ᴦ. до н.э.). Аристарх Самосский как раз считал звезды неподвижными и удаленными практически бесконечно от Земли, а Солнце, находящимся в центре, вокруг которого движется Земля, вращаясь суточным обращением. “Сфера звезд...так велика, что круг, по которому обращается Земля, так относится к расстоянию до неподвижных звезд, как центр сферы к ее поверхности”. Исходя из этой системы, он рассчитал соотношение между диаметрами Земли, Солнца и Луны и диаметрами орбит Земли и Луны . Причем методы расчета были безупречны, но точность измерения весьма низка, и в связи с этим результаты далеки от действительных.

Система Аристарха Самосского не была принята современиками. Почему? Из нее вытекали два следствия, не гармонирующие с античным представлением о космосœе: практическая его бесконечность и разноприродность планет и звезд. Птолемей оценивает расстояние от Земли до Солнца в 1200 радиусов Земли, что в 10 000 раз меньше действительного. По- видимому большинство греческих ученых не могло согласиться с тем, что звезды находятся невообразимо далеко от Земли .

Античная география получила свое завершение в работах Птолемея и Страбона. Труды названных ученых выражают два разных взгляда на предмет, содержание и задачи науки.

Птолемей Клавдий (90-160 ᴦ. н.э.). Астроном, географ, математик. 13 книг ʼʼВеликое построение астрономииʼʼ - свод астрономических знаний древних, геоцентрическая модельмира, каталог звезд (1028), описание видимой формы Млечного пути. ʼʼРуководство по географииʼʼ - 8 книᴦ. Приведены данные по 8000 географическим объектам. Труды сохранили свое значение до 16 в.

Согласно Птолемею в центре мира находится неподвижная Земля, вокруг которой движутся планеты. Он заложил основы географии – 8 книᴦ. Различал географию и хорографию (страноведение). Предложил две новые проекции: простую коническую и псевдоконическую равнопромежуточную. ʼʼГеография – есть линœейное изображение всœей ныне известной нам части Земли со всœем тем, что на ней находитсяʼʼ. Труды Птолемея являются вершиной античной географии. При этом его интересовало только положение пунктов на Земле, но не сущность географических явлений.

Генеральной линией” развития греческой космологии стала геоцентрическая система Платона - Аристотеля – Птолемея. Платон поручил своему ученику Евдоксу Книдскому (408 – З55 гᴦ.до.н.э.) разработать астрономическую модель Вселœенной в соответствие со своими космогоническими идеями, что последний и осуществил . В результате возникла система, в которой небесные светила располагались на правильных сферах (хрустальных).

Гераклит Понтийский (4 в. до н.э.) в разработке этой системы добавил идею о том, что Меркурий и Венера вращаются вокруг Солнца. Он посœещал лекции Аристотеля. Написал ʼʼДиалог о природеʼʼ, где развил представление о ʼʼнесопряженных молекулахʼʼ управляемых божеством, мировым разумом. Обсуждал астрономические теории: вращения Земли вокруг своей оси, вращение Меркурия и Венеры вокруг Солнца, Солнца – вокруг Земли. У него есть гениальная догадка о существовании других планетных систем.

Эратосфен . Величайший географ периода эллинизма, глава библиотеки в Александрии. Его ʼʼГеографияʼʼ содержала не только внешнее описание ойкумены, но и включала вопросы математики и физики. Он дал критический обзор истории географии от Гомера. Он критически относился к древнейшему греческому поэту. Он излагает теорию шарообразности Земли, рассматривает изменение ее поверхности, составляет карту ойкумены, ввел сетку меридианов и параллелœей, определил окружность земного шара по экватору порядка 39690 км. Он высказал предположение о преобладании водной поверхности над сушей, что Индию можно достичь западным морским путем. Попытался разделить сушу на сфрагиды - ϶ᴛᴏ первый опыт районирования. А. Гумбольдт видел в труде Эратосфена первую попытку дать целостную картину физического мироописания.

Страбон (род. 64-23 ᴦ. до н.э.).Хранитель ценнейшего научного наследия античности. Он ничего не открыл, ничего не изобрел, не придумал. Он не был самостоятельным мыслителœем, творческой натурой. Но он умел собирать факты и мнения, анализировать их и приводить в систему. Он подробно рассказал о современном ему мире. Себя именовал философом.

Страбон воспринял философию стоиков: проповедь всœемирной гармонии, стремиться к согласию и доброте, самосовершенствованию. Как истинный стоик, Страбон вел размеренную жизнь, не позволял страстям вырываться наружу, заводил друзей и избегал наживать врагов, был осторожен в словах и поступках.

Написал 43 книги ʼʼИсторические запискиʼʼ - исторический труд охватывает 100 лет истории Римского государства.

Страбон много путешествует. ʼʼЯ считаю, что наука география, которой я теперь решил заняться, так же как и всякая другая наука, входит в круг занятий философаʼʼ. 100 стр.
Размещено на реф.рф
первых двух книг ʼʼГеографии ʼʼ посвящены анализу и критике сочинœений предшественников. Всего 17 книг .

1. Природу и человека связывает с хозяйственной деятельностью.

2. Применил исторический метод для географического исследования.

3. Подчеркивает значение географического положения, природных условий,

4. выдвигает идею научного подхода к районированию.

5. Метод Страбона чисто описательный.

6. Он не стремился к объяснению причин и теоретическим построениям и даже гордился тем, что только добросовестно собирал и изложил факты. Объяснение природных явлений он предоставлял философии.

Архимед. - понятие и виды. Классификация и особенности категории "Архимед." 2017, 2018.

  • - Сила статического давления жидкости на криволинейные стенки. Закон Архимеда

    Вопросы по теме 1.4. 1. Как определяется равнодействующая сил давления на твердую поверхность и что понимается под символом рT? 2. Может ли равнодействующая сил давления действовать с внешней стороны твердой поверхности, где жидкости нет? 3. Что такое центр давления? 4.... .


  • - Плавание тел. Закон Архимеда.

    Гидростатический парадокс Основное уравнение гидростатики. Гидростатическое давление и его свойство. Жидкость, находящаяся в покое подвергается действию внешних сил двух категорий: массовых и поверхностных. В результате этого под действием... .


  • -

    Задача 1 Большой поршень гидравлической машины поднимает груз массой Задачи для самостоятельной работы Гидравлическая машина (пресс, подъемник) Основные части гидравлической машины _____________________________________________ _____________________________________________... .


  • - Закон Архимеда и плавание тел

    Пусть тело произвольной формы полностью погружено в жидкость (рис. 17). Выделим цилиндрическую часть этого тела с бесконечно малой площадью поперечного сечения. Рис. 17. Гидростатическая подъемная сила Сила давления, действующая на цилиндрическую часть тела: ,... .


  • - Машины Архимеда

    Учение о рычаге разработано было впервые древнегреческим математиком Архимедом, жившим в Сиракузах (Сицилия) за двести лет до нашей эры. Легенды, в которых, вероятно, кроется большая доля истины, повествуют о замечательных машинах, которые были придуманы им на основе... .


  • Архимед (около 287 до н.э., Сиракузы, Сицилия - 212 до н.э., там же) - древнегреческий ученый, математик и механик, основоположник теоретической механики и гидростатики.

    Разработал предвосхитившие интегральное исчисление методы нахождения площадей, поверхностей и объемов различных фигур и тел.

    Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.

    После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца.

    В теоретическом отношении труд этого великого ученого был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении «Параболы квадратуры» Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде «Об измерении круга» Архимед впервые вычислил число «пи» - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.

    Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир.

    Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика, первый закон которой открыл Архимед (закон, носящий имя Архимеда), согласно которому на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости.

    Однажды приподнявши ногу в воде, Архимед констатировал с удивлением, что в воде нога стала легче. «Эврика! Нашел» - воскликнул он, выходя из своей ванны. Анекдот занятный, но, переданный таким образом, он не точен. Знаменитое «Эврика!» было произнесено не в связи с открытием закона Архимеда, как это часто говорят, но по поводу закона удельного веса металлов - открытия, которое также принадлежит сиракузскому ученому и обстоятельные детали которого находим у Витрувия.

    Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на нее золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочередно положил их в сосуд с водой, отметил, на сколько поднялся ее уровень. Опустив в сосуд корону, Архимед установил, что ее объем превышает объем слитка. Так и была доказана недобросовестность мастера.

    Любопытен отзыв , великого оратора древности, увидевшего «архимедову сферу» - модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».

    И, наконец, Архимед был не только великим ученым, он был, кроме того, человеком, страстно увлеченным механикой. Он проверяет и создает теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это - рычаг («Дайте мне точку опоры, - говорил Архимед, - и я сдвину Землю»), клин, блок, бесконечный винт и лебедка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот. Впоследствии эти механизмы широко применялись в разных странах Мира. Интересно, что усовершенствованный вариант водоподъемной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке.

    Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, - к изобретению болта, сконструированного из винта и гайки.

    Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебедку, нашел средство, к удивлению зевак, спустить на воду тяжелую галеру, севшую на мель, со всем ее экипажем и грузом.

    Еще более убедительное доказательство он дал в 212 году до нашей эры. При обороне Сиракуз от римлян во время второй Пунической войны Архимед сконструировал несколько боевых машин, которые позволили горожанам отражать атаки превосходящих в силе римлян в течение почти трех лет. Одной из них стала система зеркал, с помощью которой египтяне смогли сжечь флот римлян. Этот его подвиг, о котором рассказали Плутарх, Полибий и Тит Ливий, конечно, вызвал большее сочувствие у простых людей, чем вычисление числа «пи» - другой подвиг Архимеда, весьма полезный в наше время для изучающих математику.

    Архимед погиб во время осады Сиракуз - его убил римский воин в тот момент, когда ученый был поглощен поисками решения поставленной перед собой проблемы.

    Любопытно, что, завоевав Сиракузы, римляне так и не стали обладателями трудов Архимеда. Только через много веков они были обнаружены европейскими учеными. Вот почему Плутарх, одним из первых описавший жизнь Архимеда, упомянул с сожалением, что ученый не оставил ни одного сочинения.

    Плутарх пишет, что Архимед умер в глубокой старости. На его могиле была установлена плита с изображением шара и цилиндра. Ее видел Цицерон, посетивший Сицилию через 137 лет после смерти ученого. Только в XVI-XVII веках европейские математики смогли, наконец, осознать значение того, что было сделано Архимедом за две тысячи лет до них.

    Архимед оставил многочисленных учеников. На новый путь, открытый им, устремилось целое поколение последователей, энтузиастов, которые горели желанием, как и учитель, доказать свои знания конкретными завоеваниями.

    Первым по времени из этих учеников был александриец Ктесибий, живший во II веке до нашей эры. Изобретения Архимеда в области механики были в полном ходу, когда Ктесибий присоединил к ним изобретение зубчатого колеса. (Самин Д. К. 100 великих ученых. - М.: Вече, 2000)

    В основополагающих трудах по статике и гидростатике (закон Архимеда) Архимед дал образцы применения математики в естествознании и технике. Архимеду принадлежит множество технических изобретений (архимедов винт, определение состава сплавов взвешиванием в воде, системы для поднятия больших тяжестей, военные метательные машины), завоевавших ему необычайную популярность среди современников.

    Архимед получил образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона II, покровительствовавшего Архимеду. В юности провел несколько лет в крупнейшем культурном центре того времени Александрии Египетской, где познакомился с Эрастосфеном. Затем до конца жизни жил в Сиракузах.

    Во время Второй Пунической войны (218-201), когда Сиракузы были осаждены войском римского полководца Марцелла, Архимед участвовал в обороне города, строил метательные орудия. Военные изобретения ученого (о них рассказывал Плутарх в жизнеописании полководца Марцелла) в течение двух лет помогали сдерживать осаду Сиракуз римлянами. Архимеду приписывается сожжение римского флота направленными через систему вогнутых зеркал солнечными лучами, но это недостоверные сведения. Гений Архимеда вызывал восхищение даже у римлян. Марцелл приказал сохранить ученому жизнь, но при взятии Сиракуз Архимед был убит.

    Архимеду принадлежит первенство во многих открытиях из области точных наук. До нас дошло тринадцать трактатов Архимеда. В самом знаменитом из них - «О шаре и цилиндре» (в двух книгах) Архимед устанавливает, что площадь поверхности шара в 4 раза больше площади наибольшего его сечения; формулирует соотношение объемов шара и описанного около него цилиндра как 2:3 - открытие, которым он так дорожил, что в завещании просил поставить на своей могиле памятник с изображением цилиндра с вписанным в него шаром и надписью расчета (памятник через полтора века видел Цицерон). В этом же трактате сформулирована аксиома Архимеда (называемая иногда аксиомой Евдокса), играющая важную роль в современной математике.

    В трактате «О коноидах и сфероидах» Архимед рассматривает шар, эллипсоид, параболоид и гиперболоид вращения и их сегменты и определяет их объемы. В сочинении «О спиралях» исследует свойства кривой, получившей его имя (Архимедова спираль) и касательной к ней. В трактате «Измерение круга» Архимед предлагает метод определения числа π, который использовался до конца 17 в., и указывает две удивительно точные границы числа π:

    3·10/71В физике Архимед ввел понятие центра тяжести, установил научные принципы статики и гидростатики, дал образцы применения математических методов в физических исследованиях. Основные положения статики сформулированы в сочинении «О равновесии плоских фигур».

    Архимед рассматривает сложение параллельных сил, определяет понятие центра тяжести для различных фигур, дает вывод закона рычага. Знаменитый закон гидростатики, вошедший в науку с его именем (Архимеда закон), сформулирован в трактате «О плавающих телах». Существует предание, что идея этого закона посетила Архимеда, когда он принимал ванну, с возгласом «Эврика!» он выскочил из ванны и нагим побежал записывать пришедшую к нему научную истину.

    Закон Архимеда: на всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости. Закон Архимеда справедлив и для газов.

    F - выталкивающая сила;
    P - сила тяжести, действующая на тело.

    Архимед построил небесную сферу - механический прибор, на котором можно было наблюдать движение планет, Солнца и Луны (описан Цицероном, после гибели Архимеда планетарий был вывезен Марцеллом в Рим, где на протяжении нескольких веков вызывал восхищение); гидравлический орган, упоминаемый Тертуллианом как одно из чудес техники (изобретение органа некоторые приписывают александрийскому инженеру Ктесибию).

    Считается, что еще в юности, во время пребывания в Александрии, Архимед изобрел водоподъемный механизм (Архимедов винт), который был применен при осушении залитых Нилом земель. Он построил также прибор для определения видимого (углового) диаметра Солнца (о нем Архимед рассказывает в трактате «Псаммит») и определил значение этого угла.

    Наметив в самых общих чертах принципы кинематического описания движения жидкостей и газов, приступим к рассмотрению основных идей динамики движения, то есть выяснения причин того или иного вида движения. Основным понятием динамики является взаимодействие тел и его характеристика − сила. Следовательно, для динамического описания движения жидкостей и газов необходимо рассмотреть взаимодействие различных частей жидкой среды между собой.
     Как мы уже отмечали, эти силы обусловлены межмолекулярными взаимодействиями, их полное описание чрезвычайно сложно. Но сейчас нам нет необходимости досконально знать законы этих взаимодействий − достаточно принять во внимание, что при деформации жидкости (то есть изменении расстояния между молекулами) возникают силы упругости.
     Помимо межмолекулярных сил (сил давления, обусловленных деформацией жидкости), на жидкость могут действовать и внешние силы, например, гравитационные (в частности, сила тяжести), инерционные, электрические, магнитные и т. д. Имеет смысл разделить эти внешние силы на две группы − объемные, действующие на все части жидкости, и поверхностные, действующие только на поверхность жидкости со стороны окружающих тел (например, стенок сосуда).
     Пусть жидкость находится в состоянии покоя. В качестве исходных «аксиом» примем законы динамики Ньютона и очевидный экспериментальный факт: жидкость обладает свойством текучести. Полученные в данном разделе результаты в равной мере применимы и к газам.
     Рассмотрим, какие следствия можно извлечь из этих «аксиом».

    1. Сила, с которой покоящаяся жидкость действует р на стенки сосуда, направлена перпендикулярно к этой стенке (рис. 189).

    Рис. 189
     Докажем это утверждение методом от противного. Пусть в некоторой части сосуда сила давления F д , действующая на стенку, направлена под некоторым (не прямым) углом к последней. По третьему закону Ньютона, стенка действует на жидкость с силой F , равной по величине и противоположной по направлению: F = −F д . Разложим эту силу на нормальную (направленную перпендикулярно стенке) F n и тангенциальную (направленную по касательной к стенке) F τ составляющие (рис. 190).

    рис. 190
     При наличии тангенциальной силы, действующей на жидкость, жидкость, вследствие текучести, придет в движение. В состоянии равновесия таких сил быть не может. Следовательно, силы взаимодействия стенки и жидкости нормальны к стенке.

    2. Силы, действующие на границу мысленно выделенного объема неподвижной жидкости, перпендикулярны этой границе (рис. 191).

    рис. 191
     Это утверждение доказывается аналогично предыдущему − методом от противного.
     Итак, вопрос о направлении сил взаимодействия жидкости с сосудом и различных частей жидкости решается однозначно: эти силы направлены по нормали к границе раздела. Если внутри жидкости выделить некоторую малую площадку, то модуль силы, действующей на одну сторону этой площадки, не зависит от ее ориентации. Это свойство внутренних сил позволяет ввести скалярную силовую характеристику взаимодействий внутри жидкости − давление.
     Строго говоря, силы взаимодействия между различными частями жидкости изменяются от точки к точке, поэтому изменение ориентации не малой площадки приведет к изменению силы, действующей на нее.  Для малой 1 же площадки можно пренебречь изменением сил взаимодействия в ее пределах. Поэтому модуль рассматриваемой силы в этом случае оказывается пропорциональным площади. Следовательно, отношение модуля силы к площади площадки является характеристикой сил упругости внутри жидкости.
    Давление − отношение модуля силы, действующей на выделенную малую площадку, к площади этой площадки:

     Как мы уже отмечали, жидкость может быть как сжата, так и растянута, поэтому силы давления (силы упругости), оставаясь нормальными, могут быть направлены в разные стороны от границы жидкости. Для указания направления можно указывать знак давления. Принято считать давление положительным, если сила давления жидкости направлена наружу от рассматриваемого объема, что соответствует сжатой жидкости, в случае же растянутой жидкости силы упругости направлены внутрь жидкости, поэтому давление такой жидкости считается отрицательным.
     Понятно, что сила, действующая на площадку, может зависеть от ее положения внутри жидкости, поэтому и давление может изменяться при переходе от одной точки объема жидкости к другой. В этом смысле давление следует рассматривать как точечную характеристику, то есть как функцию координат р(х, у, z) .

    Конечно, измерить давление «в данной точке» невозможно − измерению поддается только сила, действующая на площадку конечной площади. Кроме того, бессмысленно говорить о давлении на площадях, сравнимых с размерами отдельной молекулы. Однако, с точки зрения простоты математического описания, удобней рассматривать давление именно как функцию координат, понимая физическую ограниченность этого понятия.

    Учитывая, что сила, действующая на малую площадку, направлена по нормали к площадке, а ее модуль выражается из формулы (1), вектор силы можно записать в виде

    где n − единичный вектор нормали к площадке.
     Для вычисления суммарной силы давления на некоторую поверхность внутри жидкости необходимо разбить эту поверхность на малые участки (рис. 192),

    рис. 192
    вычислить силу, действующую на каждую площадку, и просуммировать все эти силы:

     Продолжим рассмотрение следствий из условий равновесия жидкости.

    3. Векторная сумма внешних сил, действующих на любую мысленно выделенную часть неподвижной жидкости, равна нулю.
     Это утверждение просто повторяет общее условие равновесия любого тела, в том числе и жидкого.

    4. При отсутствии объемных сил, действующих на жидкость, давление во всех точках объема одинаково.
     Для доказательства этого положения мысленно выделим внутри жидкости произвольно ориентированный узкий цилиндр (рис. 193).

    рис. 193
     Так как жидкость в выделенном объеме находится в покое, то силы, действующие на основания цилиндра, равны по модулю и противо-положны по направлению: F 1 = F 2 . Из этого соотношения и определения давления следует, что давления в точках оснований цилиндров равны. Аналогичные рассуждения справедливы для любого цилиндра, следовательно, давление во всех точках жидкости одинаково.
     Справедливо и обратное утверждение.

    5. Если давление жидкости во всех точках одинаково, то суммарная сила, действующая на произвольную замкнутую поверхность, полностью находящуюся внутри жидкости, равна нулю.
     Выделим внутри объема жидкости произвольную замкнутую поверхность. На каждый малый участок поверхности действует сила давления жидкости, направленная перпендикулярно данному участку. Докажем, что сумма проекций сил давления на произвольное направление (например, ось X ) равна нулю. Для этого разобьем выделенную часть объема на узкие цилиндры, боковые поверхности которых параллельны выделенной оси (рис. 194).


    рис. 194
     На основания этих цилиндров действуют силы давления, равные:
    F 1 = pS 1 , F 2 = pS 2 ,
    где S 1 , S 2 − площади оснований цилиндров.
    Проекции сил на выбранное направление оси равны:
    F 1х = рS 1 cosα 1 , F 2х = −рS 2 соsα 2 ,
    где α 1 , α 2 − углы между нормалями к основаниям и осью X .
     Теперь заметим, что
    S 1 cosα 1 = S 2 cosα 2 = S o ,
    где S o − площадь поперечного сечения выбранного цилиндра, поэтому
    F 1x + F 2х = 0.
     Аналогичное соотношение справедливо для всех цилиндров, на которые разбито тело, поэтому сумма проекций сил на ось X равна нулю. Так как ось X выбрана произвольно, то сумма проекций сил давления на любую ось равна нулю, следовательно, и векторная сумма рассматриваемых сил также равна нулю.

    6. Закон Паскаля. Давление на поверхность жидкости, произведенное внешними силами, передается жидкостью во все стороны одинаково.
     Данный закон справедлив и в том случае, когда на жидкость действуют объемные силы.
    Пусть жидкость находится в сосуде под поршнем (рис. 195).

    рис. 195
     Приложим к поршню дополнительную нормальную силу F . Под действием этой силы жидкость дополнительно сожмется, что приведет к увеличению давления. В состоянии равновесия эта дополнительная сила будет скомпенсирована равным увеличением силы давления на поршень со стороны жидкости. Следовательно, увеличение давления жидкости непосредственно под поршнем будет равно:
    Δp o = F/S o ,
    где S o − площадь поршня.
     Выделим внутри жидкости произвольную замкнутую поверхность, часть которой совпадает с поверхностью поршня. В состоянии равновесия сумма объемных сил F об , действующих на выделенную часть жидкости, и поверхностных сил давления

    равна нулю:

     Дополнительная сила давления на часть выбранной поверхности под поршнем должна быть скомпенсирована увеличением поверхностных сил давления на остальную поверхность. Обозначим увеличение давления вблизи части ΔS i , поверхности − Δp i . В состоянии равновесия должно выполняться соотношение, аналогичное (2):

    Учитывая, что суммарная объемная сила не изменилась, из (2), (3) следует, что соотношение

    должно выполняться для любой поверхности внутри объема жидкости, что возможно только в том случае, если величины Δpi одинаковы во всех точках жидкости, то есть
    Δp i = Δp o = F/S o .
     Отметим, что закон Паскаля можно интерпретировать следующим образом: в состоянии равновесия изменение давления в одной точке жидкости приводит к равному изменению давления во всех остальных точках жидкости.

    Существенным в данной формулировке является упомина¬ние о состоянии равновесия, потому что при увеличении давления в некоторой точке жидкости требуется некоторый промежуток времени, чтобы произошло установление равновесия в остальных частях объема жидкости, иными словами, возмущение жидкости распространяется внутри объема с конечной скоростью. Позднее мы покажем, что эта скорость есть скорость распространения упругих волн (т. е. звука) в данной жидкости.

    Важными следствием закона Паскаля является так называемый «гидростатический парадокс»: давление жидкости на дно сосуда не зависит от формы сосуда. Он проявляется в свойствах сообщающихся сосудов. Закон Паскаля также является теоретическим обоснованием таких устройств, как гидравлический пресс, сифон и т. д.

    7. В поле тяжести земли давление жидкости на глубине определяется по формуле
    p = ρgh, (4)
    где ρ − плотность жидкости, g − ускорение свободного падения.
     Давление, определяемое формулой (4), называется гидростатическим.
     Для вывода этой формулы достаточно выделить внутри объема жидкости вертикальный цилиндр высотой h , верхнее основание которого площадью S находится на свободной поверхности жидкости, и рассмотреть условия его равновесия. Объемные силы, действующие на жидкость внутри выделенного цилиндра (в данном случае это сила тяжести mg = ρgV = ρghS ), уравновешиваются силой давления на нижнее основание цилиндра pS . Из условия равенства этих сил следует формула (4).

    Заметим, что формула (4) описывает только ту часть давления, которая обусловлена силой тяжести, действующей на жидкость. В общем случае, полное давление на глубине h будет равно сумме гидростатического давления и внешнего давления на поверхность жидкости (например, атмосферного давления).

    8. Закон Архимеда. На погруженное в жидкость тело действует выталкивающая сила, равная суммарной объемной силе, действующей на жидкость в объеме тела.
     Доказательство этого закона достаточно просто. По своей природе выталкивающая сила есть векторная сумма сил давления жидкости на поверхность тела (рис. 196).

    рис. 196
     Следовательно, эта сила определяется распределением давления жидкости вблизи поверхности тела. Мысленно уберем тело из жидкости, оставив только его «оболочку», которую заполним той же жидкостью. От такой замены суммарная сила давления на поверхность не изменится. С другой стороны, очевидно, что жидкость в объеме тела, находящаяся в такой же жидкости, будет находиться в равновесии. Поэтому суммарная сила давления будет равна по величине и противоположна по направлению объемной силе, действующей на жидкость в объеме тела.
     В частном случае, если единственной объемной силой является сила тяжести и при постоянной плотности жидкости ρ выталкивающая сила (сила Архимеда F A ) по модулю равна силе тяжести, действующей на жидкость в объеме тела V и противоположна ей по направлению, то
    F A = ρgV,
    векторной форме,

     Заметим, что выталкивающая сила появляется только в том случае, когда давление внутри жидкости различно в различных точках. В случае постоянного давления (каким бы большим оно не было) суммарная сила давления равна нулю. Различие давлений обусловлено только объемными силами, действующими на жидкость. Поверхностные силы, как было нами показано, не могут привести к возникновению разности давлений в различных точках жидкости. Допустим, что жидкость находится под поршнем − увеличение силы давления на поршень не приведет к увеличению выталкивающей силы, действующей на погруженное в жидкость тело.
     В общем случае, выталкивающая сила может описываться более сложными формулами, которые могут учитывать изменение плотности жидкости, изменение ускорения свободного падения как по величине, так и по направлению, присутствие других объемных сил − инерционных, электрических, магнитных и т. д.

    1 Точнее, следует говорить о бесконечно малой площадке.


    Исторические дополнения
    Блез Паскаль (фр. Blaise Pascal) родился 19 июня 1623 года в городе Клермон-Ферран (Франция) в семье председателя налогового управления (рис.). В 1631 году, после смерти матери, семья переехала в Париж.
     Ранние работы Блеза относились к естественным и прикладным наукам. Отец Блеза был сборщиком налогов, и, наблюдая за его бесконечными утомительными расчетами, Паскаль задумал создать вычислительное устройство, которое могло бы помочь этой работе. В 1634 году (в 11 лет) где-то за обеденным столом кто-то зацепил ножом фаянсовое блюдо. Оно зазвучало. Но стоило прикоснуться к блюду пальцем, как звук исчез. Чтобы найти этому объяснение, Паскаль проводит опыты, результаты которых ложатся в основу его «Трактата о звуках».
     В 1639 году, в 16 лет, он написал замечательный трактат о предмете проективной геометрии. В это же время он доказал теорему Паскаля: если вершины шестиугольника лежат на некотором коническом сечении, то три точки пересечения прямых, содержащих противоположные стороны, лежат на одной прямой. Этот результат и 400 следствий из него Паскаль изложил в виде трактата (не сохранился).
     В 1642 году (в 19 лет) Паскаль начал создание своей суммирующей машины − «паскалины» − и до 1652 года построил около 50 ее вариантов. Изобретённый Паскалем принцип связанных колёс почти на три столетия стал основой создания большинства вычислительных устройств.
     В 1648 году, несмотря на болезнь ног, Паскаль завершил «опыты, касающиеся пустоты», и доказал, что в природе нет так называемого «страха пустоты». Он изучал равновесие жидкости под действием атмосферного давления. В историю физики Паскаль вошел, установив основной закон гидростатики и подтвердив предположение Торричелли о существовании атмосферного давления. Исходя из своих открытий, Паскаль изобрел гидравлический пресс, на века опередивший технологию того времени.
     В 1654 году, в переписке с Пьером де Ферма, закладываются основы теории вероятностей. В комбинаторике исследованы свойства «треугольника Паскаля» и его применение к подсчёту числа сочетаний.
     19 августа 1662 года после мучительной, продолжительной болезни Блез Паскаль умер.


    Архимед (ок. 287 − 212 до н. э.) , величайший древнегреческий математик и механик (рис.).
    Уроженец греческого города Сиракузы на острове Сицилия, Архимед был приближенным управлявшего городом царя Гиерона (и, вероятно, его родственником). Возможно, какое-то время Архимед жил в Александрии − знаменитом научном центре того времени. То, что сообщения о своих открытиях он адресовал математикам, связанным с Александрией, например, Эратосфену, подтверждает мнение о том, что Архимед являлся одним из деятельных преемников Евклида, развивавших математические традиции александрийской школы. Вернувшись в Сиракузы, Архимед находился там вплоть до своей гибели при захвате Сиракуз римлянами в 212 до н. э.
    В разгар боя 75-летний Архимед сидел на пороге своего дома, углублённо размышляя над чертежами, сделанными им прямо на до-рожном песке. В это время пробегавший мимо римский воин наступил на чертёж, и возмущённый ученый бросился на римлянина с криком: «Не тронь моих чертежей!». Солдат остановился и хладнокровно зарубил старика мечом. Кроме того, Плутарх сообщает, что Архимед, «как утверждают, завещал родным и друзьям установить на его могиле описанный вокруг шара цилиндр с указанием отношения объема описанного тела к вписанному», что было одним из наиболее славных его открытий.
    Легенды об Архимеде . Помимо замечательных математических работ, Архимед прославился как изобретатель различного рода механических устройств и инструментов. Правда, авторство Архимеда во многих случаях вызывает сомнения. Так, считается, что Архимед был изобретателем так называемого архимедова винта, который служил для подъема воды на поля и явился прообразом корабельных и воздушных винтов, хотя, судя по всему, такого рода устройство использовалось и раньше.
     Плутарх рассказывает, что в ответ на просьбу царя Гиерона продемонстрировать, как тяжелый груз может быть сдвинут малой силой, Архимед взял трехмачтовое грузовое судно, которое перед этим с превеликим трудом вытянули на берег много людей, усадил на него множество народа и загрузил обычным грузом. После этого Архимед сел поодаль и стал без особых усилий тянуть на себя канат, перекинутый через полиспаст, отчего судно легко и плавно, словно по воде, «поплыло» к нему». Именно в связи с этой историей связываются слова Архимеда: «Дайте мне, где стать, и я сдвину Землю». Известна также история, что царь Гиерон поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. «Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: «Эврика! Эврика!» (греч. «Нашел! Нашел!»)».
     Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 году до н. э. в ходе Второй Пунической войны. А ведь в это время ему было уже 75 лет! Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер. Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули.
     Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Знаменитый историк древности Полибий писал: «Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело... римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца».

     Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В книге «О равновесии плоских фигур» он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил. Все доказательство от начала и до конца пронизано идеей геометрической симметрии.
     В своем сочинении «О плавающих телах» Архимед применяет аналогичный метод к решению задач гидростатики. Архимед доказывает теоремы относительно величины погруженной части тела и веса тела в жидкости как с большей, так и с меньшей плотностью, чем само тело. Далее он формулирует закон, согласно которому «всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость».